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Introdution

Graduate and researh students starting in rational approximation theory are soon onfronted with di�erent

approahes to deal with a partiular rational approximation problem. The aim of this lassroom note

is to explain and emphasize that several existing methods to onstrut a rational interpolant are only

reformulations of one another. This is done by diret rewriting of eah method into the other, rather than

the lassial proofs where one shows that eah method essentially solves the same interpolation problem.

In the proess of this rewriting, knowledge is aquired on determinant identities [1℄, reursive omputation

shemes [9 Ch. 2, 3 Ch. 3℄, ontinued frations [5, 7℄, equivalene transformations, et. It is important

to work one's way through this exerise beause it is a good starting point to understand or develop any

generalizations. Also for the Pad�e approximation problem and other rational approximation problems,

similar links an be shown to hold between di�erent approahes.

Rational Interpolation

The problem of onstruting a rational funtion p(x)=q(x) that interpolates a univariate funtion

f(x) at the data (x

k

; f(x

k

)) an be solved in various ways.

One an write down the linearized system of interpolation onditions (fq� p)(x

k

) = 0 and solve it

using Cramer's rule to get determinant expressions for the unknown oeÆients in p(x) and q(x)

and hene also for p(x) and q(x) themselves.

One an start a resursive sheme, omputing the rational interpolant of a ertain degree from the

knowledge of rational interpolants of lower degree.

One an use the fat that a rational funtion an be written as the onvergent of a ontinued

fration and ompute the interpolant in that way.

As the referene list indiates, several independent papers have been published on the subjet. Of

ourse all the tehniques proposed for solving the rational interpolation problem are equivalent

sine they all essentially solve the same problem. In this lassroom note we emphasize this by

showing that any of the following formulas for p(x)=q(x), whether it onerns the determinantal

expressions or the reursive omputation rules or the ontinued fration representation, an be

rewritten to yield any of the other listed formulas. It is important to see this interrelationship

learly beause this is a good starting point for those who are interested in researh on the rational

interpolation problem (see e.g. [2℄ for generalizations to multivariate funtions).

For the moment we onentrate on the following.

Let the univariate funtion f(x) be given in the non-oinident interpolation points fx

0

; x

1

; x

2

; : : :g.

We onsider the next two problems :

�nd polynomials

P

n;n

j

(x) =

n

P

i=0

a

i

x

i

Q

n;n

j

(x) =

n

P

i=0

b

i

x

i

(1a)

suh that

(fQ

n;n

j

� P

n;n

j

)(x

j

) = 0 for k = j; : : : ; j + 2n (1b)
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and �nd polynomials

P

n+1;n

j

(x) =

n+1

P

i=0

a

i

x

i

Q

n+1;n

j

(x) =

n

P

i=0

b

i

x

i

(2a)

suh that

(fQ

n+1;n

j

� P

n+1;n

j

)(x

k

) = 0 for k = j; : : : ; j + 2n+ 1 (2b)

It is well-known that all solutions of (1) are equivalent in the sense that if the polynomials P

1

; Q

1

and P

2

; Q

2

satisfy (1), then

P

1

Q

2

= P

2

Q

1

This implies that all solutions of (1) have the same irreduible form. This unique irreduible form

is alled the rational interpolant of order (n; n) for f . Similarly, all solutions of (2) have a unique

irreduible form, whih is then alled the rational interpolant of order (n+ 1; n) for f .

It is important to realize that the rational interpolant of order (n; n) (respetively order (n+1; n))

for f does not neessarily satisfy the onditions (1b) (respetively (2b)) beause, by onstruting

the irreduible form, a polynomial may have been anelled in numerator and denominator. If

this ommon polynomial ontained a fator (x � x

k

) with x

k

an interpolation point, then it may

be that (1b) (respetively (2b)) is no longer satis�ed by the irreduible form of (1a) (respetively

(2a)). If this is the ase, the rational interpolant does not interpolate the funtion f at all the

given data.

In the sequel of the text we shall assume that all linear systems of interpolation onditions have

maximal rank. Under these onditions, the equivalene formulated in the theorem below an be

proved for the solutions of the problems (1) and (2), whih are then unique (but not neessarily

irreduible) up to a onstant multipliative fator. Together with eah formula we ite a referene

where this formula is treated separately. However, it is our aim here to emphasize the interrela-

tionship between the di�erent formulas.

Let us denote f(x

k

) by f

k

.

Theorem The statements (I), (II), (III), (IV) and (V) are equivalent :

(I) the polynomials P

n;n

j

; Q

n;n

j

and P

n+1;n

j

; Q

n+1;n

j

respetively satisfy (1) and (2)

(II) the following determinant expressions [10℄ for P

n;n

j

; Q

n;n

j

and P

n+1;n

j

; Q

n+1;n

j

an be written

down :

P

n;n

j

Q

n;n

j

(x) =

�

�

�

�

�

�

�

f

j

x� x

j

f

j

(x� x

j

) (x� x

j

)

2

f

j

(x� x

j

)

2

: : : (x� x

j

)

n

f

j

(x � x

j

)

n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f

j+2n

x� x

j+2n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 x� x

j

f

j

(x� x

j

) : : : (x� x

j

)

n

f

j

(x � x

j

)

n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 x� x

j+2n

�

�

�

�

�

�

�

3



and

P

n+1;n

j

Q

n+1;n

j

(x) =

�

�

�

�

�

�

�

f

j

x� x

j

f

j

(x� x

j

) : : : (x� x

j

)

n

f

j

(x� x

j

)

n

(x� x

j

)

n+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f

j+2n+1

x� x

j+2n+1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 x� x

j

f

j

(x� x

j

) : : : (x� x

j

)

n+1

.

.

.

.

.

.

.

.

.

.

.

.

1 x� x

j+2n+1

�

�

�

�

�

�

�

(III) P

n;n

j

; Q

n;n

j

and P

n+1;n

j

; Q

n+1;n

j

satisfy the reursive omputation rules [8℄ :

P

n;n

j

(x) = (x� x

j

)p

n;n�1

j

P

n;n�1

j+1

(x) � (x� x

j+2n

)p

n;n�1

j+1

P

n;n�1

j

(x)

Q

n;n

j

(x) = (x� x

j

)p

n;n�1

j

Q

n;n�1

j+1

(x)� (x� x

j+2n

)p

n;n�1

j+1

Q

n;n�1

j

(x)

and

P

n+1;n

j

(x) = (x� x

j

)q

n;n

j

P

n;n

j+1

(x) � (x� x

j+2n+1

)q

n;n

j+1

P

n;n

j

(x)

Q

n+1;n

j

(x) = (x� x

j

)q

n;n

j

Q

n;n

j+1

(x) � (x� x

j+2n+1

)q

n;n

j+1

Q

n;n

j

(x)

where

P

n+1;n

j

(x) = p

n+1;n

j

x

n+1

+ : : :

Q

n+1;n

j

(x) = q

n+1;n

j

x

n

+ : : :

P

n;n

j

(x) = p

n;n

j

x

n

+ : : :

Q

n;n

j

(x) = q

n;n

j

x

n

+ : : :

and

P

0;0

k

= f

k

for k = j; : : : ; j + 2n+ 1

Q

0;0

k

= 1

(IV) Aitken{Neville{like formulas are satis�ed by P

n;n

j

=Q

n;n

j

and P

n+1;n

j

=Q

n+1;n

j

[6℄ :

P

n;n

j

Q

n;n

j

=

P

n�1;n�1

j+1

Q

n�1;n�1

j+1

+

x

j+2n

� x

j

x� x

j

P

n;n�1

j+1

Q

n;n�1

j+1

�

P

n�1;n�1

j+1

Q

n�1;n�1

j+1

+

x

j+2n

� x

P

n;n�1

j

Q

n;n�1

j

�

P

n�1;n�1

j+1

Q

n�1;n�1

j+1

and

P

n+1;n

j

Q

n+1;n

j

=

P

n;n�1

j+1

Q

n;n�1

j+1

+

x

j+2n+1

� x

j

x� x

j

P

n;n

j+1

Q

n;n

j+1

�

P

n;n�1

j+1

Q

n;n�1

j+1

+

x

j+2n+1

� x

P

n;n

j

Q

n;n

j

�

P

n;n�1

j+1

Q

n;n�1

j+1

where

P

0;0

k

Q

0;0

k

= f

k

for k = j; : : : ; j + 2n+ 1

and

P

1;0

k

Q

1;0

k

=

(x� x

k

)f

k+1

+ (x

k+1

� x)f

k

x

k+1

� x

k

for k = j; : : : ; j + 2n
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(V) P

n;n

j

; Q

n;n

j

and P

n+1;n

j

; Q

n+1;n

j

are the numerator and denominator of the (2n)

th

(respetively

(2n+ 1)

th

) onvergent of the ontinued fration [4℄

'[x

j

℄ +

1

X

k=0

x� x

j+k

'[x

j

; : : : ; x

j+k+1

℄

= '[x

j

℄ +

x� x

j

'[x

j

; x

j+1

℄ +

x� x

j+1

'[x

j

; x

j+1

; x

j+2

℄ +

x� x

j+2

: : :

where

'[x

j

℄ = f

j

'[x

j

; : : : ; x

j+k+1

℄ =

x

j+k+1

� x

j+k

'[x

j

; : : : ; x

j+k�1

; x

j+k+1

℄� '[x

j

; : : : ; x

j+k�1

; x

j+k

℄

Proof

In ontrast to the proofs found in [10℄,[8℄,[6℄ and [4℄, where it is shown that the respetive statements

(II) through (V) are eah equivalent with (I), the onstrution of the proof given here will be as

follows : we shall demonstrate that (I) an be rewritten as (II), (II) an be rewritten as (III) and

(III) implies (I); then we shall prove that (IV) is an equivalent reformulation of (III); as for a proof

of the equivalene between (V) and (I) we refer to [4℄. Also we shall prove the theorem only for

P

n+1;n

j

; Q

n+1;n

j

beause the reasoning for P

n;n

j

; Q

n;n

j

is ompletely analogous.

The polynomials

P

n+1;n

j

(x) =

n+1

X

i=0

a

i

x

i

Q

n+1;n

j

(x) =

n

X

i=0

b

i

x

i

together learly ontain 2n+ 3 unknown oeÆients a

i

; b

i

. Beause one parameter an always be

hosen by a normalization of numerator and denominator, these a

i

; b

i

are uniquely determined by

imposing the 2n+ 2 interpolating onditions

(fQ

n+1;n

j

� P

n+1;n

j

)(x

k

) = 0 k = j; : : : ; j + 2n+ 1

More expliitly these linear equations an be written as

f

k

b

0

�a

0

�a

1

x

k

+b

1

f

k

x

k

�a

2

x

2

k

+b

2

f

k

x

2

k

: : :�a

n

x

n

k

+b

n

f

k

x

n

k

�a

n+1

x

n+1

k

= 0 k = j; : : : ; j+2n+1

Sine this homogeneous system of equations is assumed to have maximal rank, its solution is given

by the following determinants of size (2n+ 3):

P

n+1;n

j

(x) =

�

�

�

�

�

�

�

�

�

�

�

0 �1 �x 0 �x

2

0 : : : �x

n

0 �x

n+1

�f

j

�1 �x

j

f

j

x

j

�x

2

j

f

j

x

2

j

: : : �x

n

j

f

j

x

n

j

�x

n+1

j

�f

j+1

�1 �x

j+1

f

j+1

x

j+1

�x

2

j+1

f

j+1

x

2

j+1

: : : �x

n

j+1

f

j+1

x

n

j+1

�x

n+1

j+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�f

j+2n+1

�1 �x

j+2n+1

�

�

�

�

�

�

�

�

�

�

�

and

5



Q

n+1;n

j

(x) =

�

�

�

�

�

�

�

�

�

�

�

1 0 0 �x 0 �x

2

: : : 0 �x

n

0

�f

j

�1 �x

j

f

j

x

j

�x

2

j

f

j

x

2

j

: : : �x

n

j

f

j

x

n

j

�x

n+1

j

�f

j+1

�1 �x

j+1

f

j+1

x

j+1

�x

2

j+1

f

j+1

x

2

j+1

: : : �x

n

j+1

f

j+1

x

n

j+1

�x

n+1

j+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�f

j+2n+1

�1 �x

j+2n+1

�

�

�

�

�

�

�

�

�

�

�

(3)

By making a suitable ombination of the rows and olums in the above determinants, we easily

obtain the form given in (II) for P

n+1;n

j

(x)=Q

n+1;n

j

(x).

From the expression (3) forQ

n+1;n

j

(x) we an also immediately see that its highest degree oeÆient

q

n+1;n

j

is given by

q

n+1;n

j

=

�

�

�

�

�

�

�

�

�

�

1 f

j

�x

j

f

j

x

j

�x

2

j

: : : f

j

x

n�1

j

�x

n

j

�x

n+1

j

1 f

j+1

�x

j+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 f

j+2n+1

�x

j+2n+1

�

�

�

�

�

�

�

�

�

�

(4)

The analogous expression

q

n;n

j

=

�

�

�

�

�

�

�

�

�

�

1 f

j

�x

j

f

j

x

j

�x

2

j

: : : f

j

x

n�1

j

�x

n

j

1 f

j+1

�x

j+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 f

j+2n

�x

j+2n

�

�

�

�

�

�

�

�

�

�

(5)

is used further on in this proof.

To �nd the reurrene given in (III) from the determinantal formulas (II) we shall make use of

Jaobi's identity [1℄. Therefore we �rst write

P

n+1;n

j

(x)

Q

n+1;n

j

(x)

=

�

�

�

�

�

�

�

�

�

�

�

�

f

j

(x� x

j

)

n+1

(x� x

j

) f

j

(x� x

j

) : : : f

j

(x� x

j

)

n

f

j+2n+1

A

f

j+1

.

.

.

f

j+2n

�

�

�

�

�

�

�

�

�

�

�

�

�G

�

�

�

�

�

�

�

1 (x� x

j

)

n+1

(x � x

j

) f

j

(x� x

j

) : : : f

j

(x� x

j

)

n

.

.

. A

1

�

�

�

�

�

�

�

�G

with

A =

�

�

�

�

�

�

�

�

(x� x

j+2n+1

)

n+1

x� x

j+2n+1

f

j+2n+1

(x� x

j+2n+1

) : : : f

j+2n+1

(x � x

j+2n+1

)

n

(x� x

j+1

)

n+1

x� x

j+1

.

.

.

.

.

.

.

.

.

.

.

.

(x� x

j+2n

)

n+1

x� x

j+2n

�

�

�

�

�

�

�

�

and

G =

�

�

�

�

�

�

�

x� x

j+1

f

j+1

(x� x

j+1

) : : : f

j+1

(x� x

j+1

)

n

.

.

.

.

.

.

.

.

.

x� x

j+2n

f

j+2n

(x� x

j+2n

) : : :

�

�

�

�

�

�

�
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The determinant G is obtained from the rearranged determinant expressions for P

n+1;n

j

(x) and

Q

n+1;n

j

(x) by omitting the �rst two rows and olumns. It is assumed that G 6= 0.

Applying Jaobi's identity yields

P

n+1;n

j

(x)

Q

n+1;n

j

(x)

=

A �B � C �D

A �E � C � F

(6)

with

B =

�

�

�

�

�

�

�

�

f

j

x� x

j

f

j

(x� x

j

) : : : f

j

(x� x

j

)

n

f

j+1

x� x

j+1

f

j+1

(x� x

j+1

) : : : f

j+1

(x� x

j+1

)

n

.

.

.

.

.

.

.

.

.

.

.

.

f

j+2n

x� x

j+2n

�

�

�

�

�

�

�

�

= P

n;n

j

(x)

C =

�

�

�

�

�

�

�

�

(x� x

j

)

n+1

x� x

j

f

j

(x� x

j

) : : : f

j

(x � x

j

)

n

(x� x

j+1

)

n+1

x� x

j+1

f

j+1

(x� x

j+1

) : : : f

j+1

(x � x

j+1

)

n

.

.

.

.

.

.

.

.

.

.

.

.

(x � x

j+2n

)

n+1

�

�

�

�

�

�

�

�

D =

�

�

�

�

�

�

�

�

�

�

�

�

�

f

j+2n+1

x� x

j+2n+1

f

j+2n+1

(x � x

j+2n+1

) : : : f

j+2n+1

(x� x

j+2n+1

)

n

f

j+1

x� x

j+1

f

j+1

(x � x

j+1

)

.

.

.

f

j+2

.

.

.

.

.

.

.

.

.

f

j+2n

x� x

j+2n

f

j+2n

(x � x

j+2n

)

�

�

�

�

�

�

�

�

�

�

�

�

�

= P

n;n

j+1

(x)

E =

�

�

�

�

�

�

�

�

�

�

1 x� x

j

f

j

(x� x

j

) : : : f

j

(x � x

j

)

n

1 x� x

j+1

.

.

.

.

.

.

.

.

.

.

.

.

1 x� x

j+2n

�

�

�

�

�

�

�

�

�

�

= Q

n;n

j

(x)

F =

�

�

�

�

�

�

�

�

�

�

1 x� x

j+2n+1

f

j+2n+1

(x� x

j+2n+1

) : : : f

j+2n+1

(x� x

j+2n+1

)

n

1 x� x

j+1

.

.

.

.

.

.

.

.

.

.

.

.

1 x� x

j+2n

�

�

�

�

�

�

�

�

�

�

= Q

n;n

j+1

(x)

Here we have taken into aount the formulas (II) for B;D;E and F . To �nd an expliit expression

for the quantities A and C we rewrite e.g. A as :

A = (x� x

j+1

) : : : (x� x

j+2n+1

)�

�

�

�

�

�

�

�

�

1 f

j+1

x� x

j+1

f

j+1

(x� x

j+1

) : : : f

j+1

(x� x

j+1

)

n�1

(x� x

j+1

)

n

1 f

j+2

x� x

j+2

.

.

.

.

.

.

.

.

.

.

.

.

1 f

j+2n+1

x� x

j+2n+1

(x � x

j+2n+1

)

n

�

�

�

�

�

�

�

�

By a number of suitable ombinations of rows and olumns we �nd, using (4) and (5), that

A = (x� x

j+1

) : : : (x� x

j+2n+1

)q

n;n

j+1

and analogously

C = (x� x

j

) : : : (x� x

j+2n

)q

n;n

j

7



Substituting the expressions for A;B;C;D;E and F in (6) yields

P

n+1;n

j

(x)

Q

n+1;n

j

(x)

=

(x� x

j+2n+1

)q

n;n

j+1

P

n;n

j

(x) � (x� x

j

)q

n;n

j

P

n;n

j+1

(x)

(x� x

j+2n+1

)q

n;n

j+1

Q

n;n

j

(x) � (x� x

j

)q

n;n

j

Q

n;n

j+1

(x)

It is easy to verify that the numerator (respetively denominator) of the lefthand side and of the

righthand side in the above expression are polynomials of the same degree n+ 1 (respetively n).

This onludes the proof that (II) an be rewritten as (III).

In order to show that (III) implies (I), one an easily verify that the polynomials P

n+1;n

j

and

Q

n+1;n

j

as given by (III) have degree n + 1 and n respetively. We still need to hek that the

expressions (III) for numerator and denominator interpolate the given funtion :

for x = x

j

we have :

(fQ

n+1;n

j

� P

n+1;n

j

)(x

j

) = (x

j

� x

j+2n+1

)q

n;n

j+1

(fQ

n;n

j

� P

n;n

j

)(x

j

) = 0

for x = x

k

with k = j + 1; : : : ; j + 2n we have

(fQ

n+1;n

j

� P

n+1;n

j

)(x

k

) =(x

k

� x

j+2n+1

)q

n;n

j+1

(fQ

n;n

j

� P

n;n

j

)(x

k

)

� (x

k

� x

j

)q

n;n

j

(fQ

n;n

j+1

� P

n;n

j+1

)(x

k

) = 0

for x = x

j+2n+1

, we have

(fQ

n+1;n

j

� P

n+1;n

j

)(x

j+2n+1

) = (x

j

� x

j+2n+1

)q

n;n

j

(fQ

n;n

j+1

� P

n;n

j+1

)(x

j+2n+1

) = 0

So we are bak at (I).

Let us now show that (III) an be reformulated as (IV) in order to obtain an algorithm similar to

the polynomial Aitken{Neville interpolation sheme. To prove this equivalene we start from the

expression (IV) for P

n+1;n

j

=Q

n+1;n

j

. It an be written as :

P

n+1;n

j

Q

n+1;n

j

=

P

n;n�1

j+1

Q

n;n�1

j+1

+

(x

j+2n+1

� x

j

)�

1

�

2

(x� x

j

)�

1

Q

n;n

j+1

Q

n;n�1

j+1

+ (x

j+2n+1

� x)�

2

Q

n;n�1

j+1

Q

n;n

j

(7)

where

�

1

= P

n;n

j

Q

n;n�1

j+1

� P

n;n�1

j+1

Q

n;n

j

�

2

= P

n;n

j+1

Q

n;n�1

j+1

� P

n;n�1

j+1

Q

n;n

j+1

If we ompute the numerator in the righthand side of (7), we have

N(x) � P

n;n�1

j+1

Q

n;n

j+1

Q

n;n�1

j+1

(x � x

j

)�

1

+ P

n;n�1

j+1

Q

n;n

j

Q

n;n�1

j+1

(x

j+2n+1

� x)�

2

+Q

n;n�1

j+1

P

n;n

j+1

Q

n;n�1

j+1

(x

j+2n+1

� x

j

)�

1

�Q

n;n�1

j+1

P

n;n�1

j+1

Q

n;n

j+1

(x

j+2n+1

� x

j

)�

1

whih yields, after some easy omputations,

N(x) = (x� x

j+2n+1

)(Q

n;n�1

j+1

)

2

P

n;n

j

(��

2

) + (x� x

j

)(Q

n;n�1

j+1

)

2

P

n;n

j+1

�

1

Beause

(fQ

n;n�1

j+1

� P

n;n�1

j+1

)(x

k

) = 0 k = j + 1; : : : ; j + 2n

(fQ

n;n

j+1

� P

n;n

j+1

)(x

k

) = 0 k = j + 1; : : : ; j + 2n+ 1

8



we have that

�

2

= P

n;n

j+1

Q

n;n�1

j+1

� P

n;n�1

j+1

Q

n;n

j+1

= (fQ

n;n�1

j+1

� P

n;n�1

j+1

)Q

n;n

j+1

� (fQ

n;n

j+1

� P

n;n

j+1

)Q

n;n�1

j+1

= u(x� x

j+1

) : : : (x� x

j+2n

)

where, taking into aount the degrees of P

n;n�1

j+1

; Q

n;n

j+1

; P

n;n

j+1

and Q

n;n�1

j+1

u = �q

n;n

j+1

p

n;n�1

j+1

In an analogous way we �nd that

�

1

= P

n;n

j

Q

n;n�1

j+1

� P

n;n�1

j+1

Q

n;n

j

= v(x� x

j+1

) : : : (x� x

j+2n

)

with

v = �p

n;n�1

j+1

q

n;n

j

So,

N(x) = p

n;n�1

j+1

(x� x

j+1

) : : : (x� x

j+2n

)(Q

n;n�1

j+1

)

2

q

n;n

j+1

(x� x

j+2n+1

)P

n;n

j

� p

n;n�1

j+1

(x� x

j+1

) : : : (x � x

j+2n

)(Q

n;n�1

j+1

)

2

q

n;n

j

(x� x

j

)P

n;n

j+1

For the denominator of the righthand side of (7), we have

D(x) � (Q

n;n�1

j+1

)

2

�

1

(x � x

j

)Q

n;n

j+1

+ (Q

n;n�1

j+1

)

2

�

2

(x

j+2n+1

� x)Q

n;n

j

Substituting the expressions for �

1

and �

2

yields

D(x) =� p

n;n�1

j+1

(x� x

j+1

) : : : (x� x

j+2n

)(Q

n;n�1

j+1

)

2

q

n;n

j

(x� x

j

)Q

n;n

j+1

+ p

n;n�1

j+1

(x� x

j+1

) : : : (x� x

j+2n

)(Q

n;n�1

j+1

)

2

q

n;n

j+1

(x� x

j+2n+1

)Q

n;n

j

By dividing out the ommon fator in N(x) and D(x), we obtain polynomials of degree n+1 and

n respetively, and hene (7) redues to the formulas (III) for P

n+1;n

j

and Q

n+1;n

j

.

The interpolation problems (1) and (2) were formulated for spei� hoies of the degrees of nu-

merator and denominator. They are speial ases of the following univariate rational interpolation

problem :

�nd polynomials

P

n;m

j

(x) =

n

P

i=0

a

i

x

i

Q

n;m

j

(x) =

m

P

i=0

b

i

x

i

(8a)

suh that

(fQ

n;m

j

� P

n;m

j

)(x

k

) = 0 for k = j; j + 1; : : : ; j + n+m (8b)

If the funtions P

n;m

j

=Q

n;m

j

are ordered for di�erent values of n and m in the table

n n m 0 1 2

0

P

0;0

j

Q

0;0

j

P

0;1

j

Q

0;1

j

: : :

1

P

1;0

j

Q

1;0

j

P

1;1

j

Q

1;1

j

: : :

2

.

.

.
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then the above theorem desribes the suessive alulation of the rational interpolating funtions

lying on the main desending stairase :

1 2 30

0

1

2

3

..
.

n

m

The formulas (II), (III), (IV) and (V) an also be applied to alulate rational interpolating fun-

tions lying on other desending stairases, like the ones drawn in Figure 1 and Figure 2 .

1 2 30

0

1

2

3

..
.

n

m
1 20

0

2

3

..
.

n

m

3 4    ...

1

Figure 1 Figure 2

On a stairase as drawn in Figure 1, the funtions are of the form P

t+n;n

j

=Q

t+n;n

j

and

P

t+n+1;n

j

=Q

t+n+1;n

j

, t > 0 �xed and n � 0. To use the formulas (II) through (V) to ompute

these rational interpolating funtions, we write

P

t+n;n

j

Q

t+n;n

j

(x) = P

t�1;0

j

(x) + S(x) �

~

P

n;n

j+t

~

Q

n;n

j+t

(x)

P

t+n+1;n

j

Q

t+n+1;n

j

(x) = P

t�1;0

j

(x) + S(x) �

~

P

n+1;n

j+t

~

Q

n+1;n

j+t

(x)

(9)

Here P

t�1;0

j

is the Newton interpolating polynomial of degree t� 1

P

t�1;0

j

=

t�1

X

i=0

f [x

j

; : : : ; x

j+i

℄

i

Q

k = 1

(x � x

j+k�1

)

and

S(x) = f [x

j

; : : : ; x

j+t

℄

t

Q

k = 1

(x� x

j+k�1

)

The f [x

j

; : : : ; x

j+i

℄ are divided di�erenes de�ned by

f [x

j

℄ = f(x

j

) = f

j

f [x

j

; : : : ; x

j+i

℄ =

f [x

j+1

; : : : ; x

j+i

℄� f [x

j

; : : : ; x

j+i�1

℄

x

j+i

� x

j

10



If the funtions

~

P

n;n

j+t

=

~

Q

n;n

j+t

and

~

P

n+1;n

j+t

=

~

Q

n+1;n

j+t

in (9) respetively solve the rational interpolation

problem (1) and (2) for the funtion

~

f(x) =

f(x)� P

t�1;0

j

(x)

S(x)

interpolating

~

f in x

j+t+`

, ` = 0; : : : 2n (respetively ` = 0; : : : ; 2n+1), then it an easily be veri�ed

that the funtions P

t+n;n

j

=Q

t+n;n

j

and P

t+n+1;n

j

=Q

t+n+1;n

j

, as given by (9), solve the rational

interpolation problem (8) of order (t+ n; n), respetively (t+ n+ 1; n).

Hene the rational interpolating funtions on desending stairases as in Figure 1 an be omputed

using one of the formulas (II) through (V). For situations like in Figure 2, one proeeds in a similar

way.

Referenes

[1℄ Aitken, A., Determinants and Matries, Oliver and Boyd, Edinburgh and London, 1967.

[2℄ Cuyt, A. and Verdonk, B., Rational Interpolation on general data sets in C

n

, IMACS Annals of

Numerial and Applied Mathematis { Volume 1 (Ed. C. Brezinski), J.C. Baltzer AG, Basel, 1989,

pp. 415{429.

[3℄ Cuyt, A. and Wuytak, L., Nonlinear methods in numerial analysis, North-Holland, Amsterdam,

1988.

[4℄ Hildebrand, F., Introdution to numerial analysis, M Graw Hill, New York, 1956.

[5℄ Jones, W.B. and Thron, W.J., Continued frations: analyti theory and appliations, Enylopedia

of Mathematis and its Appliations { Volume 11, Addison-Wesley, Reading, 1980.

[6℄ Larkin, F., Some Tehniques for Rational Interpolation, Computer Journal 10, 1967, pp. 178-187.

[7℄ Lorentzen, L. and Waadeland, H., Continued frations with appliations, North-Holland, Amster-

dam, 1992.

[8℄ Stoer, J., Ueber zwei Algorithmen zur Interpolation mit Rationalen Funktionen, Num. Math. 3,

1961, pp. 285-304.

[9℄ Stoer, J. and Bulirsh, R., Introdution to numerial analysis, 2

nd

edition, Springer-Verlag, New

York, 1993.

[10℄ Wynn, P., Ueber einen Interpolation-Algorithmus und gewisse andere Formeln die in der Theorie

der Interpolation durh Rationale Funktionen bestehen, Num. Math. 2, 1960, pp. 151-182.

11


