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Introduction

Graduate and research students starting in rational approximation theory are soon confronted with different
approaches to deal with a particular rational approximation problem. The aim of this classroom note
is to explain and emphasize that several existing methods to construct a rational interpolant are only
reformulations of one another. This is done by direct rewriting of each method into the other, rather than
the classical proofs where one shows that each method essentially solves the same interpolation problem.
In the process of this rewriting, knowledge is acquired on determinant identities [1], recursive computation
schemes [9 Ch. 2, 3 Ch. 3], continued fractions [5, 7], equivalence transformations, etc. It is important
to work one’s way through this exercise because it is a good starting point to understand or develop any
generalizations. Also for the Padé approximation problem and other rational approximation problems,

similar links can be shown to hold between different approaches.

Rational Interpolation

The problem of constructing a rational function p(z)/q(x) that interpolates a univariate function
f(z) at the data (xg, f(zx)) can be solved in various ways.

One can write down the linearized system of interpolation conditions (fq — p)(zx) = 0 and solve it
using Cramer’s rule to get determinant expressions for the unknown coefficients in p(z) and ¢(z)

and hence also for p(z) and g(z) themselves.

One can start a resursive scheme, computing the rational interpolant of a certain degree from the
knowledge of rational interpolants of lower degree.

One can use the fact that a rational function can be written as the convergent of a continued

fraction and compute the interpolant in that way.

As the reference list indicates, several independent papers have been published on the subject. Of
course all the techniques proposed for solving the rational interpolation problem are equivalent
since they all essentially solve the same problem. In this classroom note we emphasize this by
showing that any of the following formulas for p(z)/q(z), whether it concerns the determinantal
expressions or the recursive computation rules or the continued fraction representation, can be
rewritten to yield any of the other listed formulas. It is important to see this interrelationship
clearly because this is a good starting point for those who are interested in research on the rational

interpolation problem (see e.g. [2] for generalizations to multivariate functions).
For the moment we concentrate on the following.

Let the univariate function f(z) be given in the non-coincident interpolation points {zo, z1, 2, . . .}.

We consider the next two problems :

find polynomials

PM@) =3 a;z!

=0 (la)
Q@) =3 b
=0
such that
(FQY™ — PP () =0 for k= j,...,j+2n (15
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and find polynomials

=0 (2a)
Qi) =3 b
i=0
such that
QI =PI () =0 fork=j,...,j+2n+1 (2b)

It is well-known that all solutions of (1) are equivalent in the sense that if the polynomials P, )y
and Py, @), satisfy (1), then

PIQZ :PZQI

This implies that all solutions of (1) have the same irreducible form. This unique irreducible form
is called the rational interpolant of order (n,n) for f. Similarly, all solutions of (2) have a unique
irreducible form, which is then called the rational interpolant of order (n + 1,n) for f.

It is important to realize that the rational interpolant of order (n,n) (respectively order (n +1,n))
for f does not necessarily satisfy the conditions (1b) (respectively (2b)) because, by constructing
the irreducible form, a polynomial may have been cancelled in numerator and denominator. If
this common polynomial contained a factor (x — xy) with xj, an interpolation point, then it may
be that (1b) (respectively (2b)) is no longer satisfied by the irreducible form of (1a) (respectively
(2a)). If this is the case, the rational interpolant does not interpolate the function f at all the
given data.

In the sequel of the text we shall assume that all linear systems of interpolation conditions have
maximal rank. Under these conditions, the equivalence formulated in the theorem below can be
proved for the solutions of the problems (1) and (2), which are then unique (but not necessarily
irreducible) up to a constant multiplicative factor. Together with each formula we cite a reference
where this formula is treated separately. However, it is our aim here to emphasize the interrela-
tionship between the different formulas.

Let us denote f(xy) by f.
Theorem The statements (I), (II), (III), (IV) and (V) are equivalent :
(I) the polynomials P;*", Q" and Pj"'H’n, Q;H'l’n respectively satisfy (1) and (2)

(IT) the following determinant expressions [10] for P;*",Q}"" and PjnH’", Q?H’” can be written

down :

fi w-w file—w) (@-w)° filw—2)? . (@) filw—a)"
B oy = it 2=
Q" 1 e—zj  fi(x—w)) (@ =)™ fi(e —a;)"
1 T —Tji2n




and

fi T —j filz —z;5) (z —zj)" filz—z)" (v —x;)"
1,
py i ! (z) = fitont1 T — Tjtontr i
Qyhn 1 v—x;  file—xj) (x —z;)"*
1 T — Tjt2n+1

(ItD) P, Q" and Pjnﬂ’", Q?H’” satisfy the recursive computation rules [8] :

P (@) = (¢ — aj)pf " P (@) = (@ = @)D PP (2)

) ,mn—1 yn—1 ,n—1 yn—1
Q7" () = (z —zy)p;" QY (2) — (z =zt Q" (7)
and
1
PPMNa) = (¢ — 2)q) " PR (2) — (@ — 2jyanta) g1 P ()
Qi (@) = (v — 2;)q" QI () — (& — Tjyant1) 1 Q" ()
where
PjnJrl,n(:L_) — p;}+1,n$n+1 +
Q;H-l,n(w) — q;H—l,nl,n +
P (z) = ppta™ +
Q) = " +
and 0.0
Pk7 - fk
fork=j,....7+2n+1
00 =1

(IV) Aitken-Neville-like formulas are satisfied by P/""/Q’"" and P /Qu+1™ [6] :

n,n n—1,n—1
b; _ P + Tj+2n — Tj
T An—1ln—1 T — Tjyopn — T
Q] Qj+1 n,n—1 qnfl n—1 + n n713+2n n—1l,n—1
P P P> P>
Jj+1 g+t J T g+t
n,n—1 n—1,n—1 n,n—1 n—1,n—-1
Qi Qi Qj Qji1
and
n+1,n n,n—1
by G Tjtantl — Tj
Qn—i-l,n - Qn,n—l T — X Tjyon41 — T
J Jt+1 prn Pn,n—l + prn Pn,n—l
J+1 T+l J ks
n,n n,n—1 n,n n,n—1
QJ'+1 Qj+1 QJ' Qj+1
where
0,0
P . .
%:fk fork=j,....7+2n+1
k
and
1,0
P T — ) fry1 + (Tpg1 — 2) fr ) .
’“10:( ) fis (ks ) fork=yj,...,7+2n
b Tp41 — Tk



(V) P"", Q7" and Pjnﬂ’", Q?H’” are the numerator and denominator of the (2n)t" (respectively

(2n + 1)*") convergent of the continued fraction [4]

ZL“—Q)’]'

xj]+z‘<pwj, Tjtk | = p[z;] +

- ,$j+k+1] T —Tjy1

plwj, xjp1] + -
e
olzj, @i, Tjpa] + —2

where
elz;] = f;
Ljt+k+1 — Tjtk
Ol Tk 1, Tjrkr1] — QLG k1, Tjpk]

()0[:1/.]7 B 7$j+k+1] =

Proof

In contrast to the proofs found in [10],[8],[6] and [4], where it is shown that the respective statements
(IT) through (V) are each equivalent with (I), the construction of the proof given here will be as
follows : we shall demonstrate that (I) can be rewritten as (II), (II) can be rewritten as (III) and
(ITI) implies (I); then we shall prove that (IV) is an equivalent reformulation of (III); as for a proof
of the equivalence between (V) and (I) we refer to [4]. Also we shall prove the theorem only for
P]-"H’”, Q?Hm because the reasoning for P;"", Q7" is completely analogous.

The polynomials
n+1

PJ.”H’”(;U) = Z a;z’
n+1 n Z b iL“

together clearly contain 2n + 3 unknown coefficients a;, b;. Because one parameter can always be
chosen by a normalization of numerator and denominator, these a;, b; are uniquely determined by
imposing the 2n + 2 interpolating conditions

1 1 . .
(fQIT" — PPN (@) =0 k=j,...,j+2n+1

More explicitly these linear equations can be written as
+1_

fkbo—ao—alxk+b1fk$k—agaci-i—bgfk:v,%...—an:vz-i—bnkaﬁ—an_,_lxz = k=j,...,j+2n+1

Since this homogeneous system of equations is assumed to have maximal rank, its solution is given
by the following determinants of size (2n + 3):

n+1,n _
Pj (z) =
0 -1 —z 0 —z? 0 R 0 —zntl
2 2 n+1
—f -1 —T; fiz; —T; fiz; cee @y fiz} :v]
2 2 gl
—fi+1 -1 —Tj+1 [i+12j41 —Ti fj+1$j+1 e _$?+1 fj+1$?+1 Tjiq

—fitonr1 =1 —Zjpont1

and



Q" (@) =

1 0 0 —x 0 —2 ... 0 —z" 0
: 1
—f; -1 —z; fiz; —a3 fiz3 el fay =it
‘ +1
—fi+1 -1 —Zj+1 fiv1%jm _mfﬂ fj+133?+1 s Ty finady _33?+1 (3)

—fitent1 —1 —Tjronn
By making a suitable combination of the rows and colums in the above determinants, we easily

obtain the form given in (II) for Pf“’"(m)/Q?H’”(az).

From the expression (3) for Q?H’"(x) we can also immediately see that its highest degree coefficient
n+1,n

q; is given by
1 fi —Tj fij —9”? fiw?_l —j _$?+1
e L - 5 5 5 (4)
i fj+2'n+1 —$j4:2n+1
The analogous expression
L —wj  fimpo—ap o fEpt —af
e R I ®

L fiven —Tjyon
is used further on in this proof.

To find the recurrence given in (IIT) from the determinantal formulas (II) we shall make use of
Jacobi’s identity [1]. Therefore we first write

f (x —z)" (x—;) filx—=;) ... filx—z;)"
fitont+1
A
fit1 *G
n+1l,n ’
b (x) _ 1 fivon
Q;,H‘l’”(g;) 1 (z—=z)" (z—x;) file—=j) ... filx—z;)"
: A e
1
with
(z — ﬂfj+2n+1)n+1 T—Tjyany1 firen1(T = Tiponi1) oo fiv2n1 (T — Tipong)"”
| @)t T = it
(T = zjron)™™ T —Tji0n
and
v—zip1 fim(@—wip) o fip(e - )t
G — . . .

T —Tjyon  fiton(T — Tjron)
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The determinant G is obtained from the rearranged determinant expressions for Pjnﬂ’"(a:) and
Q’r'z+17n

; () by omitting the first two rows and columns. It is assumed that G # 0.

Applying Jacobi’s identity yields

Pjn+1,n($) _ AxB—-CxD

= 6)
n+1l,n _ (
Qj () AxE—-CxF
with
fi T — file —z;) ... filw—x)"
fivn v—zin fim@—zip) o fim(@—zi)"
B=|", A LT =)
fiton @ — Tjton
(z —x;)" ! T — x; fi(x — ;) filz —z;)"
oo (z—zj)" z—wi fin@—xi) . fip(@—zia)”
(z — wj+2n)n+1
fitent1 T —Tjront1 fivont1(T — Tjrons1) - fiv2nt1(T — Tjpons1)"
fit1 T~ Tjp firi(x —xj11) :
_ . . _ pn,n
D=\ fiia : : = Pt (2)
fiton @ —Tjton fiton(T — Tj420)
1 T — T filw—25) ... filx—z;)"
E=|l - %n = Q)" ()
1 x-— Tjt2n
L z—zjpont1 firon+1(T — Tjpont1) oo fitont1(T — Tjponi1)"
1 T —T;
F=\ o = Qj}1 ()
1 T — Tj42n

Here we have taken into account the formulas (II) for B, D, E and F'. To find an explicit expression
for the quantities A and C' we rewrite e.g. A as :

A=(r—zj41) - (T — Tjyant1)X

L fin —zip1 fip@—ai) o (e —ape)" (@ - app)”
L fite T — Tji2
L fitontr & — Tjtantr (@ — zjtant1)"”

By a number of suitable combinations of rows and columns we find, using (4) and (5), that

A= (2 —zj1) .- (@ — Tjgont1) 051

and analogously

C=(@x—zj)...(x — $j+2n)q;b’n
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Substituting the expressions for A, B,C, D, E and F in (6) yields

P (@) (@ = g PN () = (2 - 2)q " P (o)

QI (x) (@ - i) Q) () — (@ — 25)q " Q) (2)

It is easy to verify that the numerator (respectively denominator) of the lefthand side and of the
righthand side in the above expression are polynomials of the same degree n + 1 (respectively n).
This concludes the proof that (II) can be rewritten as (III).

Pf“’” and

In order to show that (IIT) implies (I), one can easily verify that the polynomials
n+1l,n

Qj

expressions (IIT) for numerator and denominator interpolate the given function :

as given by (III) have degree n + 1 and n respectively. We still need to check that the

for = z; we have :

Q" = P (a5) = (x5 = @jrans 1)) (fQ)™ = P () = 0
forx =xp with k=74+1,...,7 4+ 2n we have

(FQFTH" = PP (k) =(wk = 2jan ) a1 (FQF" = P (w1)
— (zr — ;)" (fQF) — Py (@) =0

for £ = x2n+1, we have

(fQ;'H_Ln - P3n+17n)($j+2n+1) = (z; — -Tj+2n+1) (fQ]+1 J+1)($J+2n+1) 0

So we are back at (I).

Let us now show that (IIT) can be reformulated as (IV) in order to obtain an algorithm similar to
the polynomial Aitken—Neville interpolation scheme. To prove this equivalence we start from the
expression (IV) for P]-"H’”/Q?H’”. It can be written as :
n+1,n n,n—1
Pj - P]+1 (l']+2n+1 — iL“j)AlAQ (7)
Tn — 1 T -1
Q;H_ " Q;LJrnl (- 'TJ)AlQJJrlQ;L+’ni (-Tj+2n+1 - m)A2Q?5rn1 Q;hn

where ) )
_ n,n yN,n— n,n—
Ar=PQ50 T — P Qj
n,n—1 n,n—1
Ay = P; +1Q]+1 PJ+1 Q]+1

If we compute the numerator in the righthand side of (7), we have

N( ) Pﬁrrll 1Q]+1Q?+n1 1( xj)Al +P]n+71b 1Qn nQHl ($j+2n+1 —iU)Az

1 1 1
+ QI PO (@jh2nt1 — ) A1 — Q1T P T QI (@ 0n 1 — 7)) A
which yields, after some easy computations,
n—1 ) n—1
N(z) = (x = zjpont1) Q)T )P (= A2) + (& — ) Q7)) P A

Because - ot . .
(fQ7 — Py Naw) =0 k=j+1,....,5+2n

P = PE@) =0 k=j+1...j+2m+1



we have that ) .
_ pmnAan,n—1 _ pn,n— n,n
Az = PiiQjh Piiy Qi
_ n,n—1 n,n—1 n,n n,n n,n n,n—1
= (fQiFT — P )@ — (FQ3L — Py
=u(@—zj1) .. (T — Tj4on)
. . n,n—1 n,n n,n n,n—1
where, taking into account the degrees of Py ,QjJrl,Pj+1 and Qj+1
_ _ nn _nn—l1
U= "941Pj+1
In an analogous way we find that

7 Ann—1 =1 An,
Ay =P = PYTQY = v(@ —zjh) - (T~ Tj2n)

with
_ n,n—1 n,n
V= TP 9
So,

N(z) =piy e —zjp) - (@ — 2p2n) QT )0) (@ — 2100 40) P
n—1 n=1y2 n, :
— P (@ = wy) - (8 = 2400) Q)" (2 — ) P

For the denominator of the righthand side of (7), we have
D(z) = (17 Av(w — 2)QF + (QFT ) As (219011 — 2)QF"
Substituting the expressions for A; and A, yields

n—1 n—1y2 n, :
D(x) =—piy (x —xjp1) - (2 — 2j400) Q)T )20 (2 — 25) QT

n,n—1 n,nfl)z n,n

+ Pk (z—zj41)... (- xj+2n)(Qj+1

n,n

01 (T — Tjpont1)Q;
By dividing out the common factor in N(z) and D(z), we obtain polynomials of degree n + 1 and
n respectively, and hence (7) reduces to the formulas (III) for Pj"+1’n and Q;‘H’”. |

The interpolation problems (1) and (2) were formulated for specific choices of the degrees of nu-
merator and denominator. They are special cases of the following univariate rational interpolation
problem :

find polynomials

n -
P () =3 at
=0
- (80)
Q5" (z) =) bt
=0
such that
(fQ;l’m_ijm)(mk):O fork:]7.7+177]+n+m (Sb)
If the functions P;"™ /Q7"™ are ordered for different values of n and m in the table
n\m 0 1 2
0,0  po,1
J J
1,0 pl,l
J J
2




Figure 1 Figure 2

On a staircase as drawn in Figure 1, the functions are of the form PJH"’”/Q?F"’” and
P;JF"H’”/Q?F"H’”, t > 0 fixed and n > 0. To use the formulas (II) through (V) to compute

these rational interpolating functions, we write

pitmn prn

(@) = P (@) + S(a) - 2 (w)

Qj Qj+t (9)
P't+n+17n B P.nJrl,n
e () = P T0(@) + 8(2) - 2 (@)
Q; Qjit

Here P;fLO is the Newton interpolating polynomial of degree ¢ — 1

t—1 i
P;fl’o = Zf[ﬂfj, coes Tjgi] kH 1(33 — Zjth-1)
=0 =

and
t

S(z) = flzj, - zjee] I (@ —zjpp-1)

The flzj,...,xj4;] are divided differences defined by

flz;] = f(z) = f;
flzjer, - mia] = flog, - @il
Tjpi = Tj

flog, - wjp] =
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If the functions 15;:_7; / Q;‘_ﬁ and 15;:317" / Q?LL" in (9) respectively solve the rational interpolation

problem (1) and (2) for the function

f(z) - P/ (x)

interpolating fin Zjtete, L =0,...2n (respectively £ =0, ...,2n+1), then it can easily be verified
that the functions PJH"’”/Q?F"’” and P;JF"H’”/Q?F"H’”, as given by (9), solve the rational

interpolation problem (8) of order (¢ + n,n), respectively (¢t +n + 1,n).

Hence the rational interpolating functions on descending staircases as in Figure 1 can be computed
using one of the formulas (IT) through (V). For situations like in Figure 2, one proceeds in a similar
way.
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