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Abstract. In this paper we review and link the numeric research projects carried out at the Department 
of Mathematics and Computer Science of the University of Antwerp since 1978. Results have and 
are being obtained in various areas. A lot of effort has been put in the theoretical investigation of 
the multivariate Pad6 approximation problem using different definitions (see Sections 3 and 7). The 
numerical implementation raises two delicate issues. First, there is the need to see the wood for the 
trees again: switching from one to many variables greatly increases the number of choices to be made 
on the way (see Sections 1 and 5). Second, there is the typical problem of breakdown when computing 
ratios of determinants: the added value of interval arithmetic combined with defect correction turns 
out to be significant (see Sections 2 and 4). In Section 6 these two problems are thoroughly illustrated 
and the interested reader is taken by the hand and guided through a typical computation session. 
On the way some open problems are indicated which motivate us to continue our research mainly 
in the area of gathering and offering more knowledge about the problem domain on one hand, and 
improving the arithmetic tools and numerical routines for a reliable computation of the approximants 
on the other hand. 

Mathematics Subject Classifications (1991): 41A21, 65D20. 
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1. The Need for Knowledge in Multivariate Approximation 

For many types of problems traditional libraries of numerical routines exist. As more 
algorithms become available to solve problems within a particular domain, these 
libraries grow larger and the need arises to augment them with rules to guide the user 
with the selection of an appropriate routine. To this end a number of knowledge- 
based environments for libraries of numerical routines have been developed [4, 3]. 
The need for "knowledge" or guidance in numerical routines also arises naturally 
in another context. Indeed, as the problems to be solved grow in complexity, which 
is often the case when one is dealing with multivariate problems, the options within 
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a single algorithm increase and influence the final outcome. Therefore the amount 
of expertise available to help the user make the correct choices determines, for 
multivariate much more than for univariate approximation problems, the quality of 
the approximation. The transition from the univariate to the multivariate case greatly 
increases the number of choices to be made when constructing an approximant. We 
shall show by typical examples the crucial importance of basing such choices on 
symmetry information, pole and zero information, convergence results, covariance 
and invariance properties etc. These examples motivate more than enough the need 
for the inclusion of knowledge in software to approximate a multivariate function 
f(xl, . . .  ,xn). 

Whether one considers multivariate rational approximants or multivariate splines 
to approximate a multivariate function f ( x l , . . . ,  xn), all these approaches have 
one thing in common: the choices to be made when constructing the multivariate 
approximant (degrees of numerator and denominator, knot se t . . . )  are much more 
complex than in the univariate case. Selecting an approximation strategy (splines, 
rational approximants . . . .  ) is usually a clear cut choice and is determined by the 
nature of the problem. It becomes more difficult, especially for naive users, to 
decide which rational approximant or which spline function best approximates the 
function given. 

Usually, within a chosen field, a sequence of approximants is constructed. The 
motivation for this is twofold. Either the user hopes that the sequence of appmxi- 
mants yields comparable numerical output, in which case no selection is needed and 
the different approximants "confirm" each other. Or the user expects improvement 
from the sequence of approximants because of some convergence properties. In the 
most general case, the user is faced with the problem of selecting one out of many 
approximants because the numerical output varies due to slightly different choices 
made when constructing the approximants. It is clear that a good choice of approxi- 
mant should only be guided by valid arguments which reflect both knowledge about 
the given data and knowledge about the problem domain. 

With respect to the latter, theorems about the convergence of sequences of ap- 
proximants, about covariance and invariance properties and the like play an impor- 
tant role in providing guidance to compute good approximants. With respect to the 
former, any information concerning symmetry, pole and/or zero information of the 
function f ( z l ,  �9  zn) should be taken into account. In order to illustrate the above 
principles, we have developed a case study for multivariate Pad6 approximants. 

2. The Need for Reliability in Scientific Computation 

Several numerical methods require the computation of a ratio of determinants for 
their solution. Rational approximation, convergence acceleration, orthogonal poly- 
nomials . . . .  are just a few of these. Algorithms to compute such ratios of deter- 
minants are prone to breakdown and instability because of possible division by 
near-zero [2]. In this respect we investigate the added value of using interval arith- 
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metic combined with defect correction. 
In the previous section we mentioned that when constructing a sequence of 

approximants, the numerical output may vary from one approximant to another. 
We can only make sure that this variation in output is indeed mainly due to the 
quality of the approximant if the algorithms to compute the respective approximants 
yield "guaranteed" results, i.e. enclosures in which the true result is enclosed. The 
most obvious way to obtain an inclusion of the true result is to apply the algorithm 
with all operations replaced by their corresponding interval operation. As has been 
shown in the literature, this simplistic approach may yield unrealisticly pessimistic 
bounds. It is this behaviour which has discredited interval arithmetic in the past. 

To get around this problem, the idea of the E-method [29] has been developed. 
E-methods (E for Existence and Enclosure) are also called "self-validating" algo- 
rithms since they automatically verify the result of a numerical computation. The 
methods start with an approximation of the result which can be obtained by con- 
ventional numerical methods. Afterwards, the initial approximation is improved, 
usually by applying a fixed-point theorem implemented on the computer in interval 
arithmetic. It has been shown [29] that it is useful in this respect to evaluate scalar 
product expressions optimally. If the conditions to apply the fixed-point theorem 
are satisfied in floating-point interval arithmetic, then they are also satisfied in exact 
arithmetic. Indeed, let the interval extension of the iteration function f be denoted 
by F (mathematically defined and hence only computable in exact arithmetic with 
infinite precision) and let O b e  the implementation of F in floafing-point interval 
arithmetic using finite precision, then 

f ( x )  e F ( X )  c_ O ( X )  

always holds. Therefore O (X) c X implies F ( X )  c_ X and the fixed-point 
theorem can be applied. When an enclosure of the result cannot be obtained an 
appropriate message is displayed. In no case an unreliable result is produced. 

One of the problems which can easily be rewritten as a fixed-point problem is 
the solution of a linear system of equations A x  = b. We focus on this problem since 
we shall see in the following sections that there is a close link between solving a 
linear system of equations and computing a multivariate Pad6 approximant. Solving 
the system of equations A x  = b is equivalent to finding a fixpoint of the iteration 
function f ( e )  defined by 

f ( e )  = R(b - AYe) + ( I  - R A ) e  

with R a nonsingular matrix and ye an approximate solution of A x  = b. The fixpoint 
of f (e) is the defect vector e = ~ - ye, where ~ is the exact solution of A x  = b. The 
following theorem [28] can be applied in computer interval arithmetic to obtain 
guaranteed bounds for the solution of the linear system of equations A x  = b. 

THEOREM 1. Let  F ( E )  = R(b - AYe) + ( I  - R A ) E  be the interval extension of  
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f ( e). I f  for some interval vector E 

0 

F(E)  C E 

o 

holds, then the linear system Ax = b has one and only one solution ~ in Ye + E, 
0 

where E denotes the interior of the interval vector E. 

The algorithm which implements this theorem to solve a linear system of equations 
is given in pseudo-code in Appendix A and is referred to as LSS (Linear System 
Solver) [23, p. 179-181],[29]. It will turn out to play an important role in order to 
obtain guaranteed bounds in the computation of multivariate approximants. 

3. The Problem Domain: Multivariate Pad6 Approximants 

We restrict our description to the bivariate case, only for notational convenience, 
although we use the term multivariate in the text. Given a Taylor series expansion 

f ( x , y ) =  ~ c i y ( x - x o ) i ( y - y o )  j 
(i,j)eN 2 

with 

1 1 oi+Jf 
c~j - i! j!  Ox~Oy j (xo, Yo) 

we compute a Padd approximant p(x, y)/q(x,  y) to f ( x ,  y) where the polynomials 
p(x, y) and q(x, y) are given by 

p ( x , y ) =  ~ a i j ( x - x o ) i ( y - y o )  j N c N  2 # N = n + l  (la) 
(i,j)EN 

q ( x , y ) =  ~ b i j ( x - x o ) i ( y - y o )  j D c N  z # D : m + l  (lb) 
(i,j)ED 

and are determined by the following "accuracy through order" principle [12]: 

( f  q - p)(x, y) = ~ dij(x - Xo)i(y - yo) j 
( i,j)eN2\I ( l c )  

I c N  2 # I : n + m + l  

where rules for choosing [ appropriately are given below in (2). For the sake of 
simplicity we assume that (Xo, Yo) : (0, 0) in the sequel of the text unless otherwise 
specified. 

The finite index sets N and D indicate the "degree" ofp(x, y) and q(x, y). We 
shall also refer to them as "degree sets". It is among others possible to let p(x, y) 
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and q(x, y) satisfy (1) if, in analogy with the univariate case, the index set I C N 2 
is chosen such that 

N C I (2a) 

# ( I \ N )  = m = # D -  1 (2b) 

I satisfies the inclusion property (2e) 

meaning that when a point belongs to the index set I, then the rectangle of points 
emanating from the origin with the given point as its furthermost comer is a subset 
o f / .  

Condition (2a) enables us to split the system of equations 

&j -- o (i, j )  E x 

in an inhomogeneous part defining the numerator coefficients 

i j 
Z ~ ~,,.bi_,,,j_. = ~j  (i,i) ~ N (3a) 
/z=O t,=O 

and a homogeneous part defining the denominator coefficients 

i j 
Z ~..bi_.,j_~- o (i,i) ~ I \N (3b) 

,a=O ~'=0 

By convention 

b k z = 0  if ( k , l ) ~ D  

Condition (2b) guarantees the existence of a nontfivial denominator q(x, y) because 
the homogeneous system has one equation less than the number of unknowns and 
so one unknown coefficient can be chosen freely. 

Condition (2c) finally takes care of the Pad6 approximation property, namely 
when q(xo, Yo) ~ 0 then 

( f  - P)(x ,y)  = ~ eijxiy j 

q (i,j)EN2\I 

For more information we refer to [11, p. 22]. We denote a solution p(x, y)/q(x, y) 
of this general order multivariate Pad6 approximation problem (1) by [N/D]x. 
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4. Techniques for Their Computation 

In order to describe the different algorithms for the computation of multivariate 
Pad6 approximants we first order the Pad6 approximants in a table, where, when 
walking along columns the numerator degree set increases, while when walking 
along rows the denominator degree set increases. Since, unlike in the univariate 
case, the way to increase a degree set is not unique, one has to prescribe which is 
the next term to be added. Let us therefore introduce enumerations rN and rD for 
the elements of the sets N and D: 

r N  : N , N :  ( i , j )  , r N ( i , j )  

rD : D ) N : ( i , j )  ) r D ( i , j )  

We assume throughout the text that the numberings are such that 

i<kandj<<s <_ r( k, i) 

With this numbering, we can set up descending chains of degree sets, defining 
bivariate polynomials of  "lower degree" 

N = N n  D . . .  D Nk ---- { ( i0 , j0 ) , . - - , ( ik , jk )}  D . . .  

D No = {(io,jo)} k - 0 , . . . , n  
(4a) 

D = D m  D . . .  D De = {(do, eo ) , . . . , ( de ,  ee)} D . . .  

D Do = {(do, co)} s  0 , . . . , m  

where the bivariate Pad6 approximants of "lower order" 

(4b) 

[NklDe] &+ e 

satisfy the subset Ik+e of  the first k + s + 1 approximation conditions of I. It is 
therefore also necessary to introduce a numbering rx for the set [, taking into account 
that condition (2a) remains satisfied for the intermediate Pad6 approximants: 

I = In+m D . . .  D Ik+e = N k  U { ( i k + l , j k + l ) , . . . ,  (ik+e, j k + t ) }  D . . .  

D I0 = NO k + e = O , . . . , n + m  
(4c) 

Once the numberings rN ,  rD and r1 are chosen, we can compute the following 
entries in a "table" of multivariate Pad6 approximants: 

[ N o / D o ] I o  . . .  
�9 . 

[ N ~ / D o ] I ~  . . .  [Nn /D,~] In+,~  

(5) 
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In order to compute the Pad6 approximants in the table, different techniques have 
been developed. Let us first recall the link between the computation ofPad6 approx- 
imants and the solution of linear systems of equations. Clearly, solving the system 
of equations (3) yields the coefficients of the Pad6 approximant. From (3) the fol- 
lowing explicit determinant representation for the [ N / D ] z  = [ N n / D r a ]  Ir ,+m Pad6 
approximant can also be deduced: 

p(x,y) 
q ( x , y )  

C i - d o , j - e o X i - - d ~  j - e ~  . . . 

(?~/n +1 -do , jn+l  - eo  x in+l  -doyJ~+l -eo  . . . .  

C" - -  " X i~+m 
%n+~,'~ - - a O ~ 3 n + r n  - - e O  ,~' " " " 

C i - d m , j - e m  x i - d m  y j -era  
( i , j )eN~ 

Cin + l - d m  ,Jn+ l - e m  x i n  + l - d ' ~  yj'~ + a - e ~  

C. ~ . xin+rn--dma~an+rn--em 4 
z n W m - - a m  ~ffn W m - - e m  

1 

Ci - -  " ~ X in+l-dO' t t jn+l-eO 
n + l  - - a O J n + l  - - ~ 0  

C. ~ . ~in+rn --doqtJn+m--eo 
~ n + r n  - - o 4 3 ~ 3 n + m  - - e o ~  Y 

. . .  1 

oin + l - d m  yj~ + l - e m  
�9 �9 �9 Cin+l--,~,3n+l--em,~A-- " 

C" _ _  . x i n  + m - - d m  a , jn+m 
�9 . . Z n + m - - a r n , J n + m - - e m  

(6) 

The representation (6) implies that the value of the Pad6 approximant in (x, y) can 
be computed as the first unknown of the system of linear equations A x = b where 

A = 

Cin + l -do , jn  + l - e o  x "n+l -do yj,~ + l -eo 

\ C i n + m - d o , j n + m - e o X i n + m - d ~  j ~ + m - e O  

. . .  1 

�9 �9 �9 cin+~ - d ~  ,j,~+~ -era xi'*+~ -din yJ,~+l -era 

C': _ _  . x i n  + m  - - d m  a ~ jn  + m - - e m  
�9 �9 �9 ~ n + m - - a m ~ 3 n + m - - e r n  Y 

(7a) 

and 

b l ~ C i - d ~ 1 7 6 1 7 6 1 7 6  ( i , j )ENn  " " " (i,j)ENn~ C z _ a m  . . . .  ,3 - e m  ~ i - d m ~ ' j - e m )  T u  

T 

(7b) 
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The determinant representation (6) of  the Pad6 approximant also lends itself to 
recursive computation using the E-algorithm [ 13]. If we denote 

EZ r k = 0 ,  . . , n  g = 0 ,  . m [Nk/ De] Ik+t . . . .  , 

then for r = 0 , . . . , n  + m 

EO r) E ~ " " " x i - -  d%' j - eo  
z ~ - - a 0 , , ? - -  C0 U 

(i,j)cN~ 

g ( r )  ~ , ,~i--ds qlj--es - -  
O,s = ~ ~ i -as , j - - e s  ~ V 

(i,j)eNr 

C i _ d s _ l , j _ e s _ l x i - d * - l y  j - e s - 1  8 ---- 1, ..., m 
(i,j)eN~ 

o(r) g~21,sg~-+llh - -  ~(r+l )  ~(r) Y h - l , s ~ h - l , h  = 

Yh-- l ,h  3 h - l , h  

h = 1 , . . . , s -  1 

( 8 )  

i~(r) ~(r+l) ~(r+l)~(r)  
~!r)  ~ ~ s - - l : t s - - l , s -  ~-~s-1 ~s- - l , s  

g(r+l) ,~(r) 
8--1,8 --  Ys-- l , s  

s = 1 ,2 , . . . ,m  

The multivariate Pad6-approximants [Nn/D.~] I,~+,~ with n _> m can also be writ- 

ten in continued fraction form [14] 

[Nn/Dm]In+..~ : [Nn-m/Do]In_m 
. . a . in -m+l -doyJ ,~ -~+l -eo  [ 

Cin-- m + l --ao~3n-- m + l --r ~ 

+1 1 
_(n--re+l)/~ (n--m + l ) r x 

--r IX, y) I _{_ --r (n--rn+l)( : ' y )  I 

+ 1 + q i ~ - ' ~ + l ) ( x , y )  i1 i-e I ( x , y )  
('n--m+ 1 ), (n -'rn+ 1), 

--r ~X~ 
( n - - m + l ) :  J[- V ~ ( n - - m + l ) : ~  ?A 

+1 l + q 2  (x,y) i + e 2 I '~ , J }  

(x, y) ] 
+ " "  + [ 1 +um'(~-m+l):x~o ,vl~'~ 

(9) 
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where the coefficients of  the continued fraction are computed via a multivariate 
qd-like scheme. Computing the same g-values as in the E-algorithm, we have 

C" a . ,pin-rn+2-doqtjn-rn+2-eO 
(n--rn+l) : Zn--m+2--uO,?n--rnq-2--r V ql ~x, y) = 

5in_m ~_ l _do,Jn_m + l _eo XZn_.~ + l _do yJn_ rn + l _eo X 
~(n--m+l)  
YO, 1 

g~,~-,~+2) ~(~-~+~) 
- -  Y 0 , 1  

(n--re+l) 
q8 ~x, y) 

(n--mq-2) (n--mq-8) _(n--m+8--1) 
~(n--m+2) e s -1  g s - 2 , s - 1  --  Y s - 2 , s - 1  

= Cls - -1  ~ _(n--rrt-bs--1) X 
e8-1  98 -2 ,8 -1  

(n-,~+s) 
f fs--l ,s 

s = 2 , . . . , m  
g(n - rn+s+l )  g~n_l,ms +s ) 
8--1,8 

(10) 

~(n--ra+s+l) _(n--m+s) 
( n - r e + l )  : Ys-- l ,s  -- Ys-- l ,s  

e8 tx, y) = 9 ( n - m + 8 )  (q(n-m+2) + 1 ) - - 1  
s--l,s 

s =  1 , . . . , m - 1  

The convergents of the continued fraction (9) are successive elements on staircases 
in the table of  multivariate Pad6 approximants. 

5. Knowledge about Their Convergence Behaviour 

When approximating a multivariate function, one usually constructs a sequence of 
approximants S = {ro, r l ,  r2,. �9 } from which one approximant is then selected. 
When the r~ are multivariate Pad6 approximants the sequence S may be a row, 
a column, a diagonal, a staircase, . . .  in the Pad6 table. Because of well-known 
convergence theorems for Pad6 approximants, it may turn out that certain sequences 
of  approximants are to be preferred over others. Let us first recall some of the results 
on the convergence of  univariate Pad6 approximants which have been or are now 
being investigated for multivariate Pad6 approximants. We denote by [k/g] k+e the 
Pad6 approximant of  degree k in the numerator and degree g in the denominator 
for a univariate function f .  

First we take rn(x) = [n/O]n(x), the partial sums of the Taylor series expansion 
for f ( x ) .  The following result is obvious. 

THEOREM 2. If  f is analytic in B(O, r) with r > O, then S = {[n/0]~}~EN 
converges uniformly to f in B(O, r). 
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Next take r=(x) = [ r t / 1 ] n + l ( X )  from the first column in the Pad6 table for f.  It 
is possible to construct functions f that are analytic in the whole complex plane 
but for which the poles of the [n/1]n+l Pad6 approximant are a dense subset of C 
[27, p. 158]. So in general S will not converge. But the following theorem can be 
proved [1 ]. 

THEOREM 3. I f  f is analytic in B(0, r) with r > O, then an infinite subsequence 
of  {[n/1]~+l } ,~  N exists which converges uniformly to f in B(0, r). 

For meromorphic functions f it is also possible to prove the convergence of a 
particular column in the Pad6 table [20]. 

THEOREM 4. I f  f is analytic in B(O, r) except in the distinct poles wl , . . . , wk of  
f with total multiplicity m and with 

0 < Iwll < Iw21 _<...  <_ Iwkl < R 

then {[n/m]n+m}neN converges uniformly to f in B(0, r) \ { w l , . . . ,  wk}. 

Also for meromorphic functions another kind of convergence can be proved for the 
diagonal approximants. It is called convergence in measure [26]. 

THEOREM 5. Let f be meromorphic and let G be a closed and bounded subset of  
C. For every ~ > 0 and 6 > 0 there exists an integer k such that for  n > k we have 

I[n/n]2,~(x) - f(x)l < ~ x E Gn 

where Gn is a subset of  G such that the measure of  G \ Gn is less than 6. 

So far for the univariate case. For the multivariate case a generalization of Theorem 
2 clearly holds. As for Theorem 3, remember that the first column in the multivariate 
Pad6 table has denominator degree set D = {(do, e0), (dl, el)} c N 2. However 
this set is not uniquely determined and therefore no straightforward meaningful 
equivalent of Theorem 3 should be proved for the multivariate case. The analogue 

o f  the de Montessus de Ballore's theorem for multivariate Pad6 approximants was 
proved in [15, 16] and is given below. 

THEOREM 6. Let f (x, y) be a multivariate function which is meromorphic in the 
polydisc B(0; R1, R2) = {(x, y) : Ixl < R1, tY[ < R2} meaning that there exists 
a polynomial 

m 

?~ xd i  ei = Z e = Z v 
( d,e )eDC_N 2 i = 0  

such that ( f  R~ )  (x, y) is analytic in the polydisc above. Further, we assume that 
R,~(0,0) r 0 so that necessarily (0,0) E D. Then the IN/D]1 = (p /q) (x ,y )  
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Padd approximant with D fixed as given above and N and I growing towards N 2, 
converges to f (x, y) uniformly on compact subsets of  

{(x, y) : Ixl < R1, lyl < R2, R.~(x ,  y) ~ 0} 

and its denominator 
m 

q(x, y) = ~ bd~eixd~y ~i 
i=0 

converges to Rm(x,  y) underthe following conditions for  N and I. The index sets N 
and I should grow towards N 2 along the m th column in the Pad6 table in such a way 
t h a t m a x { s l V t ,  O < t < s  : ( t , s - t )  E I } - - + c c a n d m a x { s l 3 t , 0 < t < s  : 
(t, s - t) E N �9 D} --+ oo where N �9 D = {(i + k, j + e)t(i, j )  E N, (k, ~) e D}. 

If we denote by Ts the isosceles triangle in N 2 with top in (0, 0) and base along the 
8 t h  u p w a r d  sloping diagonal: 

Ts = {( i , / )  E N 2 I 0 < i + j  _< s} 

then the conditions on I and N in Theorem 6 say that the largest set Tsl which is 
contained in I and the smallest set Ts2 which contains N �9 D must both tend to N 2 
as the sets I and N grow along a column in the multivariate Pad6 table. 

Finally, the generalization of  Theorem 5 on the convergence in measure of 
diagonal multivariate Pad6 approximants for some special choice of N,  D and I as 
discussed in Section 7, is currently under investigation. 

6. Numerical Case Study 

In this section we aim at illustrating via a numerical example and via the computa- 
tion of multivariate Pad6 approximants how knowledge and reliability are needed 
in order to obtain correct approximation results. It is well-known that one can ob- 
tain both good and bad approximation results when computing an approximant. 
However, the bad results are not necessarily due to the approximation technique 
but sometimes rather to a lack of knowledge about the problem to make the right 
choices when constructing an approximant. These remarks also apply to the domain 
of  multivariate Pad6 approximation. 

The example we use is the Beta function, which is defined by 

r (x) r (v)  
B ( x , v )  - r (x  + v) 

where F is the Gamma function. The Beta function is meromorphic in C 2 with 
polar singularities occurring at x = - k  and y = - k  for k = 0, 1, 2 , . . .  and zeros 
at y = - x  - k for k = 0, 1 ,2 , . . .  By means of the recurrence formulas 

r (x  + 1) = zr (x)  
r ( y  + 1) = yr (y)  
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for the Gamma function, we can write 

B ( x , y )  = 1 + (x - 1 ) ( y -  1 ) f ( x -  1, y -  l) ( l l a )  
xy  

Writing the Beta function as above extracts in a simple way the poles x = 0 and 
y = O. We are hence going to compute approximants for the Beta function by 
constructing Pad6 approximants [N/D]I(x ,  y) for the function f ( x  - 1, y - 1) and 
compare the exact value B(ui ,  vj) with the value 

1 + ( u i -  1)(vj - 1)[N/D]I(ui,  vj) 

uivj 
( l lb)  

in different points (ui, vj). In order to do so, we need the function f ( x  - 1, y - 1) 
in the form of a Taylor series expansion. Our data are the coefficients eij of the 
Taylor series expansion for f ( x  - 1, y - 1) around (1, 1) with 0 < i + j <_ 32. 
Hence the index sets Ik+t satisfy at each moment 

[k+e C_ {(i, j )  [ 0 _< i + j < 32} #Ik+e < 561 

With the given data different Pad6 approximants can be constructed, namely the 

[Nk/De]Ik+e 0 < k + g <_ 560 

Let rx and rN be the following numberings along upward sloping diagonals in N2: 

(0,0) (1,0) (0,1) (2,0) (1,1) (0,2) ( 3 , 0 ) ( 2 , 1 ) ( 1 , 2 ) . . .  

0 1 2 3 4 5 6 7 8 . . .  

or, equivalently 

ri(i,  j )  = rN(g, j )  = 
(i + j ) ( i  + j + 1) 

2 
+ j  

and let rD be the following numbering along squares in N2: 

(0,0) (1,0) (0,1) (1,1) (2,0) (2,1) (0,2) ( 1 , 2 ) ( 2 , 2 ) . . .  

0 1 2 3 4 5 6 7 8 . . .  

(12a) 

(12b) 
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The importance of generating square subsets De for g = 0, 3, 8 , . . .  by using the 
numbering (12b) will become apparent further on. 

At first we consider the Pad6 approximants [ N k / D e ] i k +  ~ where k <_ 119 and 

g < 3. With the numberings r• r u  and rD given by (12) we have 

Nil9 ~- {(i , j )  l0  <__ i + j  _< 14} 

and 

D o  = {(0,0)} 
D2 = {(0,0), (1,0), (0, 1)} (13) 

D3 = {(0,0), (1,0), (0, 1), (1, 1)} 

The computation by the E-algorithm of the Pad6 approximants for f ( x  - l ,  y - 1) 
followed by the evaluation of (1 lb), both in (-0.75, -0.75), yields Table 1. 

Note that there are big discrepancies for "nearby" approximants, i.e. approxi- 
/~7(103) /7~(103) mants of which the degree sets differ in only one term like ~2 and ~3 or 

E(105) E~ 106) The now 3 and . question arises whether these discrepancies are due 
to numerical instability of the E-algorithm (note that the E-algorithm is prone to 
near-breakdown) or to data contamination. If this is not the case there is clearly 
need of knowledge to choose the approximant which really approximates the Beta 
function in (-0.75, -0.75). These issues will be addressed in the next sections. 

6 . 1 .  R E L I A B L E  RESULTS?  

In order to check whether or not the discrepancies are due to numerical instability 
of the E-algorithm or are a consequence of input perturbation, different ways can be 
walked. In a first approach, we reran the E-algorithm in interval mode so as to obtain 
guaranteed bounds for the results. However, as has already often been pointed out 
in the literature, the intervals tend to grow (too) quickly during the course of the 

computation. In the E-algorithm in particular, the intervals g2~+12_ _g(r)s_l,s appearing 
in the denominator of (8) soon (r = 110, s = 3) grow so large that they contain 
0, even though the floating point value of the expression is in many cases larger 
than 1, causing a breakdown of the algorithm. Another approach is to compute the 
Pad6 approximants via another algorithm. As already pointed out, the multivariate 
qd-like algorithm (10) also relies heavily on the computation of the g-values and 
hence similar output can be expected. 

Last but not least however, we recall the important link between the computation 
of Pad6 approximants and the solution of linear systems of equations. Obtaining 
reliable and accurate results for the solution of a linear system of equations, even if 
that linear system is ill-conditioned, has been investigated thoroughly. As mentioned 
in Section 2 we make use of the LSS technique which implements defect correction 
in computer interval arithmetic using the exact scalar product to solve the system 
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n 

95 

96 
97 
98 

99 

100 
101 

102 
103 
104 

105 

106 

107 

108 
109 
110 

111 

112 

113 
114 
115 
116 
117 

118 

119 

6.272469539927058 

6.272481219879103 
6.272487831740126 
6.272494443601187 
6.272506123553238 

6.272544497731672 
6.272810203348119 

6.277863394645692 
6.757612224375486 

6.517174482717973 
6.306954585440170 

6.726741855333899 

6.729671095099285 
6.729784277460005 

6.729796844258718 
6.729799835419403 

6.729801157749264 

6.729802171934143 
6.729803494264011 
6.729806485424670 
6.729819052223378 
6.729932234584101 
6.732861474349487 

7.152648744243218 

6.942428846965417 

Table I 

6.382241356832849 

6.373969995330925 
6.382244442674818 

6.410072833517622 
6.469560908765764 

6.597917327186983 
9.737548612905988 

9.847326401470260 
5.373819134560423 

9.879269550748257 
9.801348477243014 

7.021564358750562 

6.906974546767763 

6.852286196295363 
6.824588041048912 
6.812657490354739 

6.812657738724513 

6.824588676978205 

6.852286709821294 
6.906972882457715 
7.021547253788186 
9.799275262541185 
9.864013647323537 

5.949314052499588 

9.882493034609045 

6.252199337861037 

6.252199326007094 
6.266577260911057 
6.300404767334740 
6.369481476489413 

9.722877909033864 
9.895775024125525 
9.312348514619972 
9.420269191090856 
9.920113846171462 
9.793178514188524 

6.826017824698794 

6.761484996863231 

6.727815545486309 
6.710913104188903 

6.705716580531475 

6.710913100069901 

6.727815664029961 

6.761485208089148 
6.826017206347385 
9.792927727303981 
9.891548307005404 
9.553039471914062 

9.619286021637370 

9.905525832249440 

m 

n 

100 

101 
102 
103 
104 
105 

106 

107 
108 
109 
110 

[6.5979172, 6.5979175] 

[9.737548608, 9.737548618] 
[9.84732638, 9.84732643] 

[5.373819134, 5.373819135] 
[9.87926953, 9.87926957] 

[9.801348474, 9.801348481 ] 

[7.0215641, 7.0215646] 

[6.906973, 6.906976] 
[6.852282, 6.852290] 

[6.82458, 6.82460] 
[6.812654, 6.812661] 

Table 2 

[9.722877904, 9.722877914] 

[9.89577500, 9.89577505] 
[9.3123483, 9.3123487] 
[9.4202690, 9.4202694] 

[9.92011383, 9.92011387] 
[9.793178510, 9.793178518] 

[6.826016, 6.826020] 
[6.76147, 6.76150] 
[6.72778, 6.72785] 

[6.7108, 6.7110] 
[6.7056, 6.7059] 



KNOWLEDGE AND RELIABILITY IN MPA 287 

of equations (7). The output of the LSS algorithm for some of the floating-point 
results of Table 1 is given in Table 2. 

Having used interval input and interval arithmetic we know that the above bounds 
for the output are reliable. Hence we can conclude from Table 2 that the discrep- 
ancies between different Pad6 approximants can, in this numerical example, not 
be attributed to numerical instability of the algorithm used to compute the Pad6 
approximants, because all rounding errors are taken into account. From the fact 
that we used interval input to generate Table 2, we can also conclude that the dis- 
crepancies cannot be attributed to the effect of poor data, poor meaning that some 
data have few significant digits. Moreover, this illustrates that tools for reliable 
computation are necessary to answer the first question raised. Let us now compare 
the computed value of the Pad6 approximants in (-0.75,  -0.75) with the exact 
value of the Beta function in that point 

B ( - 0 . 7 5 , - 0 . 7 5 )  = 9.88839829.. .  

We will indicate in the next section how good numerical results can be computed if 
knowledge about the problem (not about the result !) is available. This knowledge 
can be obtained for instance by deciphering the power series expansion. 

We also note that the problem of constructing Pad6 approximants for the bivariate 
function f ( x  - 1, y - 1) is a tough one. Indeed, the coefficients c~j in the Taylor 
series expansion of f ( x -  1, y - 1) range between -4-10-1 and -4-10-19. It is difficult 
to solve a problem where the data vary so much in magnitude without losing 
significant digits. A similar remark can be made for the coefficients in the Taylor 
series expansion of the Beta function around (1, 1). So the problem does not come 
from rewriting the Beta function in its form (1 la). After noting the huge variation in 
size of the coefficients, one may wonder how many significant digits the small order 
coefficients still have. This type of information signals the user for the accuracy 
that can be expected from the final outcome. If the input contains data having 
only few significant digits, then one cannot expect in general that the approximant 
estimates the function with full double precision accuracy. To obtain information 
on the number of significant digits of our input data, we have computed the Taylor 
coefficients eij of the Taylor series expansion for f ( x  - 1, y - 1) around (1, 1) in 
interval mode. The results of this computation are given in Table 3. 

We recall that the numbering rz determines the order in which the data necessary 
to compute an approximant are used. If not all data e~j have the same number of 
significant digits, it is appropriate to choose r1 in such a way that data with the least 
number of significant digits are used last. In this way the largest data perturbations 
have least effect and the output results are more stable. To illustrate this, we choose 
numberings r N  = rX along prongs in N 2 as follows: 
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(0,0) (1,0) (0,1) 

0 1 2 

(32,0) (0,32) ( 1 , 1 ) . . .  (31,1) (1,31) 

,L $ ,L ,L ,L 

63 64 65 . . .  124 125 

i 

0 

0 

0 

0 

1 

1 

1 

1 

6 

6 

6 

6 

J 
5 

6 

22 

23 

5 

6 

22 

23 

5 

6 

22 

23 

[8.349277381922821E 

[-4.077356197944342E 

[-5.96081890512602E 

[2.98035035146499E 

[7.76445005366089E 

[-3.89545972581657E 

[-5.9604642984845E 

[2.9802321940708E 

~ j  

- 3, 8.349277381922831E - 3] 

- 3 , -4 .077356197944336E - 3] 

- 8,-5 .96081890512599E - 8] 

- 8, 2.98035035146501E - 8] 

- 3, 7.76445005366093E - 3] 

- 3,-3 .89545972581654E - 3] 

- 8, -5 .9604642984842E - 8] 

- 8, 2.9802321940710E - 8] 

[ -7 .703022618E - 8 , -7 .703022606E - 8] 

[7.7651340E - 9, 7.7651343E - 9] 

[ 5 . 4 E -  1 8 , 7 . 1 E -  18] 

[ - 2 . 6 5 E -  1 6 , - 2 . 6 3 E -  16] 

Table 3 

As can be deduced from Table 3 and in contrast with r1 given by (12a), this number- 
ing places input coefficients c~j with few significant digits at the end of the input list. 
With this numbering for rz and rN, we compute multivariate Pad6 approximants 
[Nk/Da]lk+3 in (-0.75,  -0.75),  where D3 is given by (13). The output is given 
in Table 4. 

We have displayed just a few approximants which are representative for the 
entire sequence INk~D3] Ik+3" It is clear that with these data the numberings along 

prongs in N 2 deliver more consistent output than the numberings along upward 
sloping diagonals. 

6.2. K N O W L E D G E  A B O U T  T H E  P R O B L E M  DOMAIN!  

A closer look at the approximation problem described above immediately reveals 
that the Beta function is a symmetric function. Therefore it seems appropriate that 
we only consider symmetric approximants, i.e. approximants for which the nu- 
merator set Nk, the denominator set De and the index set Ik+g are symmetric. In 
our example the considered denominators Do, D2 and D3 are symmetric. With the 
numbering (12), the numerators and the index set can not both be symmetric at the 
same time, but as can be seen from Table 1 the approximants with either a symmetric 
numerator set Nk or a symmetric equation set Ik+e are clearly much better approx- 
imants. Note for instance the difference b e t w e e n  [Nlo3/D2][105 (non-symmetric 
numerator and non-symmetric equation set) and [N102, D2111o4 (symmetric equa- 
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m 

126 
136 
146 
156 
166 
176 
186 
196 
206 
216 
226 
236 
246 
256 
276 
286 
296 
336 
366 

[9.6518761990, 9.6518761998] 
[8.471761049, 8.471761054] 

[8.36986616, 8.36986627] 
[8.348959, 8.348962] 

[8.34414, 8.34419] 
[8.3423, 8.3431] 

[9.6183984852, 9.6183984859] 
[9.61703623, 9.61703631] 

[9.620424, 9.620439] 
[9.621,9.623] 
[9.585, 9.599] 

[9.64627157, 9.64627160] 
[9.66770, 9.66774] 

[9.67, 9.69] 
[9.59, 9.64] 

[9.643717, 9.643720] 
[9.658, 9.666] 

[9.5, 9.81 
[9.50,9.58] 

Table 4 

tion set) and [N104, D2][lO 6 (symmetric numerator degree set). Indeed, 

Nlo4 -- [104 z {(i , j )  [ 0 < i + j _< 13} 

It is clear that since the numberings rz, rN  and TD Call be chosen freely by the user 
of the algorithm, other numberings than (12) can be used to obtain that Nk, De 
and Ik+e are all symmetric simultaneously. For conciseness we do not introduce 
yet other numberings r1 and rN  to illustrate this. It should be noted, however, that 
in the example above where r r and r N  are numberings along prongs in N 2, all the 
Pad6 approximants [Nk /De] Ik+e  always have either a symmetric numerator set Nk 
or a symmetric equation set Ik+e. 

The power of multivariate Pad6 approximation as introduced in [25, 12, 19] 
and used here to approximate the function f ( x  - 1, y - 1), and hence also the 
Beta function, comes among others from the fact that there is total freedom in 
the choice of numerator and denominator degree sets. That a general choice is 
permissible becomes even more important when one wants to take into account 
pole information of the function to be approximated. Indeed, recall the multivariate 
de Montessus de Ballore Theorem 6 given in Section 5. The function f ( z -  1, y - 1) 
we are approximating has poles at 

x = - k  and y = - k  f o r k = l , 2 , . . .  
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m 

400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 

ANNIE CUYT AND BRIGITIE VERDONK 

0 2 3 

141.6317455753568 
141.6317456268321 
141.6317460053908 
141.6321797473016 
153.9484660939392 
147.7902747247583 
141.1702362710272 
154.4102441058581 
154.4105549201058 
154.4105551178835 
154.4105551188334 
154.4105551260009 
154.4105551705808 
154.4105553480299 

Tab& 5 

130.2516228400785 130.4381628812514 
155.8049201484003 -28.82052731325514 

-28.82044959055106 -28.77703154424141 
-28.78547705882433 
124.7621958460614 

-28.77625645195215 
-28.79900813729537 
167.9417387065251 
154.6136125842232 
154.8529645194832 
169.2378706038586 
162.6060514312578 
161.1981896760531 
160.1507914116921 

-28.59705613733203 
-28.65841612339194 
-28.77097654242645 
-28.79904919517655 
154.5832176120316 
154.8129856867255 
152.6741055590067 
149.0557182929770 
132.7615835782946 
130.9724553145543 
131.0964837093944 

If Theorem 6 is to be applied to the function f ( x  - 1, V - 1), one needs to look at 
Pad6 approximants whose denominator polynomials are of the form 

(x + 1)(x + 2 ) . . . ( x  + / l ) ( y  + 1)(y + 2 ) . . . ( y  +g2) 

in other words, denominator polynomials whose degree set is given by 

Dg = { ( i , j )  ] O < i < gl ,O < j < g2} g + l = (gl + l)(g2 + l) (14) 

The set Da given by (13) corresponds to gl = g2 = 1 and hence the column 
[Nk/D3]ik+3 converges uniformly on compact subsets of  

{ ( x , y ) : x > - 2 ,  y > - 2 , ( x + l ) ( y + l ) r  

If we look at the output given in Table 1, we indeed see a difference between the 
behaviour of  the [Nk/D2] and the [Nk/D3] approximants. The latter tend to jump 
around less than the former. Similar results can be observed when we look at the 
Pad6 approximants [Nk/De]Ik+~ where k _< 413 and g _< 3, again with rs, 7~N and 

rD defined by (12) but now in ( -1 .15 , -1 .15 ) .  The results are given in Table 5. 
Note that B ( -1 .15 ,  -1 .15)  : -28.7414305 . . . .  

We remark that ( -  1.15, - 1.15) is outside the region of convergence of the Taylor 
series for f ( x  - 1, y - 1) as it is across the first natural boundary x = -1 ,  y : 
- 1 .  The importance of Theorem 6, hence also lies in the fact that the region of 
convergence is enlarged when Pad6 approximants are used. According to Theorem 
6 the next column which converges is the column for which the denominator degree 
set satisfies (14) with gl : g2 : 2. Remember from the univariate case [22, p. 641- 
643] that poles of equidistant modulus cannot be separated in the formulation of 
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the de Montessus de Ballore theorem. For more details with respect to this in 
the multivariate case we refer to [18]. Because the pole curves of the function 
f ( x  - 1, y - 1) appear in pairs equidistant from the origin, it is meaningless to 
consider columns for which in (14) gl r g2. 

6.3. COaRECT APPROACH 

From all the above it is clear that a user who is well-informed about algorithms 
and convergence theorems for multivariate Pad6 approximants would, when ap- 
proximating the Beta function in (-0.75,  -0.75) or ( -  1.15, - 1.15), immediately 
choose a symmetric approximant with denominator degree D3 given by (13) and 
perform the computations in interval arithmetic with defect correction. This correct 
approach generates Table 6 in which only those approximants [Nk/D3]lk+3 with 

either a symmelric numerator degree set Nk or a symmetric equation set Ik+3 are 
displayed. In other words, 

N k  = { ( i , j )  l O < i + j < s } #Nk  = k + l = (s + l ) ( s  + 2) 
- - 2 

s =  1 ,2 , . . .  

o r  

Ik+3 = {( i , j )  I0  _ i + j  < s} 

s = 1 ,2 , . . .  

# I k + 3 = k + 4 =  ( s + l ) ( s + 2 )  
2 

The interval output in Table 6 is computed by solving the linear system of 
equations (7) with LSS. Using LSS has the advantage that only the significant 
digits of the output are displayed whereas other algorithms just dump the output 
of the (double precision) computations and the user has no clue as to which output 
digits are contaminated and which are not. 

The message implicitly contained in Table 6 is the following. The increase in 
complexity when going from univariate to multivariate problems should not se- 
duce a user dealing with a multivariate problem to compute garbage. Unuseful 
output is not to be blamed on the approximation method but for instance on the 
fact that the "degree" of a multivariate polynomial is no longer uniquely defined. 
For multivariate Pad6 approximants the notion of "degree" plays an essential role 
and it should be defined carefully depending on the situation. For example, when 
approximating the Beta function, the notion of "degree" is defined differently for 
the numerator and the denominator polynomial. For reasons which we have ex- 
plained above, only degrees corresponding to square degree sets in N z are to be 
considered for the denominator polynomial while for the numerator polynomial any 
degree corresponding to a symmetric degree set in N z can be considered. The non- 
uniqueness of the multivariate notion of "degree" has been the basis for the many 
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3 
/3(-0.75,-0.75) = 9.88839829... B(-1.15,-1.15) = -28.7414305... 

Yb 

87 
90 
101 
104 
116 
119 
132 
135 
149 
152 
167 
170 
186 
189 
206 I 
209 
227 
230 
249 
252 
272 
275 
296 
299 
321 
324 
347 
350 
374 
377 
402 
405 

[9.90623415, 9.90623418] 
[9.94887452, 9.94887455] 
[9.89577500, 9.89577505] 
[9.92011383, 9.92011387] 
[9.89154826, 9.89154835] 
[9.90552580, 9.90552586] 

[9.8897991,9.8897993] 
[9.89785968, 9.89785978] 

[9.8890471,9.8890474] 
[9.8937091,9.8937093] 
[9.8887101,9.8887106] 
[9.8914122, 9.8914126] 
[9.8885530, 9.8885537] 
[9.8901217, 9.8901222] 
[9.888477, 9.888479] 

[9.8893889, 9.8893897] 
[9.888439, 9.888441] 
[9.888969, 9.888971] 
[9.888419, 9.888423] 
[9.888728, 9.888731] 
[9.888408, 9.888413] 
[9.888588, 9.888592] 
[9.888401,9.888409] 
[9.888507, 9.888513] 
[9.888394, 9.888410] 
[9.888457, 9.888469] 

[9.88838, 9.888421 
[9.88842, 9.888451 
[9.88836, 9.88844] 
[9.88838, 9.88845] 

[9.8882, 9.8886] 
[9.887, 9.890] 

Table 6 

[-3.46758381E + 1, -3.46758376E + 1] 
[-3.35679657E + 1, -3.35679654E + 1] 

[-3.2800630E + 1,-3.2800628E + 1] 
[-3.2057759E + 1, -3.2057758E + 1] 
[-3.155988E -I- 1, -3.155986E -t- 1] 

[-3.1050792E + 1, -3.1050790E + 1] 
[-3.071807E q- 1, -3.071806E + 1] 
[-3.036422E + 1, -3.036420E -t- 1] 
[-3.013697E + 1,-3.013695E + 1] 
[-2.988867E + 1, -2.988865E + 1] 
[-2.973114E + 1,-2.973111E + 1] 
[-2.955578E + 1,-2.955576E + 1] 

[-2.94455E + 1, -2.94454E + 1] 
[-2.932109E + 1, -2.932106E + 1] 
[-2.92434E + 1,-2.92432E + 1] 
[-2.91549E + 1, -2.91547E + 1] 
[-2.90999E + 1, -2.90996E + 1] 
[-2.90367E + 1, -2.90365E + 1] 

[-2.8998E + 1,-2.8997E + 1] 
[-2.89526E + 1, -2.89523E + 1] 

[-2.8925E + 1, -2.8924E + 1] 
[-2.8893E + 1, -2.8892E + 1] 
[-2.8874E + 1, -2.8871E + 1] 
[-2.8850E + 1, -2.8849E + 1] 
[-2.884E + 1,-2.883E + 1] 

[-2.8820E + 1,-2.8817E + 1] 
[-2.882E + 1, -2.880E + 1] 
[-2.880E + 1,-2.879E + 1] 
[-2.881E + 1, -2.877E + 1] 
[-2.879E + 1, -2.877E + 1] 

[-2.89E + 1,-2.87E + II 
[-2.89E + 1,-2.87E + 11 

definitions of multivariate Pad6 approximants which can be found in the literature. 
An overview is given in [ 10]. In these earlier definitions the notion of "degree" was 
rigidly fixed (either square-like or triangular-like degree sets for both numerator 
and denominator) and hence no extra dimension of choice was introduced to deal 
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with the complexity of the multivariate problem. The ability to combine different of 
these approaches when using the general order multivariate Pad6 approximant de- 
fined by (1) is essential and it should be exploited fully. For didactical purposes we 
have built up our numerical case study gradually, displaying many non-meaningful 
multivariate Pad6 approximants, but it should be obvious that when interested in 
an approximation for the Beta function in (-0.75,  -0.75),  we would only have 
computed the multivariate Pad6 approximants displayed in Table 6, in this way 
obtaining quite nice approximation results. 

7. Special Case 

The approach we have taken in the previous sections to define and construct mul- 
tivariate Pad6 approximants is essentially based on rewriting the double series 
expansion 

E ciJ xiyj (15) 

(i,j) eN 2 

as the single sum 

E r j 
~(ij)=o 

In general, a numbering r1 of N t places the points in N t one after the other. By 
doing so, the dimension of the problem description is reduced in two ways. Firstly, 
the explicit determinant representation of the solution as well as the E- and qdg- 
algorithms for its computation depend on the numbering r_r in N t and not on the 
number t of variables: the input is indexed by integer numbers r i ( i l ,  �9 �9 it) E N 
and not by multi-indices ( i l , . - . ,  it) E N t. Secondly, the E- and qdg-algorithms 
are also applicable for univariate problems: the dimension of the output table and 
the dimension of the table of intermediate g-values are the same as when univariate 
input is used. Further simplifications of the algorithms to compute multivariate 
Pad6 approximants are only possible for special cases which we shall discuss now. 

Another way to work with the bivariate power series (15) is the following 

Z = F_, c /V 
(i , j)  c N  2 s  \i+j=s 21 

This approach is taken in [8, p. 59-62] to construct homogeneous multivariate Pad6 
approximants. These homogeneous multivariate Pad6 approximants are a special 
case of the general definition (1) where for chosen u and p in N, substituting the 
degrees n and m in the univariate Pad6 approximant [n/m]n+m, the numerator and 
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denominator degree sets N and D are given by 

N={(i , j )  � 9  2 lu#_<i+j<utt+u}  
D = {(d, e) �9 N 2 ] up <_ d + e  <_ u p + p }  

while 

ANNIE CUYT AND BRIGITTE VERDONK 

(16) 

z = z(v,.) u x| 

I(u,~,) = {( i , j )  �9 N 2 ] u#  < i + j  < u# + u + tt} 

I4, = { ( i , j )  �9 N 2 [0  < i + j  < up} 

#I(~,,u ) = # N  + #D - 1 

The conditions in /4 ,  are automatically satisfied by the choice of  N and D and 
hence void. We shall denote these homogeneous multivariate Pad6 approximants 
by [u/#]x(~,,u). Since they are a special case of the general order multivariate Pad6 
approximants (1) the determinant representation (6) and the algorithms (8) and 
(10) remain valid for homogeneous Pad6 approximants. However, an advantage of 
homogeneous Pad6 approximants is that they preserve the properties and the nature 
of  univariate Pad6 approximants even better than the general order definition (1). 
This is for instance reflected in a tremendous simplification of  the algorithms for 
their computation. To see this, we introduce the notation 

Ae(x, y) = ~ aijx~y J g = 0 , . . . ,  u 
i+j=utzTg 

B~(x, y) = ~ bijxiy j g = 0 , . . . ,  # 
i+ j=u#+~ 

Cg(x,y)  = ~ CijxZy 3 {. = O, 1 , 2 . . .  
i+ j  =g 

and rewrite 

/2 

p(x ,y )  = ~ ai jxiy j = ~ A~(x,y)  
( i , j ) e N  g---.O 

# 
q(x ,y)  = ~ bijx~y 3 = ~ Be(x ,y )  

( i , j ) e D  ~=0 

Then the conditions 

( fq  - p ) (x ,y )  =- ~ dijxiy j = ~ dijxiy j 
(i,j) EN2\I  iq-j>_ulz-t-b,+Iz+ 1 
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can be reformulated as 
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Co(X, y)Bo(x, y) = Ao(X, y) 

C1 (x, y)Bo(x, y) + Co(X, y)B1 (x, y) = A1 (x, y) 

Cv(x, y)Bo(x, y) + . . .  + Cv_t,(x, y)Bt~(x, y) = Av(x, y) 

Cv+l(X, y)Bo(x, y) + . . .  + Cv+l - / . t (x ,  y)Bt,(x, y) = 0 

Cv+~,(x, y)Bo(x, y) + . . .  + Cv(x, y)Bt,(x, y) = 0 

where Ce(x, y) - 0 ifg < 0. From this system of defining equations, the following 
determinant representation for multivariate homogeneous Pad6 approximants can 
easily be deduced [5] 

p(x,y) 
q(x,v) 

v v--1 v--# 
c,(x,  y) E c , (z ,  y) ... E C,(x, y) 

g=O g=O g=O 

C v + I ( x , y )  C u ( x , y )  . . .  C u + l - , ( x , y )  

: . . .  : 

c~+,  (x, y) . . .  C~(x, y) 

1 1 . . .  1 

C v w I ( x , y )  C u ( x ,  y) . . .  C u + I - # ( x ,  y)  
�9 . �9 

c~,+,(x,y) ... c~,(x,y) 

(17) 

This is exactly the determinant representation for univariate Pad6 approximants if 
the univariate term aex e is substituted by 

Cdx, y) = ~ c~SyJ ~ = o, 1,2. . .  
i+j =~ 

We remark that compared to the determinant representation (6), the size of the 
determinants in (17) has been reduced from #D --- (3# + #2)/2 + v#(# + 1) + 1 to 
/z + 1. This is a significant simplification, especially if one computes the value of 
the homogeneous Pad6 approximant (for instance with LSS) as the first tmknown 
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of the system 

1 1 

C v + l  (x ,  y)  C v ( z ,  y)  

\ c ~ + , ( x , y )  . . .  

T 

Cv-{-1-/z (x ,  y)  
�9 

cv (x, y) x. 

v--I 
E C~(x, y) 

z t=O 

v-/.t 

instead of as the first unknown of the system of equations (7). 
By performing the same substitution of aex t by Ce(x, y) in the starting values 

of the univariate E-algorithm and the univariate qd-algorithm, these univariate al- 
gorithms also remain valid for the computation of multivariate homogeneous Pad6 
approximants. More precisely, for the multivariate c-algorithm the starting values 
and the continuation rules are given by 

~ -- 0 
. . k 

~k) = cqx~y J = E Cdx ,  y)  k = 0 , . . . ,  v + tt 
i+j=O ~=0 

1 (k) (k+l) 
t + l  ~" s 4- 

and _(v-v) : [v/#]I(v,~,) [5]. e2# 
What concerns the qd-algorithm, the univariate qd-aigorithrnis first rewritten in a 

form such that it can immediately be generalized. If the univariate Pad6 approximant 
[v//z] v+~ is the 21z th convergent of the continued fraction 

v-/z 

i~0 

cv_a+lXV-#+l]_[_ -qlV-tz+l)x _elv-tz+l)x[4- ... 

1 [ 1 + [  1 

then we can also say that [v//z]~,+, is the 21z th convergent of the continued fraction 

v-/z . _ Q l V - / z + l )  ] __/~[v--#+l) ] (18) cv-~+lxv-~+l ] 4- + 4 - . .  
cix' +[  1 [ 1 [ 1 " 

i=0 

Including the factor x in Q~k) and E~ k) does not change the computation rules of 
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the qd-algorithm except for the starting values. More explicitly 

E(o k) = 0 
Ck@l xk+l 

Ck xk 
~(k+l) E~ k) = ~,-1 § _Q~k) 

/)(k) O(k+l) E~ k§ 

If we now perform the substitution of cex e by Ce (x, y) in the starting values, namely 

Q~k) _ Ck+l(x, y) _ ~i+.~=k+l c~3x~Y 3 
Ck(x, y) E +j_-k c yx yJ 

then we have that the 2# th convergent of (18) is the [u/p] ~r(v,~) multivariate homoge- 
neous Pad6 approximant [7]. Again, note that this algorithm is much simpler than the 
qdg-algofithm (10), where the [u//z]x(v,u ) homogeneous Pad6 approximant is com- 
puted as the (2 .#D) th convergent, in other words the ( (3#+# 2) +2u#(#+  1) +2) th 
convergent, of the continued fraction (9). 

From the above it is clear that the restriction (16) on the numerator and denom- 
inator degree of multivariate homogeneous Pad6 approximants is compensated by 
the algorithmic simplicity with which they can be computed. Another important ad- 
vantage they have over general order Pad6 approximants is that they have a unique 
irreducible form and as a consequence satisfy the consistency property [8, p, 65], 
meaning that if f ( x ,  y) is a rational function then, for suitably chosen homoge- 
neous degrees in numerator and denominator, the homogeneous Pad6 approximant 
for f ( x ,  y) retrieves the function f ( x ,  y). The general order multivariate Pad6 ap- 
proximants defined by (1) only satisfy the consistency property if the linear system 
of defining equations (3b) has maximal rank. 

Let us now return to our numerical example. We have pointed out above, that if 
one is interested in approximating the function f ( x  - 1, y - 1) in any point (ui, vj) 
where 

(ui, vj) e { ( x , y ) : x  > -2 ,  y > - 2 , ( x  + 1) (y+  1) )~0} 

then one should look at symmetric Pad6 approximants with fixed denominator 
degree set/93 given by (13). However, because of the restrictions (16) imposed on 
the numerator and denominator degree sets of homogeneous Pad6 approximants, 
the denominator degree set of a homogeneous Pad6 approximant can never be of 
the form (13). To compare the homogeneous with the general order multivariate 
Pad6 approximants, we compute [u/#]z(z,,~,) approximants with # = 1 or 2 and 
u = 0, 1 ,2, . . .  for the function f ( x  - 1 ,  y - 1) in (-1.15, -1 ,  15). The value of 
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/.z 
/ /  

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
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[-68.83305892, 
[-49.89056272, 
[-41.43546286, 
[-36.90202050 
[-34.2004025 
[-32.4816926 
[-31.342539 
[-30.567672 
[-30.03173 
[-29.65693 
[-29.39291 

-6.883305890] 
-4.989056268] 
-4.143546281] 
-3.690202043] 
-34.2004023] 
-32.4816923] 
-31.342538] 
-30.567670] 
-30.03172] 
-29.65692] 
-29.39289] 

[- 29.20598 - 29.20596] 
[-29.0731,-29.0730] 
[-28.9795, -28.9793] 
[-28.914, -28.913] 
[-28.862, -28.861] 
[-28.782, -28.780] 
[-28.85, -28.84] 
[-28.25, -28.23] 
[-31.39,-31.37] 
[-38.75, -38.70] 

Table 7 

[--3.06182496, -3.06182493] 
[--3.0791861, -3.0791860] 
[--3.0127364, -3.0127362] 
[--2.9532424, -2.9532422] 
[-29.15540,-29.15539] 
[--28.95002, -28.95000] 
[-28.84588, -28.84585] 
[-28.7943, -28.7941] 
[-28.7685, -28.7683] 
[-28.7556, -28.7553] 
[-28.750, -28.748] 
[-28.745, -28.743] 
[-28.76, -28.75] 
[-28.76, -28.75] 
[-28.69, -28.65] 
[-29.02, -29.001 

[--28.818, --28.816] 
[-28.789, --28.786] 
[-28.75, --28.74] 
[-25.8, --25.7] 

[-33.93, -33.90] 

the homogeneous Pad6 approximants in ( - 1 . 1 5 , -  1.15) is computed by solving 
the linear system of equations (17) with LSS. The output is given in Table 7. 

We recall that the denominator degree set of the [u/#]i0,,~, ) Pad6 approximant 
is of the form 

D -~ {(d, e) I Ul.Z <_ d + e  <_ u/z+#} #D = (3 / t+#2) /2+u#( /z+  1)+1 

Therefore, increasing the numerator degree u of the homogeneous Pad6 approx- 
imant also increases the denominator degree set D. Hence a sequence of homo- 
geneous Pad6 approximants {[u//z]z(v,~,)}~,c N with fixed denominator degree/z 
does not correspond to a subsequence of any column in the table of general order 
multivariate Pad6 approximants. This immediately implies that Theorem 6 can- 
not be applied to any sequence of the form {[u//z]z(~,,u)}ueN. Another type of 
de Montessus de Ballore theorem has been proved for homogeneous multivariate 
Pad6 approximants [9]. Moreover, a generalization of Theorem 5 on the conver- 
gence in measure of diagonal homogeneous Pad6 approximants is currently under 
investigation. That there is evidence for such convergence in measure is illustrated 
numerically in Table 8, which displays the value of diagonal homogeneous Pad6 
approximants [u/u]i(v,,~) in ( -0 .75 , -0 .75) .  
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B(-0.75,-0.75) = 9.88839829... 
[8.3778971232, 8.3778971235] 
[9.416025955, 9.416025961] 

[9.90393140, 9.90393150] 
[9.8862579, 9.8862582] 

[9.888225, 9.888229] 
[9.88839, 9.88841] 

Table 8 

We remark that because u and # play the same role for multivariate homoge- 
neous Pad6 approximants as n and m for univariate Pad6 approximants, the notion 
of  diagonal approximant is very natural for multivariate homogeneous Pad6 approx- 
imants. It suffices to let u = /z .  For general order multivariate Pad6 approximants 
the notion of  diagonal approximant is not so clear because of the possibility to 
choose rN different from rD. 

The results in Table 7 are comparable to those in Table 6 because, like the 
homogeneous Pad6 approximants in Table 7, the successive general order Pad6 
approximants in Table 6, considered in pairs of  two, enlarge their index set [ with 
a full diagonal of  index points. In order to make a comparison between Table 6 and 
Table 7, we should compare entries with the same informational usage, in other 
words entries which use the same amount of  data. Clearly, the informational usage 
of the approximant INk~De] Ik+e is #[k+e = k + g + 1. As is indicated in [6] and as 

can also be seen from the expressions Ce(x, y) appearing in the determinant formula 
(17), the approximant [u/#]I(,,,l,) uses the coefficients eij with 0 < i + j < u + # 
and hence its informational usage is (u + # + 1)(u + # + 2)/2. Therefore, the 
entries 

[Nk/De]ik+ ~ k + g + 1 = (s + 1)(s + 2) 2 s = 0 , 1 , . . .  

in Table 6 and the entries 

[u/#]z(L,,u ) u + # = s s = 0, 1 , . . .  

in Table 7 are comparable. For example, the general order Pad6 approximant 
IN186/93] ]189 and the homogeneous Pad6 approximants [17/11i (17,1) and [16/21i(16,2) 
are all constructed with the same amount of  data. Identifying the midpoint of  the 
interval output for each of  these respective approximants with the approximant 
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itself, we find via (1 lb) that, as can be expected 

B ( - 1 . 1 5 , - 1 . 1 5 )  - 1 + (-2.15)(-2.15)[17/1]i(n,1)(_1.15)(_1.15) 

1 + (-2.15)(-2.15)[N186/D3]/~89 I 
_< B ( - 1 . 1 5 , - 1 . 1 5 )  - ( -1 .15)( -1 .15)  [ 

B(-1 .15 ,  1 + (-2.15)(-2.15)[17/2]i(16,e) 
< -1.15)  ( -1 .15) ( -1 .15)  

8. Conclusion 

In this paper we have aimed at motivating the need for knowledge and reliability 
when dealing with multivariate approximation problems in general, and with mul- 
tivariate Pad6 approximants in particular. That more and still better knowledge is 
needed in order to handle the complexity and the large number of choices when 
constructing multivariate Pad6 approximants has been illustrated through several 
numerical examples and is a source of current and future research. 

We have emphasized the importance of constructing Pad6 approximants with a 
free choice for numerator and denominator degree sets. We have also discussed the 
importance of the numbering ri with respect to the input data cij. Further research 
has to point out the role of the numbering ri ,  also with respect to the application 
of the multivariate de Montessus de Ballore theorem. Numerical experiments [18] 
have indicated that there is clearly a link, with far reaching consequences, between 
the numbering r1 of the data and the polyradius of the polydisc B(0; R1, R2) in 
theorem 6. However, up to now this link is not at all obvious. 

Concerning the reliability, a research project is currently carried out at the Uni- 
versity of Antwerp to construct a floating-point implementation with significance 
monitoring. The idea is to use the same amount of storage as interval arithmetic 
but to obtain more accuracy and hence sharper bounds by using information which 
is available on the stack of the processor but which is lost when the floating-point 
number is stored to memory. 

Append~ A:LinearSystem Solver Pseudocod~ 

procedure solvelinsystem(dim: integer); 
vat R, A: matrix[l..dim, l..dim] of real; 

B: matrix[l..dim, l..dim] of interval; 
xt, b: vector[l..dim] of real; 

*Theded~m~nsand~e~decaneasi~be ~ t ~ t o h ~ d l e i n ~ i ~ u t f o r A  ~db  
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xkl, xk, z: vector[l..dim] of interval; 

k: integer; 

begin 

read(A); read(b); 

R:= inverse(A); 

xt:= R'b; 

z : : # #  ( b - A * x t )  ; { # #  implemen~ he exact scalar product and} 
z : = R * z  ; { ~ t u m s  an i n s t a l  enc los ing  h e  ~ s u l t }  

B:: ## (makeidentmatrix (dim) - R'A) ; 

xkl:: z; 

k:: 0; 

repeat 

xk:: xkl; 

xkl:: z + 

k:: k+l; 

until (xkl < 

if (k < i0) 

then 

else 

end 

B*xk; 

xk) or (k=10); 

writeln('verified inclusion', xt+xkl) 

writeln('inclusion failed') 
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