
Numerical Algorithms 3 (1992) 159-172 159

Multivariate rational data fitting: general data
structure, maximal accuracy and object orientation

A n n i e Cuyt J and Br igi t te V e r d o n k

Department of Mathematics and Computer Science, Universiteit Antwerpen (UIA),
Universiteitsplein 1, B-2610 Wilrijk- Antwerpen, Belgium

Sections 1 and 2 discuss the advantages of an object-oriented implementation combined
with higher floating-point arithmetic, of the algorithms available for multivariate data fitting
using rational functions. Section 1 will in particular explain what we mean by "higher
arithmetic". Section 2 will concentrate on the concepts of "object orientation". In sections 3
and 4 we shall describe the generality of the data structure that can be dealt with: due to
some new results virtually every data set is acceptable right now, with possible coalescence
of coordinates or points. In order to solve the multivariate rational interpolation problem
the data sets are fed to different algorithms depending on the structure of the interpolation
points in the n-variate space.

This text is a preparatory publication for the development of a scientific expert system for
multivariate rational interpolation. The issues addressed are relevant to the implementation
of such a system.

I. Scientific computation

A l t h o u g h c o m p u t e r s were historical ly d e v e l o p e d for scientif ic compu ta t i on ,
extensive in te res t in the subject of c o m p u t e r a r i thmet ic has most ly d ev e lo p ed in
the ear ly eighties, y ie lding some i m p o r t a n t i m p r o v e m e n t s in the accuracy of
f loa t ing-poin t compu ta t ions . W e shall br ief ly descr ibe these results. W e bel ieve
tha t they should be t aken into accoun t if one wants to deve lop an exper t system
for scientif ic c om pu ta t i on .

L e t us first i n t roduce some nota t ions . Le t ~: c [~ d e n o t e the set of f loa t ing-poin t
n u m b e r s and if * is one o f the ope ra t i ons + , - , x , / in R, let | d e n o t e the
c o r r e s p o n d i n g f loa t ing-poin t ope ra t ion . F r o m a h a r d w a r e poin t of view, two
I E E E f loa t ing-poin t s t anda rds exist. A m o n g o thers , these s t anda rds specify tha t

[14]:

t Senior Research Associate NFWO.

�9 J.C. Baltzer A.G. Scientific Publishing Company

160 A. Cuyt, B. Verdonk / Multivariate rational datafitting

(1) The four basic operations ~ , e , | and ~ should be implemented with
exact rounding, i.e.

x , y = o (x , y) �9 - , • x, y iF,

where o :R ~ IF must be such that if o (r) - - f then there does not exist
another floating-point number between r and f. In other words, exact
rounding guarantees maximally accurate floating-point arithmetic. Note that
several mappings o satisfy the aforementioned property, each corresponding
to a particular rounding mode.

(2) Four types of rounding modes should be provided: round to the nearest
floating-point number, round toward 0 (i.e. upward rounding for negative
numbers and downward rounding for positive numbers), round toward + oo
(i.e. always upward rounding), round toward - ~ (i.e. always downward
rounding).

The advantage of the IEEE standard is that when a program is ported from
one machine to another, the results of the basic operations will be the same in
every bit if both machines support the IEEE standard. However, as pointed out
in [19], the specifications of the standard are not sufficient to guarantee maximal
accuracy for many computations. Indeed, in [19] it is noted that most computa-
tions in numerical algorithms are defined in one of the spaces VIF, MIF, IIF, IVIF,
IMIF (floating-point subset of respectively vectorS, matrixR, intervalE, . . .) or IF2,
V• 2, MIF 2, IIF 2, IV~ :2, IMIF 2 (floating-point subset of respectively C, vectorC,
matrixC, intervalC, . . .) . In traditional floating-point arithmetic, the operations
in these spaces are performed in terms of the elementary floating-point opera-
tions in ~:. Consider for example the floating-point scalar product 0 of two
vectors x and y of floating-point numbers. Using the basic operations we obtain

/1

x | = ~ x i | Yi"
i=1

Due to the accumulation of rounding errors of each of the floating-point
operations �9 and | it is usually the case that

xoy o(x-y) ,

where o(x" y) is the exactly rounded result of x .y . To overcome this shortcom-
ing a new definition of the floating-point operations in the product spaces VIF,
MIF, 0:2, VIF 2, . . . is given in [18]. This definition is based on the principle of
exact rounding. Coming back to our example, the scalar product of two vectors
in VIF is now defined as

x | x , y ~ V I F .

The operations in the other product spaces are defined in the same way [18].
It is proven [18] that to implement the operations in the spaces VIF, MIF, IF2, VIF 2,

A. Cuyt, B. Verdonk / Multivariate rational data fitting 161

. . . according to the new definition, only the following floating-point operations
must be available on the computer:
(a) O, o , o, | and scalar product o with exact rounding to the nearest;
(b) � 9 O, ~, | and scalar product o with exact rounding toward -oo;
(c) � 9 o , ~, | and scalar product o with exact rounding toward +oo.

Note that, compared to the IEEE standard, the set of basic operations has been
extended with the scalar product.

The advantages of highly accurate floating-point arithmetic can be combined
with interval arithmetic to obtain self-validating numerical methods. Interval
arithmetic is the only computational tool so far available that incorporates
guarantees as part of the basic computational process. Interval arithmetic which
has been around for a long time has often been criticized since its naive use may
deliver bounds which are unreasonably large and thus do not contain much
information about the solution of the problem. It is pointed out in [19] that by
using the new instead of the traditional approach to floating-point arithmetic
this criticism is superseded: one combines interval computation, the process of
residual correction and the scalar product with exact rounding to obtain bounds
with high or even maximum accuracy. In this approach the role of the optimally
accurate scalar product is crucial. Application of these techniques has yielded
linear algebra routines with verified and highly accurate solutions [22]. These
techniques can also be used for the evaluation of arbitrary expressions with high
accuracy. To this end the expression is reformulated as a system of linear
equations. As an example, if a, b, d and e are floating-point numbers then
evaluation of the expression a + b - d / e is reformulated as follows:

X 1 = a ,

X 2 ~ ' X 1 "4- b,

x 3 = d,
e_~ 4 ~ x 3 ,

X 5 = X 2 - - X 4 .

To solve this system, techniques which employ the scalar product with exact
rounding, together with iterative defect correction methods are used to obtain
optimally accurate results. Moreover, the availability of interval arithmetic
allows for automatic validation of these results. For more details we refer to
[19].

Using these results, programming languages can implement support for
floating-point computation with maximal accuracy in different levels of enhance-
ment. Programming languages which provide the 15 operations in (a.-c.) are said
to support basic computer arithmetic [19].

At a next, or advanced computer arithmetic level, programming languages
provide constructs to deal with computations in the product spaces U :2, VU:, MB:,
. . . . These languages use a type concept and an operator concept as well as
overloading of (certain) function names. The type concept allows easy use of the

162 A. Cuyt, B. Verdonk / Multivariate rational data fitting

data types [~2, V[~, M[F The operator concept allows easy use of the
optimally accurate arithmetic operations on these data types. As pointed out
above, these operations can all be implemented with maximal accuracy using the
15 basic operations in (a.-c.). The types and operators for the sets H :2, V[F, M0:,
. . . are available in predefined and precompiled form in programming lan-
guages supporting advanced computer arithmetic.

At the last, or higher computer arithmetic level, programming languages deal
in an automatic way with the capability to evaluate to maximum accuracy
expressions composed of the data types and operations in the two previous
levels. The language extension consists in a new programming construct to
specify that a certain program part or expression must be evaluated with
maximal accuracy. Coming back to our example, the statement f ' = eval(a + b -
d / e) would indicate that the value of a + b - d / e must be evaluated to full
accuracy. As pointed out above, this can be achieved if the implementation of
the eval-operator is such that the expression is reformulated as a system of
linear equations and the optimally accurate scalar product, defect correction
and interval arithmetic are used to solve this system.

Programming languages which support basic and advanced computer arith-
metic features are often referred to as SC-languages, where SC stands for
Scientific Computation. The first such language to be developed was Pascal-SC
[17]. Since then, Pascal-XSC [24] (Pascal eXtension for Scientific Computation)
was developed. It contains a number of new features which were not considered
in Pascal-SC and is implemented using a Pascal-XSC to C precompiler. Scien-
tific Computat ion features have also been added to other programming lan-
guages (FORTRAN-SC [13], Modula-SC [12], C-XSC [20]) or are available as
libraries (ACRITH-XSC [2], Arithmos [3]).

Programming languages which support higher computer arithmetic features
are under development with several approaches being considered for the eval-
operator [16,23]. In the current SC-languages a kind of eval-operator can only
be achieved for a number of specific problems by combining in a program the
scalar product with exact rounding, the available interval arithmetic and the
technique of defect correction. However, this eval is not at all automatic.

The choice to implement our expert system for scientific computation in
Pascal-XSC (or alternatively C-XSC of which a prototype will be available by the
time you read this) rather than in another SC-language, is motivated by the fact
that both have an interface with C ++ and hence allow to combine the advan-
tages of scientific computation with the advantages of object orientation. We
shall now describe this latter aspect in more detail.

2. Object orientation

There are several principles underlying object-oriented programming. We
shall mainly concentrate on three of these, namely class or abstract data type,

A. Cuyt, B. Verdonk /Multivariate rational data fitting 163

inheritance and overloading which is closely linked with the principle of dynamic
binding. Roughly speaking, a class or abstract data type is a type together with
operations (also called methods) defined on that type. An abstract data type can
only be accessed through the operations defined on it. In other words, the
implementation of the type (its data structure) as well as the implementation of
its operations are encapsulated within the abstract data type (hidden from the
user.). A typical example of an abstract data type is a stack, with the operations
push, pop, isfull and isempty. Whether the stack is implemented as an array or a
linked list is encapsulated within the abstract data type.

Another important principle of object orientation is the principle of inheri-
tance. Different classes can be organized in a hierarchy, where more specific
classes inherit functionality from more general ones. Consider for example the
class of all closed curves ClC with two methods area and circumference defined
in it to compute the area and the circumference of the closed curve respectively.
More specific subclasses of CIC are for example the class of rectangles ReC and
the class of circles CiC. These subclasses will inherit the methods area and
circumference from the class ClC. However, since computing the area and
circumference for a rectangle and circle is much simpler than for a general
closed curve, it may be more appropriate to redefine the methods area and
circumference in the class ReC and CiC. If this is the case, then to compute the
area of a circle or rectangle the methods within those respective subclasses will
be executed, and the general method defined in the class ClC of closed curves
will not be applied.

This brings us to the last principle of object orientation which we discuss
here, namely dynamic binding. Dynamic binding is a means to resolve the
overloading of method names. A method name is said to be overloaded if
different classes each define a method with that name. The system can resolve
the overloading by determining at run time (dynamically) the class type of the
argument to which the method is applied, and hence also the correct definition
(implementation) of the method. In the example given above, when computing
area(l), the system will determine to which class C the element I belongs and
select the method area in that class. If no such method is defined in the class C,
then the principle of inheritance is invoked and the method area in the
superclass of C is invoked.

It is mainly these three features of object-oriented programming which will be
put to good use when implementing a scientific expert system. For a specific
problem domain (such as multivariate rational interpolation), usually different
problem types can be identified, and with each problem type appropriate
algorithms can be associated. The translation of this classification in an object-
oriented programming language can thus easily be done. Indeed, each problem
type can be implemented as a class, where the algorithms to solve that type of
problem are encapsulated within the class. As such, each class certainly defines
a method to "solve". The implementation of the solve-method in the class C 1 is

164 A. Cuyt, B. Verdonk / Multivariate rational data fitting

the algorithm to solve the problem of type C1, whereas the implementation of
the solve-method in class C 2 will be the algorithm to solve problems of type C 2.
This classification and the partial order between the different problem classes is
closely related to the particular problem domain. As pointed out above, the
overloading of the method name solve can be resolved through dynamic binding.
However, for numeric computations the default dynamic binding mechanism
must be carefully examined. Indeed, it may be the case that although a
particular problem belongs to class C~ the solve-method in the superclass of C1,
instead of in C 1 itself, should be applied for reasons of stability and reliability.
In traditional object-oriented programming languages all local methods have a
priority higher than that of methods inherited from superclasses. It may be
appropriate to overrule this default mechanism. The overloading of methods
should be conditional on the performance of the algorithms for the particular
data. The principles of object-orientation also allow to improve the program-
ming methodology. Indeed, if more optimal algorithms or data structures can be
developed for a particular class, only the implementation within that class needs
to be modified, while the rest of the program remains unchanged.

There are several object-oriented languages on the market today. These are,
among others, C §247 Smalltalk, and Eiffel. Although they do not all support
object-orientation to the same degree, they all support the basic features of
object-orientation described above. For the implementation of our system, we
have chosen the language C +§ because of its widespread use, but also for the
important reason that it has an interface with Pascal-XSC and C-XSC, as
mentioned in the previous paragraph.

3. The problem domain

A prototype of a scientific expert system based on the principles described
above, will be implemented at the University of Antwerp (UIA) in C §247
combined with Pascal-XSC or C-XSC, for the problem domain of multivariate
rational Hermite interpolation, including Pad6 approximation. In this section,
we shall briefly discuss how the general advantages of higher floating-point
arithmetic and object-oriented programming are in particular applicable to our
problem domain.

It is well-known that the problem of multivariate rational Hermite interpola-
tion is in its most general way formulated as follows [8]. We restrict our
presentation to the case of two variables. Given data

~k§
(x,, yj), ax k Byt

A. Cuyt, B. Verdonk / Multivariate rational data fitting 165

where k > 0 or l > 0 indicate coalescence of coordinates or points, find polyno-
mials

p (x , y) = ~ aijxiy j,
(i,j)~Nc~ 2

q(x , y) = E bijxiy j,
(i,j)~DcM 2

satisfying

ok+t(fq - -p)
aX kaY I (Xi, yj) = O, (1)

where the total number of unknown coefficients in p and q equals the number
of interpolation conditions plus a normalization condition. If k > 0 or 1 > 0 then
each additional data point besides the value of f can be represented by another
(Xi(k) , yjq)) where we let Xi(k)''>X i if k > 0 and Yj(t)--->Yj if l > 0. For (k, l) =
(0, 0) we have of course i(0) = i and j(0) --j. In the univariate case the rational
Hermite interpolation problem is equivalent to the Newton-Pad6 approxima-
tion problem. In the multivariate case this is only true for particular data sets.
Consequently the algorithms for rational Hermite interpolation and Newton-
Pad6 approximation are in general not equivalent. Let us call the set of indices
(i(k), j(1)) for all given i,j and k,l the data index set I. Clearly # I equals the
number of interpolation conditions.

By total inclusion property of the data index set I we mean that when (i, j)
belongs to I then all (i ', j ') with 0 < i' < i and 0 < j ' < j also belong to I (this is
the whole rectangle of indices emanating from the origin and with the given
index (i, j) as its furthermost corner). Sometimes this can be achieved by a
simple renumbering of the original data [9].

By partial inclusion property of the data index set I we mean that the amount
of data given at each distinct point (x i, yj) is indexed by a set

0k+t f
- - (x i, yj.) is given (2) I(i,j) = (k , /)l 0x/, ~yt

which satisfies the total inclusion property and this for each distinct (x i, yj.).
In fact the partial inclusion property is always true because one never jumps

(partial) derivatives when letting interpolatory data coincide. Just look at the
univariate case to see the logic. If besides the function value also higher
derivatives are specified at an interpolation point, then these derivatives are of
consecutive order.

Only for data sets satisfying the total inclusion property the rational Hermite
interpolation problem (1) can be reformulated as a Newton-Pad6 approxima-
tion problem. Given the (x i, yj), construct basis functions

i - 1 j - 1

ni j (x , Y)= H (X- -Xk) H (Y - -Y l)
k=0 l=0

166 A. Cuyt, B. Verdonk / Multivariate rational data fitting

and find polynomials

y)= E aijBij(x, y),
(i,j)~NchJ 2

q(x, y) = ~, bijBi~ (x, y),
(i,j)~Dcl~ 2

satisfying

(f q - p) (x , y) = Y'~ d i j B i j (x , y), (3)
(i , j) ~ [~2\1

with N c I and # I = # N + # D - 1. Examples of the different situations are
given in the next section with a complete set of references, also to the most
recently developed techniques.

Remark that instead of fitting p / q to f we consider the modified problem of
fitting fq - p to zero. A solution of the modified problem is also a solution of
the true problem except when both p and q have interpolation points as
common zeros. It is well-known that conditions (1) or (3) result in defining
systems of linear equations. Linear systems of equations occur in many other
aspects of multivariate rational interpolation, when using Sylvester's identity in
recursive schemes [5,6] or for the evaluation of continued fractions [11,21]. This
is an important advantage for our implementation, as we recall briefly.

It has been ment ioned in section 1 on scientific computat ion that in higher
computer arithmetic, optimally accurate results can be obtained for different
floating-point expressions by reformulating them in terms of systems of linear
equations. These linear systems then have to be solved using defect correction
methods and automatic validation as described in [19]. We therefore expect that
especially the higher computer arithmetic tools of Pascal-XSC or C-XSC will
prove to be very effective and accurate when implementing algorithms for
multivariate rational interpolation.

Concerning the object-oriented aspects, the classification of the problem
domain is mainly based on the structure of the data. Let us now focus on this
classification. As already pointed out, the most general situation to be consid-
ered is the one with N and D general and I satisfying the partial inclusion
property. If all data are given at distinct points then the problem is a pure
rational interpolation problem. If data with coalescent coordinates occur then a
combination with algorithms of the Newton-Pad6 case is necessary to compute
intermediate results. For the use of certain recursive algorithms it is necessary
that one chooses the numerator and denominator index sets N and D to satisfy
the total inclusion property.

If I also satisfies the total inclusion property and N ~ I, then the problem can
be solved by some Newton-Pad6 algorithms. If all data are coalescent the
problem is in fact merely a Pad6 approximation problem. If all data are given at
distinct points, then all divided differences in the formal Newton series have to
be calculated, else some are replaced by given partial derivatives.

A. Cuyt, B. Verdonk /Multivariate rational data fitting 167

I with partial
inclusion property
N and D general (RHI)

no coinciding data:
ordinary interpolation (RI)

I with total
inclusion property
N C I (NPA)

all data coinciding:

Pad~ problem (PA)

Fig. 1.

With each of the classes, different algorithms can be associated [8]. The
solve-method will implement the algorithms for each particular class. Since in
many cases also several algorithms exist for a particular class (recursive algo-
rithms, continued fraction representation of the rational function), sufficient
theoretical expertise must be included in the system so that the appropriate
algorithm is selected within the class. Criteria to be taken into account are
reliability (true .or modified rational interpolant [4]) and stability (reasonable
error bounds [15]), as well as choosing the appropriate degree in numerator and
denominator with respect to consistency (data from a rational function itself [1])
and convergence (data from a meromorphic or Stieltjes function [7]). This will
make the scientific expert system a " t rue" expert system.

4. Classification details

Let us work our way up by first presenting an interpolation problem that can
be reformulated as a Newton-Pad6 approximation problem. Consider the data
set from fig. 2: for all indicated pairs of indices (i, j) the function value f (x i, yj)
is given, at (x0, Yl) also the partial derivatives af /ax , a f / ay and a2f/ay 2 are
known and at (x 1, Yl) the partial derivative a f / a x is specified. If we proceed as

168 A. Cuyt, B. Verdonk / Multivariate rational data fitting

2 �9

1 �9 �9

O _ .-

0 1 2

Fig. 2.

4

3

2

1

O -
0

�9 �9

1 2 3 4

Fig. 3.

outl ined in the previous section, we represent all these data as indicated in fig. 3
where we let Y3 '--~ Yl, Y4 -->21, X3 "'~ X0 a n d x 4 ---~x I.

By renumbering we can represent this data set by the index set I drawn in fig.
4 and satisfying the total inclusion property. Hence we can compute all bivariate
divided differences occurring in the Newton interpolating series

E f[Xo, . . . , x i][Yo, . . . ,Yy]Bi) (X, Y) + . . .
(i,j)~l

i

4'~

3'

2'

0'~
0' 1' 2'

Fig. 4.

3' 4'

A. Cuyt, B. Verdonk / Multivariate rational data fitting 169

3

2

1

0 1 2 3

Fig. 5.

and approximate this series in a Pad6-1ike fashion, satisfying some accuracy-
through-order conditions. Choose for instance

N = {(i, j) [O<i +j <3} c I ,

D = {(i, j)10 < i + j < 1},

and write down the linear systems of eqs. (3) for the unknown coefficients in p
and q indexed by N and D respectively.

Next we consider an interpolation problem that cannot be reformulated as an
approximation problem. Consequently only the methods from the RHI-class are
applicable. For the previous problem we used the NPA-formulation though the
RHI-approach remained valid. We already remarked that in the multivariate
case the two formulations are in general not equivalent anymore. Take the data
set from fig. 5: for all (i, j) the function value f (x i, yj) is given while at (x 3, Y0)
also a f l ay is known. This data set is the limit situation of the one given in fig. 6
where we let Y3 "'> Y0"

No renumbering of the data index set resulting in total inclusion is possible.
Hence we can choose N and D satisfying the total inclusion property, while I is
general,

N = {(0, 0), (1, 0), (0, 1), (1, 1)},

D = {(0, 0), (1, 0), (0, 1)},

3

2

1

0 1 2
Fig. 6.

3

1 7 0 A. Cuyt, B. Verdonk / Multivariate rational data fitting

and solve the problem using methods described in [10]. The linear system of eqs.
(1) for p and q indexed by N and D is

(f q - p) (x i, y j) = 0 , (i , j) ~ I \ ((3 , 3) } ,

O(fq - p)
(x3, yo) = 0. Oy

Up to now the definition of the multivariate rational interpolant has not been
constructive. For both approaches a recursive computation scheme exists. To
this end we need an enumeration of the index points in [~2 that preserves the
inclusion property when taking initial subsets of an index set I that has the total
inclusion property (several choices for such an enumerat ion are possible).

For the Newton-Pad6 approximant this then results in writing I as

,,+mr #Ii, = k + 1; 1 = kJ k=O,k,

Ik \ Ik - l={(ik ,Jk)} , I - l = O ,
where each I k satisfies the total inclusion property. Since N c I we define
N k = I k for k = 0 , . . . , n. We can also enumerate the points in D in the order of
the enumerat ion of M2 to obtain D~ = {(d 0, e0) , . . . , (d~, e~,)} for k = 0 , . . . , m.
Now that we have fixed an order in which the terms are added in p and q and
the data are treated, we can interpret a recursive computat ion scheme in terms
of "previous" and "next" interpolants. For our data set depicted in fig. 4, the
Newton-Pad6 approximant will be denoted by

= = E(29). [N/D] , [Ug/D2]t, '

This solution can be computed by a generalization of the e-algorithm [6]
where in general E},, ~) is specified in terms of E}")_I and ~,(,,+1) Starting values

~ m - - 1 "

for the recursive scheme are the

Et0 ~)= E f[xdo,''',Xi][Yeo,''',yj]Bdoi,~d(x, Y), k = O , . . . , n + m ,
(i , j) ~ l k

Bij (x, y)
Bki,tj(x, Y) -

Bkt(x, Y)"
For the rational Hermite interpolation problem with I only satisfying the

partial inclusion property, we enumerate

I={(ko, lo),...,(k,,+,,,,l.+m)},

N={(io, Jo) (i . , j .)} ,

D={(do, eo),. . . ,(dm, e,,)}.
The same computation scheme as above, but with different starting values

and a different interpretation, can yield the solution [8,10] which we denote for

where

A. Cuyt, B. Verdonk / Multivariate rational data fitting 171

the data set of fig. 6 by

[N / D] , = [N3/D2],~ = E~ ~

The superscript in the E-value indicates the starting interpolation point, in this
case indexed (k 0, lo), and the subscript gives the total number of interpolation
conditions imposed from there on. The fact that E~ ~ can be calculated from
ECn~ and Er ~ now means that we use a Bulirsch-Stoer type computation in- 1
where E~ ~ is obtained from dividing the set of data into two subsets: in E4 ~~ we
discard the last interpolation point and in E~ 1) we omit the first one. Starting
values are now E~o h~ =f(x~, , y6,) which indeed interpolate only at the hth point.
Intermediate values where coalescent data points occur, such as El 4~ in the
example above, have to be computed using the NPA-approach. This is possible
since I satisfies the partial inclusion property, meaning that at every distinct
data point (x k, yj) the set Ick,O defined by (2) satisfies the total inclusion
property. Remark that if only noncoalescent data occur all Ir = {(0, 0)}.

In a straightforward object-oriented approach, multivariate rational data
fitting problems of class NPA will automatically be solved by NPA-methods
because the methods of the superclass RHI are superseded. However, for a
scientific computation problem one first needs certainty about the fact that the
NPA-solve is also numerically "preferable" over the RHI-solve. This still has to
be investigated, along with the other open problems mentioned in section 3 to
make the system a true expert system, namely reliability, stability, consistency
and convergence of the multivariate rational interpolant.

References

[1] J. Abouir and A. Cuyt, Multivariate partial Newton-Pad6 and Newton-Pad6 type approxi-
mants, J. Approx. Th. (to appear).

[2] Acrith-XSC: IBM High Accuracy Arithmetic - Extended Scientific Computation. Version 1,
Release 1, IBM Deutschland GmbH, Department 3282, BSblingen.

[3] ARITHMOS (BS2000): Benutzerhandbuch, SIEMENS AG, Bereich Datentechnik.
[4] H. Arndt, Ein verallgemeinter Kettenbruch-Algorithmus zur rationalen Hermite-Interpola-

tion, Numer. Math. 36 (1980) 99-107.
[5] C. Brezinski, A general extrapolation algorithm, Numer. Math. 35 (1980) 175-187.
[6] A. Cuyt, A recursive computation scheme for multivariate rational interpolants, SIAM J.

Num. Anal. 24 (1987) 228-238.
[7] A. Cuyt, Extension of "A multivariate convergence theorem of the de Montessus de Ballore

type" to multipoles, J. Comp. Appl. Math. 41 (1992) 323-330.
[8] A. Cuyt, Multivariate rational interpolation: old and new results, in preparation.
[9] A. Cuyt and B. Verdonk, General order Newton-Pad6 approximants for multivariate

functions, Numer. Math. 43 (1984) 293-307.
[10] A. Cuyt and B. Verdonk, Different techniques for the construction of multivariate rational

interpolants, in: Nonlinear Numerical Methods and Rational Approximation, ed. A. Cuyt
(1988) pp. 167-190.

[11] A. Cuyt and B. Verdonk, Evaluation of branched continued fractions using block-tridiagonal
linear systems, IMA J. Numer. Anal. 8 (1988) 209-217.

172 A. Cuyt, B. Verdonk / Multivariate rational data fitting

[12] C. Falc6 Korn, S. Gutzwiller, S. K6nig and Ch. Ullrich, Modula-SC. Motivation, language
definition and implementation, IMACS Ann. Comput. Appl. Math. 12 (1992) 161-179.

[13] FORTRAN for scientific computation. Language description and sample programs, Institute
for Applied Mathematics, University of Karlsruhe.

[14] D. Goldberg, What every computer scientist should know about floating-point arithmetic,
ACM Comp. Surv. 23 (1991) 5-48.

[15] P. Graves-Morris, Practical, reliable, rational interpolation, J. Inst. Math. Appl. 25 (1980)
267-286.

[16] W. Kr~mer, Highly accurate evaluation of program parts with applications, IMACS Ann.
Comput. Appl. Math. 7 (1990) 397-409.

[17] U. Kulisch (ed.), Pascal-SC: blformation Manual and Floppy Disks (Wiley-Teubner, Stuttgart,
1987).

[18] U. Kulisch and W. Miranker, Computer Arithmetic in Theory and Practice (Academic Press,
New York, 1981).

[19] U. Kulisch and W. Miranker, The arithmetic of the digital computer: a new approach, SIAM
Rev. 28 (1986) 1-36.

[20] C. Lawo, C-XSC, A programming environment for eXtended Scientific Computation, Proc.
13 rh IMACS World Congress, vol. 1 (1991) p. 34.

[21] J. Miklosko, Investigation of algorithms for numerical computation of continued fractions,
USSR Comp. Math. Math. Phys. 16 (1976) 1-12.

[22] Ch. Ullrich and J. Wolff von Gudenberg (eds.), Accurate Numerical Algorithms: A Collection
of Research Papers (Springer, Berlin, 1989).

[23] J. Wolff von Gudenberg, Object-oriented concepts for scientific computation, IMACS Ann.
Comput. Appl. Math. 12 (1992) 181-192.

[24] R. Klatte, V. Kulisch, M. Neaga, D. Ratz and C. Ullrich (eds.), Pascal-XSC. Language
Reference with Examples (Springer, Berlin, 1992).

