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Introduction 

For a univariate function given by its Taylor series expansion, one can construct a continued 
fraction expansion with the algorithm of Viscovatov. This continued fraction expansion can also 
be obtained as the limiting value of a Thiele interpolating continued fraction. For a multivariate 
function a Viscovatov-like algorithm for the construction of a branched continued fraction 
expansion was developed independently by Murphy and O’Donohoe [lo] and by Kuchminskaya 
[5]. On the other hand, multivariate inverse differences to construct Thiele interpolating branched 
continued fractions were introduced independently by Kuchminskaya in [6] and by the authors 
in [3]. It is the purpose of the present paper to show the link between these two approaches in the 
multivariate case: we introduce multivariate reciprocal differences so as to obtain the branched 
continued fraction expansion as the limiting value of the Thiele interpolating branched con- 
tinued fraction. Let us point out that multivariate reciprocal differences and their limiting values 
were already introduced by Siemaszko [12] for another type of branched continued fraction than 
the one we shall consider here. For a review of the different generalizations of the univariate 
interpolating and corresponding continued fraction to the multivariate case we refer the reader to 

PI or PI. 

1. Univariate case 

Let us first briefly review the univariate theory. Let f(x) be a univariate function and 
X(m) = (x0, Xl, x2, . . . } a sequence of distinct real points. If we compute inverse differences for 
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f(x): 

hI[%l =fcd 

+,[x 
XI - XI-1 

0,...> XI] = 
@r&o >...> x,-2, XI] -+,-l[X, ‘...> XI-l] ’ lal, 

then it is well-known that the continued fraction (CF) 

is a Thiele interpolating CF for f(x). Instead of computing inverse differences 
compute reciprocal differences for f(x): 

Po[xo] =f(xoL P*[xo, x11 = ( Xl - xo>Af (x1) -f (x0)), 

0) 

(2) 

one can also 

PIIXOr...,X,] = Xl - XI-1 

P~-1[XO,..4-2> XI] -PI-l[xoY..,xI-ll 
+P,-2[xo,..4-2]> 

The reciprocal differences are related to the inverse differences by 

Go[xlJ =Po[xol> +r[xo, x11 =Pr[xo, X1]> 

+o,...> x,] =Pr[XoY>x,] -P,~2[xoY..,x~-2], I> 2, 

and have the important property that they do not depend on the numbering of their arguments 

x0,..., xl. As mentioned above, one way to obtain a CF expansion for f(x) is as the limiting 
value of the CF (2): 

(3) 

where 

444 = lim $+O,...,xI], 120. 
XI-) U 

i=O ,..., I 

The recursive scheme for the values G,(u) is well-known: 

Go@) =f(x) I x=u = POW, 

and for 12 2, 

%b) = (df/dx)-‘Ix=U = du), (44 

444 =z(dp,-,(x)/dx)-l(siu’ P/(X) =6(x) + PI-264, (4’4 
where 

p,(x) = lim p,[x, ,..., xl], 120. 
x,+x 

i=O,...,i 

An alternative to this scheme for the construction of a Thiele CF expansion for f(x) is based on 
Viscovatov’s algorithm. If f(x) is given by its Taylor series expansion around u 

f(x) = ciO’ + cp(x - 2.4) + c$O’(x - 24)’ + . . . ) 
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then the coefficients +[( u) in (3) can numerically be computed as follows [4]: 

+I&) = c&O’, +1(u) = LMO), 

cji) = --+,(r~)c$~~, i >, 1, 

and for 1 > 1, 

W 

(5b) 

2. Thiele interpolation and Viscovatov’s algorithm for multivariate functions 

We restrict ourselves to the bivariate case in order to simplify the notation. Given two 
sequences of distinct real points xCrn) = {x0, xi, x2, . . .} and y(“) = { y,, y,, y,, . . . } and a 
bivariate function f(x, y), many types of interpolating branched continued fractions (BCF) for 
f( x, y) can be constructed, depending on the way in which N2 is enumerated [1,2,8]. If N2 is 
considered as a union of prongs 

L 3 
2 

1 

0’ 

we can write in a purely formal way [WI 

+ f b-Xk-A-Yk-1) 

k=l Bk(X, Y> 

with 

Bkb, Y)=~kk[xoY9xk] 

Y-Y/-l 

>~~.,xk][YOmYl] 

(6) 
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The values $Q,,[x~, . . . , xk[[Y,,, . . . , yI] are bivariate inverse differences and can be computed 
according to the following scheme: 

+[%I [Yol =f(xm YIA 

+[xoY.> XII [Yol = 
XI - XI-1 

@[X0, . . ..XI-2. XI] [YO] - +m x/-2, XI-11 bol ’ (74 

YI -Y/-l 
$[xo][y 

o>..*, Yl-2, Ytl -+ol[Yo~~~~&2~ Y/-11 ’ 

‘p[~O~...~~~][YO~...~Ykl 

(Xk - Xk-JY, -Y,-1) 
xO>...,xk-Z, xkll.%,..., y,-2, Yk]--+[XO,...,Xk-2, xk-,l[~O>...>Yk-2~ ykl 

3 

--~[~O,~~~,~k-,, ~k][~O,~~~,yk-,, yk-ll+t[XOa...~Xk-2~ xk~,l[YO~...~Yk-2~ Yk-11 

and for I > k, 

XI - x1-1 = 
4x0, . . . . XI-22 xJyo,...,Yk] 4XO>..4-2~ %,l[YO~~~~~Y~l ’ 

Y/-Y/-l 

~[X13,...,Xk][Y0,...,YI-2, Y,] -~[~o~...~~,l[Yo~...~Y,-2~ Y/Ml . 

(74 

(74 

Let us now consider the limiting case 

x, + u, i >, 0, Yj+v, j>,O, 

eklb> 4 = lim ~k,[~o~.-.~~kl[YO~...~Yll. 
x,+u, Y,'U 

i=o,..., k, J=o,...,/ 

The values $kl( U, v) are called bivariate inverse derivatives. The expression (6) then becomes 

+f 
b - 4(Y - 4 

k=l +,,& v, + 5 ,_,+&i?iY + ,=k gc3 
If f (x, y) is given by its Taylor series expansion around (u, v) 

(8) 

f(x, y) = E c,‘,“‘(x-u)i(y-v)i 
r,j=O 

we can compute the coefficients +Ju, v) using a Viscovatov-like algorithm. To this end we 
adapt the formulas given in [5,10] so as to match the BCF (8). For a discussion of the existence 
and uniqueness of (8) we refer to [5,10]. We assume throughout the text that the conditions to 
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guarantee existence and unicity of the continued fraction expansion (8) are fulfilled. Let us 
introduce the notations 

ka0, 

f&G Y) =.h Y) - hb~ 4 - dx) -MY). 
In this way 

We define 
i,j=l 

fi = (x - U)(Y - 4 - GM4 4 + g1+ 4)& (94 

fk = (x - 4(Y - G-2 - (%&(% 0) + & + hJfk-1. ( w 
As indicated further the coefficients $Q~(u, u) can be chosen such that a series expansion for 
fk(x, y) is of the form 

fk(X, y) = (x - uy+yy - Uy+l i & c$)(x - u)i-l(y - uy’ 

while gk(x) and h,(y) can be written as 

gk(x) = 5 djk)(X - u)‘, h,(y) = 5 e,‘“‘(y - U)j. 
i=l 

Equating coefficients in formula (9a), 
/=I 

cc 
(x - u)(y - u) c c,‘,“(X - u)i-l(y - u)‘-’ 

i,j=l 

=l-- I#&, u)+ &p(x-u)‘+ fey+u)’ 

( i=l j=l 

x E c‘y(x - u)i-l(y - u)j-l, 
i,J=l 

we obtain for i, j > 1, 

l 
i-l 

d,“’ = 4 -+p,,( u, u>c!“?,,, - c d,‘l’c,‘o?,_,,, ) 

Cl1 I=1 i 

i 

j-l 

e!‘) = $ -~&, u)$~+~ - C 
(1) (0) 

J el ‘l,j+l-I > 
I=1 1 

(loa, b) 

(114 

i i 
c(l)= -qill(u, u)c/~l,i+l - C ~3j’)c!~~_,,~+~ - C e,‘l’c,‘$)l J+,_r; 

‘J 

I=1 I=1 
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and doing the same with (9b) 

(x-U)(Y-u) f c$‘(x-U)i-l(y-cI)‘-l 
;,/=1 

= i ;lcyyx - q-l(y - u)‘-l 

- Gkk(u, u) + f LI,‘~‘(x - u)‘+ f ejk’(y - u)’ 
i i=l j=l 

x 5 cI(Jk-1) (x - ql(y - uy, 

i,j=l 

we find for k > 2 and i, j >, 1, 

+kk(% d =‘ll /cll > 
(k-2) (k-l) 

i-l 
d(k) = 

1 
1 (k-1) 

i 
C’k-2)- @k&b u)ci+l,l 

(k-1) _ 
r+l,l 

Cl1 

e!k) = 
1 

j-l 

J (k-1) 
Cl1 i 

ciFJ;:’ - +kk( u, u)c!,“,;:’ - c ejk’c~fJ;l~_[ , 

I=1 I 

@lb) 

C!k) = &k-2) 
'J r+l,j+l - +kk( u, U)c!fr,y+, 

- 2 d,‘k’c!f;?\,J+l - i e!k’c$$T,:j+l_,. 
I=1 I=1 

The values $lk( U, u) and c#B~/( U, u) for I > k, k >, 0 can be computed from the knowledge of the 

dCk) and eCk), where d!‘) = ~$1 and ej”) = c$’ for i, j > 1, by applying the univariate 
&covatov-algorithm (5) to the series (10a) and (lob). To illustrate this technique we consider 

the following simple example. Take 

f(x, y) = ex+y 

= 1+ x fy + ix’ + xy + :y2 + +x3 + :x2y + :xy2 + fy’ 

+ Ax” + ix’y + ;x2y2 + ixy’ + &y4 + . .‘. 

= @oo(W 4 + go(x) + ho(Y) +fo(x, Y), 

where 

+o&, u) = 1, 

go(x)=x+:x2+&x3+ . ..) 

ho(y)=y+:y2++y3+ -1.) 

fO(x, y) = xy(1 + ;x + :y + ix” + $xy + +y2 + . . . ). 
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In this case (u, u) = (0, 0) and since the problem is completely symmetric we need only compute 
the coefficients &( u, u) for I>, k and k 2 0. Using the formulas (11) we find 

+,,(u, u> = 1, 

d,“’ = - +, &’ = & ) dp = 0, .-*> 

Cl1 
(1) = a, 

c21 
(1) = A, 

Cl2 
(1) = A, 

c31 
(1) = f, 

c22 ) 
(1) = $ 

Cl3 
(1) = A@ ) 

and 

$,,(u, 0) = 4, 

@’ = +, 42’ = +, . . . . 

Applying the univariate formulas (5) to the sequences 

g,(x) = x + :x2 + ix’ + . * * ) 

gl(x)= -+x+&x2+0x3+ . ..) 

g2(x) = :x + ;x2 + . . * ) 

we obtain the BCF expansion for eXfY: 

+Il+($+s+g+ *..x;+(d+d+f+ . . . j’ 
+‘4+(&+++ ...x;+(&l+&+ . ..I’+ **.. 

3. Multivariate Thiele continued fraction expansion 

As mentioned above we shall now present a scheme to derive the +,k( u, u) analytically using a 
method analogous to Thiele’s method for the univariate case. We shall therefore first rewrite the 
bivariate inverse differences of f(x, y) as univariate inverse differences of univariate functions 
related to f(x, y). For the reader familiar with [12] we point out that there Siemaszko considers 
N2 as a union of horizontal (or vertical) lines and so his bivariate reciprocal differences are 
essentially univariate in nature. In our paper N2 is considered as a union of prongs. Going from 
one prong to the next one involves both coordinates and this will have its implications when 
introducing bivariate reciprocal differences related to the bivariate inverse differences (7). The 
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following notations will be used throughout the paper to indicate finite subsequences of 
x(O”) = (x0, xi , . ..} and y(“)= {y,, yi, . ..}. 

X(k) = (x0 ,..., xk), k>,O, yck)= (yo ,..., yk), k>O. 

From the formulas (7) and the definition of univariate inverse differences, one can easily see that 

&o[%l [Yol =f(xo, Y0) = &(x;yo)[%l> 4d-G YJ =fk YO)? 
= (#@Yxd [ yO] ) 

e0b; x0) =fb0, YL 

and by induction, for I > 0 

~,,O[XOY.~ x,][y(J =~;l”(~~yo)[xo,...,xI] 

and 

+0,l[%][Y0,...&] =~~(y;xo’[Yo,...,Yl]. 

In general we can state the following. 

Theorem 1. For k >, 1 and I> k, 

$b/,&O ,..., x,][y,, )..., yk] =~~~‘~~‘4~2)‘y’k’)[xk-~,...rX,] 
and 

(124 

(12b) 

dk(x; x(~-~), yck’) = ~ _ 
k i,k xO>..*>xk-2, 

, 
x] [YOn yk] 

(I3a) 
1 

e,(y; xck), ycke2)) = 1 

+k,k-l[XO>..e> xk] [YO,..., Yk-2, Y] ’ 
w4 

Proof. We shall Only give the prOOf for $,&[xO, . . . , x,][yo, . . . , yk] with .! 2 k since it is 
completely analogous for +k,,[ x0, . . . , xk][ yo, . . . , y,]. The proof is by induction on 1. For I= k we 
have 

+k,k[XO>..e> xk][yOm Yk] 

xk- xk-l 

= ~k~l,k~l[XO,...,Xk~2, Xkl[YO,...,Yk-2r Ykl-~k_l,k-,[XO,...,Xk~2, Xkl[YOr...rYk-11 

Yk -Yk-I 

+k-l,k-l[xO>...> xk-II[h>..., yk-2, ykl -+k-l.k-l[XO,...r Xk--ll[h~~~~~~k-ll _ 

Yk -Yk-1 

xk - xk-l 
= 

1 1 

+k-&,J,-..,Xk-2, Xk][yO,.*.,Yk] - ~k~l,k[Xg,...,Xk-l][yO,...,yk] 
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If we introduce the notation dk(x; xCkP2), y”“) for the univariate function of the variable x 

1 

@k-l,k[%...~Xk-2, X][YOY.~Ykl ’ 

depending on the parameters xCke2) and y (k) then from the definition of univariate inverse , 

differences, 

c#lk,k[Xo )...) xJ[yo )...) yk] =~;i,(x~x’L~“~y’“‘)[Xk-lr Xk]. 
Assume now that for k < n < 1 

&$[XO )...) xn][yo )...) y/J =~~~+Z(X~*).y’k))[xk_l,...,x~]l 

then 

~[,k[Xg,...,X~l(yo,...,Ykl 
XI - XI-1 

= 

+I_l,k[X(),...,X[_2, X,][YO,...?Yk] -~,-,,,[~o~~~~~~~-~l~Yo~~~~~Y~l 
XI - XI-1 

= 

@l&k 
d,(J:X’X-*‘.y’k’)[Xk_l,. . .) xI_2, x,] - ~~~(~;x(x-2),y’h’)[Xk_l,. . .) X[_J 

= q+$y;km*)q xk_l,. . .) XI] 

which completes the proof. 0 

With Theorem 1 in mind, we introduce bivariate reciprocal diff erences for f (x, y) as follows. For 
k>l and l>k 

,&[x,, ,..., x[][y, ,..., yk] =~~~‘~~~‘k~2”y’k”[xk_~ ,..., xl] 

and (14a) 

Pk,,[Xgr...,Xk][yO,...,YI] =~;n(~~~X”yiX-2”[l’k-lr....L.,]r 

and for 120 

P,,O[XOYV XI] [ &)I = p;l”(x;h) [ xg ) . . . ) XI] 

and (14b) 

Po,r[x,][Y,,...,YJ =P~‘y;““‘[Yo,...,Y,]. 

The bivariate reciprocal differences are thus defined by means of univariate reciprocal dif- 
ferences for the functions d,(x; x(~-~), yCk’) and ek(y; xCk), yCkP2)) given by (13). The 
following properties can therefore easily be checked. 

Theorem 2. (a) For 12 2, 

Poo[xol[Yol =44IoMYol~ 
Pus%~ Xl] [Yol = hih x11 [YOI) 
P,,O[%--~ XJYO] =~,,cl[~o~..vxJYol + PI-2,0[% 

P&01 [h YII = hbol [Ych Yll) 
POJ[%][YO~...~ Yt] =44I,,[-%l[Yo~.~~~ Y/I + PO,l-2[xol 

. . . ) XI-21 [YOI) 

[ Yo,..., Y,-,I? 
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andfork andl>,k+2, 

Pk+l,k [x0,..., xk+l] [YOn Yk] 

= 
$’ k+l,k [XO,...,Xk+l][YO,...,yk] +dk(xk-,; Xck-*)> yck’)> 

Pl,k[XO>...> x,][YOm yk] 

Pk,k+l [x0>..., xk] [YOm yk+l] 

= tik,k+l [Xg,...,Xk][yO,...,yk+l] +ek(yk-l; X(k)p yck-*)), 

Pk,l[XO>eo.> xk][YOv, Y,] 

=~k,,[XO,...,Xk][yO,...,y,] +Pk,l-2[X0,...,Xk][Y0,...,yl-2]. 

(b) For I > 0 the bivariate reciprocal differences pl,O [ x0, . . . , x,][ y,] and pO,J xO][ y,, , . . . , y,] are 
independent of the order of the points x0,. , . , xl andy,, . . . , y[ while for k 2 1 and I > k the bivariate 
reciprocal differences pI,k[xO,. . . , x,][y,,, . . . , yk] and pk ,[xo, . . . , xk][yo, . . . , yI] are independent of 
the order of points xk_ 1, . . . , xl and yk_ 1, . . . , y, respectively. 

The proof is not given since it is based in a straightforward way on the definition of the 

Pl,k[XO,...> x,l[YO>...> yk] and the properties of univariate reciprocal differences. 
Let us now again turn to the problem of computing the bivariate inverse derivatives c#I,,~( U, v) 

in (8). We still assume that the function f(x, y) is formally given by its bivariate Taylor series 
expansion. We can write, for k >, 1 and 12 k 

@,,kh v> = lim 
X,-Uy,-” 

~l,k[XO,...,XI][YO,...,yk] 

i=o ,..., Ij=O ,_._, k 

= lim lim @l-k+1 
x, ---* u 

4(.cX’“-*‘.Y’k’) [ xk_l,. . . ) x,]. 

X”,...,.x_2~U 
i=k-1 ,...,I YO,...,Yk-*U 

By induction we can show the following lemma. This result will enable us to write down the 
bivariate inverse derivative as a univariate inverse derivative, but computed for a limit function. 

Lemma. 

dk(X; U, V) = lim dk( x; xCk-*), yCk’) 
xg,...,xk-z+u 

Yo,...,Yk+~ 

= lim 
x~~,~,~~~5-‘:‘.“k-~,k~~0,...,x,l,. x][yO,...,yk] 
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Proof. For the first step of the induction we have 

zz lim 
x0>..., xk-z+u d, 

Yo?...,Yh+u 

(xk; X(k-2), xk-xk-l 
y'k') - d,(x,_,; x+*), y'k') 

xk-xk-l = 

dkbk; u, +dk(~k-1; u, u) 
=$pU+qXk_,, Xk]. 

Assume now that for k G n < 1 

lim h-kit1 
Xg,...,Xk-2*U 

d,(X.X’k-Z’,Y’k’) [ Xk_l, . . . ) xn] = &$$“)[ Xk_l, . . . ) xn] . 
,"~,...,yh-'~ 

Then 

lim @l-k;_1 
4(x.X’hmZ’,Y’k’) [ xk_l,. . . ) x[] 

xg,...,.x_*+u 
yo,...,y~*u 

= lim XI - XI-1 

““v;‘,..‘.‘~~$;k4&-I” (#$$xP2”P’) [ xk_l,. . . ) x,_2, xI] - &(pm2)‘Y’h’) [ Xkpl 
,...,XI-l] 

=~~~~~“)[xk_l,...,xI]. 0 

The existence of 

lim 
xg,....x&>+u 

+k-l,k[XOv> xk&2, x][YOv> yk] 

.h>...,Yk+u 

is guaranteed by ‘arguments similar to those that guarantee the existence of 

Em &[xOY...,xI] 
Xz’U 

i=O,...,l 

in the univariate case. So we can write for k >, 1 and 13 k: 

and in a completely analogous way 

(164 
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where 

e,(y; u, u> = lim ~~,,/-;~,_~“ek~y~ X(k)T y(k-2)) 

For k = 0, we have from the formulas (12a) 

@,,,(U, u) = +~(x;U,“+4), d,(x; u, 0) =f(x, U>> 

+()J( u, u) = ~;o(Y;Uq u), e,(y; u, u) =f(u, y). 
(16~) 

If the functions dk(x; U, u) and e,(y; u, u) are known, the relations (16) say that the 
computation of the +[,k( u, u) is essentially reduced to a univariate problem. Indeed, if we apply 
the univariate scheme (4) to f(x) = dk(x; U, U) we find for k 2 1 

and for I> k 

It would be nice if we could rewrite this last expression in terms of bivariate reciprocal 
differences. By a reasoning completely analogous to the one used to derive Lemma 1, we have 

= lim lim PI-k 
d,(s~x’~~v’q xk_l,. . .) x[_l]. 

x,+x xo,.._,x~&*~u 
r=k-l,...,f-1 Yo,....Yk*~ 

Hence, by definition (14) of bivariate reciprocal differences 

P:$‘“‘“‘(x> = Xgr.._rXk~Z-‘U PI-l,k[XCI,..*, xI-l][YOm yk] lim 

y,,...,y,-tu 
X*_ ,,..., X,&, ‘X 

= PI-l,k u ,..., u, x ,..., [ x bl. -- 1 
k-l l-k+1 

In this way, for k > 1 and 12 k + 1, 

-1 

and more generally we can write 

-1 

+~L_- - u, . . . ) u ) x, . . . ) x][y] =(l-k+l) &-&,-..,~> x,...,xl[~lj . 07) 

k-l I-k+1 



A. Cuyt, B. Verdonk / Multivariate interpolating continued fractions 157 

For k 2 1 and 12 k, we introduce the notations 

$,/J.? U][Yl =$,,I u ,..., u, x >..., X][Y Y..., Y]: 
--- 

k-l I-k+2 k+l 

PtJX; Ul[Y] =b+ >...> u, x ,..., X][Y >.‘.> Y], 
I__ 

k-l I-k+2 k+l 

$&][Y; 4 =~kl[_n,._.,x][~,_I.,.:._Y_], 

k+l k-l l-k+2 

Pk,[Xl [v; 4 = P,,[x,...,] [U> E] > 

k+l k-l I-k+2 

and we remark that $Q[x; u][ y], P[,~[ x; u][y] are bivariate functions of the variables x and y 
depending on the parameter U, where u occurs as many times as indicated by the length of the 
parameter x(~-~) in the function dk(x; xcke2), y”‘)). A similar remark holds for the functions 

k&Ib~ 4 and ~d4b; 4. 
If we evaluate the bivariate functions $,k[~; u][y] and +kl[~][y; u] at (u, u) we get the 

bivariate inverse derivatives we are looking for to construct the Thiele BCF expansion. Note that 
this evaluation is performed by taking limits using de l’H6pital’s rule. By Theorem 2 we can 

compute P,-i,Jx; u][y] in (17) as 

Pk,kL? 4 [yl = +k,kb; 4 [Yl? 

Pk+l,kb; 4 [Yl = h+1,h; 4 [Yl +4(X; u, YL 

Pi,& ~[YI =+&; dyl +P,-2,,bi u][Y], l’k+I- 

Grouping all these formulas yields the complete computation scheme for the bivariate inverse 
derivatives: 

0 th prong: 

i 

6%1,0(x, Y > 1 
-1 

+r,& 4 = 1 i3X I(w)=(vJ)’ 
P&, Y> =Gr,ob> Y> + f-%2.& Yh 
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I> 2: 

+o,,(% 4 = 1 
( 

~Po,r-Ib~ Y> 
aY i 

> 
I(xdJ)=(u,o) 

Po,r(X, Y > = hl,,,b~ Y 1 + Po,r-2b~ Yh 
kth prong: 

d,(x; u, Y) = 
1 

Gk-&,.. .3 u, xl [y,..., Yl ’ 

1 

ek(y; x7 U, = &+r[X )...) x][u )...) U, y] ’ 

with the usual recursion for inverse differences where it must be clear from above how to deal 
with inverse differences on the (k - l)th prong that have a number of coinciding interpolation 
points 

~t,~[x; u][Y] = U-k+ 1) &P~-I,&; u][Y]) ( 
-1 

3 

+,,/A 4 = h,/Jx; 4 [Yl I(x~v)=(~>~)~ 

Pk+l,k[X; 4[yl =h+&; 4[Yl +4(x; u, YL 

&,kLG ul[yl =G&; UHYI + PI-&; 4[Yl* 

h&l[Y; 4 = (+dYJ x3 4-l =Pk,kM[Yi 49 

hA% 4 = ~k,kbl [vi 4 I(x,v)=(u,u); 

l>,k+l: 

+,,,[x][Y; ~1 =(l-k+l)(~p,,,-,[xl[Y; uI)-‘> 

~k,l(~~ 4 = h,l[Xl [Yi 4 I(x~_!J)=(u,u)~ 

P~,~+~[xI[Y; 4 =+k,k+Jxl[~; 4 +edyi x, 4 

Pk,hl[Y; 4 =hJxl[y; ul + Pk.l-2bHy; 4. 

With this computation scheme for the coefficients +k [(u, u) it is possible to construct the BCF 
expansion (8) for f(x, y) as the limiting value of the’interpolating BCF (6). However, it should 
be obvious that there is no guarantee that the constructed BCF expansion will actually converge 
to the function f(x, y). For convergence results we refer the reader to [7]. 
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We shall illustrate the technique introduced here by applying it to the function f(x, y) = e”+J’. 
On the 0th prong we find with (u, u) = (0, 0): 

d,(x; 0, y) = eXiy, 

+&x9 y) = ex+y = P~,~(x, YL &I,o(O, 0) = 1, 

+Jx, Y) = e-(x+y)=P1,O(x, Y). +JO, 0) = 1, 

+,,,(x, Y) = -2 ex+y, +*$I (0, 0) = - 2, 

kJx, Y) = -eX+? 

P~,~(x, y) = -3 e-(x+y), &JO, 0) = -3. 

By the symmetric nature of the function f(x, y) we need only to compute the bivariate inverse 
derivatives $l,k( u, u) for I z k. So we can immediately go on to the first prong: 

1 
ax; 0, Y) = GO,l[x][y, y] = e XfY ) 

&,Jx; OHYI =e-(x+y)=~I,Jx; Ol[yl, ~1,1(0,0) = 1, 
h,Jx; OI[YI = -2 ex+y, &,I@, 0) = -2, 
P~,~[x; 01 [VI = -ex+y, 
cp,,,[x; O][y] = -3 e-(X+y), +3,1(0,0) = -3, 

p3,,[x; O][y] = -2 e-(x+y), 

GJx; OI[YI = 2ex+y, ~4,1(0,0) = 2. 

As mentioned above the values $,,,[x; u][y] do not actually depend on the parameter u since in 
d,(x; x(-l), y(l)) the subsequence x(-l) . IS empty. On the 2nd prong we have 

d,(x; 0, Y) = 1/+1,2]0, Xl[Y> Y, Yl> 
where by Theorem 1 

&JO, Xl[Y> Y, Yl =~,l(y;o~“‘(Y> 
with 

e,(y; 0, x) = (&,o[% -4 [YI)-~. 
Since (er(y; 0, x))-’ = (e”+Y - eY)/x we can apply the univariate scheme to compute 
&,JO, xlb, Y, ul and find 

d2(x; 0, y) = - +x/(eX+y - eY), 

+2,2b; NY1 = -2ex+y+fy:e;~x+y =P2,*k WYL +2,2(0r 0) = 4, 

(e 
_eY-x ex+Y)2 

+3,2Lx; Ol[Yl = - ex+~(ex+y_eY;~~ex+.~_2ey_x ex+Y_x ey)' 

+3,2(O, O) = % 
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We note that automatic differentiation can be used to compute and evaluate, by de l’H6pital’s 
rule, the functions $,,k[~; O][y] in order to increase the usefulness of this scheme and to avoid 
laborious and possibly erroneous work [9,11]. 

With the coefficients +k,,(O, 0) obtained in this way we again find the BCF expansion for eX+Y 
which was given at the end of Section 2. 
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