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Abstract - -  Zusammenfassnng 

Multivariate Rational Interpolation. Many papers have already been published on the subject of 
multivariate polynomial interpolation and also on the subject of multivariate Pad6 approximation. But 
the problem of multivariate rational interpolation has only very recently been considered; we refer 
among others to [8] and [3 7 . 

The computation of a univariate rational interpolant can be done in various equivalent ways: one can 
calculate the explicit solution of the system ofinterpolatory conditions, or start a recursive algorithm, or 
calculate the convergent of a continued fraction. 

In this paper we will generalize each of those methods from the univariate to the multivariate case. 
Although the generalization is simple, the equivalence of the computational methods is completely lost 
in the multivariate case. This was to be expected since various authors have already remarked [2, 71 that 
there is no link between multivariate Pad6 approximants calculated by matching the Taylor series and 
those obtained as convergents of a continued fraction. 

A M S  Subject Classifications: 41 A05, 41A20, 41 A63. 

Key words: Multivariate functions, rational interpolation, branched continued fractions, multivariate 
Pad6 approximants, recursive calculation of interpolants, multivariate inverse differences. 

Multivariate rationale Interpolation. Das multivariate polynomiale Interpolationsproblem sowie die 
multivariate Pad6-Approximation sind schon einige Jahre alt, aber das multivariate rationale 
Interpolationsproblem ist noch verh~iltnismSBig jung [3, 8]. 

Fiir univariate Funktionen gibt es verschiedene ~iquivalente Algorithmeu zur Berechnung vom 
rationalen Interpolant: die L6sung eines Gleichungssystems, die rekursive Berechnung oder die 
Berechnung eines Kettenbruchs. 

Diese Algorithmen werdeu hier verallgemeinert auf multivariate Funktionen. Wir bemerken, dab sie nun 
nicht mehr equivalent sind. Diese Beobachtung ist auch schon yon anderen Mathematikern gemacht 
worden ffir das multivariate Pad6-Approximationsproblem I-2, 7], das man auch auf verschiedene 
Weisen 16sen kann. 

1. Algorithms for Univariate Rational Interpolation 

L e t  the  u n i v a r i a t e  func t ion  f ( x )  be g iven  in the  n o n - c o i n c i d e n t  i n t e r p o l a t i o n  po in t s  

{Xo, x l ,  x2 , . . . } .  W e  cons ide r  the  fo l lowing  p r o b l e m s :  

ai  x i 

ca lcu la te  P' j ' " (x )  = i : o  (1) 
Q7 ,o (x) n 

bl x i 
i = 0  

such that ( f .  Q~'" - P}"") (xk) = 0 for k = j  . . . . .  j + 2 n 
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and n+l  

r m + l , n z  ~ 2 ai Xi 
calculate r j  txl _ i=o (2) 

Qn+l ,n  (x) n 

J bi x ~ 
i=0 

such that ( f .  Qy+l,~-ey+l,~)(xk)=0 for k = j , . . . , j + 2 n + l .  

We shall say that the rational function "interpolates" the given function and by this 
we shall mean, also in the sequel of the text, that numerator and denominator of the 
rational function satisfy some linear conditions like (1) or (2). 

This does not imply that the irreducible form of the rational function actually 
interpolates the given function at all the data, because, by constructing the 
irreducible form, a polynomial and hence some interpolation conditions may be 
cancelled in numerator and denominator of the rational interpolant. 

The next theorem can be proved for the solutions of the problems (1) and (2). We 
denote f (xk)  by fk. 

Theorem 1.1: The statements (a), (b), (c) and (d) are equivalent: 

~n+ l,n (a) P]'__~ . j 
Qy, n (x) and ~,-Ti~,~ (x) respectively satisfy (1) and (2) 

r_,3 

(b) pn, n 

?~ (x)  = 

f j  x -- xj 

_ ; j+2n X - - X j + 2 n  

1 x - -  xj 

1 X--Xj+2n 

(x  - x j) . . .  (x. - x j) ~ fj. ( x  - x j) ~ 

and 

pn.+l,n 
J 

o ~. + ~,.  (x)  = 
r....j 

f j  X -- Xj 

__ f j + 2 n + l  X - - X j + 2 n + I  

(x  - x j ) . . .  (x. - x j) ~ fj. ( x  - x j) ~ (x. - x j) ~ § 

1 x - xj 

1 X--Xj+2n+I 

i j ( x -  x j ) . . .  ( x -  x j) ~ + 
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(c) P T ' " ( x ) = ( x -  xj) p~ '"- ~ P7"+"11 ( x ) - ( x -  xj+ z,) pT'+'; ~ p~,,-1 (x) 

n n X X X n ' n - l t s n ' n - l g X ]  iX ~ n ' n - l o n ' n - 1  Q/ ( )=(  -- j)pj ~j+l ~ ,--~ --Xj+2njPj+ 1 ~j (X) 

and 

P~ + ~'" (x) = (x - x j) q~,n P~- I (x) - (x - x j  + 2n + 1) qj~l Vj 'n  (X) 

n+l,~ n,n ~,n n,n n, ll f2~ (x )=(x-x~)q~  Qj+~(x)-(x-xi+2.+Oq~+~Q~ j (x) 

where 

PT'"=py'"x"+ ... 

Q~, " = q~, " x" + ... 

and 

p~+~,,=p~+~,.x.+l + . . .  

Qn+l,n n+l ,nxn_l  - j = qj . . . .  

n,n pn.+l,n 

( d) P ~  (x) and ~ (x) are respectively the (2 n)-th and (2 n + 1)-th convergents of 
QT'" QJ ' 
the continued fraction 

X - - X j +  k j 
. 2 ~ . :  : 

X - -  Xj 

q) [Xj ,  Xj+ I] AT- X - - X  j+ 1 

where 

~o Ix j] =f(x j )  

~0 [Xj ,  . . . ,  Xj  +k + 1] "~- 

q) [Xj ,  Xj+ I , X j +  2]'q- X - -  Xj+ 2 

Xj+k+ 1 -- Xj+ k 

q? [Xj  . . . . .  X j + k - 1 ,  Xj+k + 1]-- q? IX j , . . . ,  X j+ k_ 1, Xj+k] 

A proof of this theorem can be constructed from [9], [12] and [5], of course under 
the assumption that none of the denominator determinants vanish. We also remark 
the important fact that the recursive algorithm described in [6] is merely a 
reformulation of (c) in order to obtain a generalization of the Aitken-Neville 
algorithm for polynomial interpolation. We shall now generalize the formulas (b), (c) 
and (d) for multivariate functions in the sections 2, 3 and 4 respectively�9 These 
generalizations shall be written down for the case of two variables, because the 
situation with more than two variables is only notationally more difficult. 
Numerical results can be found in section 5. 
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2. Multivariate Determinantal  Formulas 

Inspired by Wynn [-12] who uses the determinantal formulas (b) of theorem 1.1 and 
by Thacher and Milne [10] who generalized a univariate polynomial interpolation 
scheme to the multivariate case, it is easy to write down the following rational 
interpolants for a function f ( x , y )  given in the non-coincident points {(Xo, Y0), 
(xl, Yl), (x2, Y2)..-}- Let us denote f(Xk, Yk) by fk, X--Xk by c~ and y - -yk  by ilk. 

Theorem 2.1 : 
p~,. 
Q]'" (x, y) = 

~j/~j ~ f j~  fj~j& f i g  ... ~y... ~ f~Y...fj~g 

= +c(n,n) O~j+c(n,n) flj+c(n,n) 

and 

�9 . , 

~j.../~; fj~; ...fjp; 

fa eJ flJ 

p•+l,n J Q.+I,. (x,y)= 
J 

n n n n n + l  n +  

fj+c(n+ l,n) O~j+c(n+ l,n) flj+c(n+ l,n) 
.+i py+l 1 ~j /~j fj~j fjt~... ~j ..- 

1 (Xj+c(n+1,n) flj+c(n+l,n) 

are bivariate rational functions respectively of  the form 

i / / i  "' / / i  a i j  X i blj x iyj and ~ aij x i b u x i yJ 
i + j = O  l i+ j=O i + j = O  / i + j = O  

satisfying respectively 

(f" Q]'" - P]'") (xk, Yk) = 0 for k = j  . . . . .  j + c (n, n) 
and 

( f .  t~n+l, ,  p . + l , . ~ (  ~ -- * ~ j tXk, Yk) = 0 for k = j  . . . . .  j + c (n + 1, n) 

where c(n ,n)=n2 + 3n and c (n+ l ,n )=nZ + 4 n +  2. 

Proof: We will prove the theorem for 
/:],, 

QT'" (x, y) 
because the reasoning for 
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p~+l,n 
Q.+ ,,. (x, y) 

J 
is analogous. 

Consider a rational function of the form 

i+j=O 

bij x i / 
i+j=O 

It  has n 2 + 3 n + 2 unknown coefficients a~ and b u. So we need n 2 + 3 n + 1 conditions 
because one parameter  can always be given by a normalizat ion of numera tor  and 
denominator .  

So consider the linear system of equations 

( f .  Qy'" - P~'") (Xk, Yk) = 0 for k = j  . . . . .  j + c (n, n) with c (n, n) = n 2 + 3 n. 

More.  explicitly I 

aoo --fk boo + alo Xk ~- aol Yk --fk blo Xk --fk bol Yk +""  + a,o x~ +. . .  + 
n n + %,  Yk --fk b,o x k - . . .  --fk bo, Y~ = 0 

for k = j ,  . . . , j  + c (n, n). 

A solution of this homogeneous  system of equations is given by:  

n , n  Q~ (x,y)= 

= o  ~ o o x y o o o x ~ x y  Y~ iii 
~ ~x~ ~.~jyj ~y~ 1 f j  xj yj f~x~ f~yj x~ xjyj yj 

1 fj+c(n,,,) xj+c(,,,n) Yj+c(,,,,,) 

and 

P~'" (x, y) = 

= 1 0 x y 0 0 X2 2 x y  yZ Z 0 2 0 0 . . .  

1 f j  xj y~ f jx j  f jy j  xs xjys ys f~xj f jxsyj  fjy2 ... 

1 fj+c(n,n) Xj+c(n,n) Yj+c(n,n) 

By making some suitable combinat ions  of the rows and columns in the determinants 
above 

p,],. 
Q?" (x, y) 

can be written in the form given in theorem 2.1. �9 
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Remark the fact that, as in the univariate case, the degree of the denominator is not 
changed by going from py,. p.+ l. .  

- -  J X Q7 'n (x, y) to ~ - ~ j  ( , y) 

and that the degree of the numerator is not altered by passing from 

J ~-q-~j (x, y) to ~ (x, y). 

When dealing with univariate rational interpolation, Wynn [12] suggested an 
algorithm for the recursive calculation of these determinants. It is based on the fact 
that only one row and column are added for the calculation of the next rational 
interpolant from the previous one. The use of this algorithm is doubtful here because 
in that way the number of terms in the recursion to calculate 

. ,  n p n ,  n - 1 

J x QT'" P- j (x, y) from Q ~  ( , y) 

would be proportional to 2" + 1. So we suggest the recursive Scheme described in 
section 3 which is a direct generalization of theorem 1.1 (c) but does however not 
calculate the determinants given in theorem 2.1. 

3. Aitken-Neville-like Algorithm for Multivariate Rational Interpolants 

The univariate algorithm described in theorem 1.1 (c) can be rewritten as follows: 

[ Py'" (x) (x - x j) qy'" 

P~ (x) Fy'+"a (x) ( x - x i+2 .+ l )q j+ l  
(4 a) .+l,. [ Qj (x) QT"" (x) (x - x~) q7 ,n 

QTfl (x) (x - xj+2. + 1) q~;"l 
and 

p~, .- t  (x) (x - x j) p~,"-i [ 

P?"(x) ej,+"? ~ (~) (x-~j+2.)p?+"; -1 ] 

Q~'" (x) Q~,.- 1 (x) (x - x j) p~."- 1 I 
Q~,+.? 1 (x) "'"- I (X-- Xj+ 2n) Pj+ I 

(4 b) 

Consider for instance formula (4 a) and remark the following three important facts: 

1. If we introduce the interpolation sets 

S = { x j  . . . .  , x j + 2 n _ _ l }  ~-  S 1 k.) S 2 

$1 = {xj, ..., x j+  2,} 

S 2 = { X j +  1 . . . . .  X j + Z n + l }  

then 
n + l , n  n + l  n ( f Q j  - P j  ' ) ( x  k ) = 0 f o r x k i n S  

( f  Q]'" - P}"") (xk) = 0 for xk in $1 

( f  QY'+"I - PYfl)  (Xk) = 0 for xk in Se. 
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2. The set $1 contains one and only one interpolationpoint which does not belong to 
$2, namely x j, and the same applies to $2. 

3. The coefficients qy'" and q}';"l in (4 a) are chosen such that the degree of Q~ " + 1 ' ( )  " x 
remains at most n. 

Analogous conclusions can be written down for (4 b). 

A first step to generalize (4 a) to the bivariate case, is to consider n = 0. 

p~,O 

Ql0 (x,y)- 

It is easy to check that 

f l  x - x 1  Y - Y 1  

f2 X--X2 Y--Y2 

f3 X--X3 Y--Ya 

1 x - x 1  Y--Y1 

1 x - - x  2 Y - Y 2  

1 x - - x  3 Y--Y3 

is indeed a rational interpolant in the points (Xl, YI), (X2, Y2), (X3, Y3), of degree 1 in 
the numerator and degree 0 in the denominator. 

The coefficients of x - x ~ ,  y - y j  ( i=1,2 ,3)  in the determinants are also the 
coefficients of the highest degree term in QO,O (x, y)= 1 (j = 1, 2, 3) as is the case when 
we are dealing with a univariate function. 

Now consider n = 1 in (4 b). Suppose we are given the interpolationset 

S =  {(x1, Yl), (x2, Y2), (x3, Y3), (x4, Y4), (x5, Y5), (x6, Y6)}, 

2 

"7 s 3 

Then we can write S = $1 w $2 w S a with 

$1 = {(xD Yl), (x4, Y4), (x5, Y5)} 
S~ = {(x> y2), (x~, y4), (x6, y6)} 

$3 = {(x3,Y3), (x5, Y5), (x6, Y6)} 

where $1 contains one and only one point which does not belong to Sz or $3, and so 
on. 

Remark that the point (x4, Y4) which belongs to Sa and S 2 but not to Sa, lies on the 
straight line through (x~, Yl) and (x2, Y2). Similar results hold for (x5, Y5) and (X6, Y6)" 
Since the points in S~ are linearly independent and those in $2 and $3 too, we can 
calculate 

Vl,Oi X ~ 
sj t ,yl for j = 1 , 2 , 3  

Qlsj0 (x, y) 
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where the subscript Sj now indicates that 
1 0 1 0 ( fQsj  - P s i  )(xk, Yk) = 0  for (xk, Yk) in Sj. 

It is easy to see that a rational interpolant for the points in S can be given by 

(x, y) = 

p~;o (x,y) Pa ( x - x 1 )  Pl (Y-Y1) ] 

p1, o (x --  X2) P2 (Y --  Y2) Sz (x, y) P2 
p~;O (x, y) P3 (x - x3) P3 (Y - Ya) 

Q~i~ p l ( x - x l )  p i ( y - y O [  

Qsl; ~ (x, y) P2 (x - x21 P2 (y - Y2) 

Q~;O (x, y) P3 (x - x3) P3 (Y-  Y3) 

where for instance pj is the coefficient o fx  in Psi' ~ (x, y) so that a minimal number  of 
extra terms is added to p~jO (x, y) to obtain P(s 2~ (x, y), j = 1,2, 3. The superscript (2) 
now indicates that, in our recursion, we have twice stepped down to rational 
functions of lower degree. In the same way po, O/QO, o and P~' O/Q~, o can respectively 
be denoted by P(s~ ~ and p( l l /no)  --S /~.dS " 

For  arbitrary n the reeursion is formulated and proved in the next theorem. 

T h e o r e m  3 . 1 :  Let the interpolation set S= {(Xl,  Yl), (x2,  Y2), . . . ,  (Xc,k,, Yc(~)} of C (k) 
distinct points be given with C (k) > 2 (k - 1) + 3. Suppose the set S of  C (k) interpolation 
points can be subdivided into 3 subsets $1, $2, $3 satisfying the following additional 
conditions: 

(a) S1 vo $2 w Sa = S, 

(b) S~ (j = 1,2, 3) contains one and only one point which does not belong to any other Si 
(js~ i); by means of  renumbering we can call this point (xj, yj), 

(c) any point (xl, Yl) does either belong to S t (l = 1,2, 3) or is a linear combination 

= o:,(xJ~ with ~ c~j=l. 
Yi j = l  a •yjJ j = l  

j~t jq:l 

Then for k = 2 n: 

p~2.~ (~, y) = 

and 

p(2n-1)(x,y) pl(X--X1) Pl(Y--Yl) I 

pts2, - 1) (x, y) P2 (x - x2) P2 (Y - Yz) 

p(s2n-1)(x,Y) P3 ( x - x 3 )  P3(Y-Y3) 

(5 a) 

Q•"-'(x,y) pl(x-xO pl(y-yO S1 

Q(s z") (x, y) = O(s~" - 1)(x, y) p2 (x - x2) p2 (y - yz) (5 b) 

Q(2n-1)(x,Y) P3(X--X3) P3(Y-Y3)  $3 

are bivariate polynomials respectively of  total degree 2 n and 2 n - 1  satisfying 
( f  " Q(s 2") - P(s a")) (xl, yt) = 0 for l = 1 . . . . .  C (2 n), where p~ (j = 1,2, 3) is a coefficient in 
Pts 2"-~) (x, y) chosen to minimize the number of terms in P(sZ")(x, y), and for k = 2 n  + 1 
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and 

p~:.+l> (x, y) = 

Q~2. + 1)(x,  y) = 

p(s2")(x,Y) q l ( x - x l )  q t ( Y - Y O  

P(s 2") (x, y) q2 (x - x2) q2 (Y - Y2) 

P(s~ ") (x, y) q3 (x - x3) q3 (Y - Y3) I 

Q(s~'~ ql (x - x l )  ql (y-y1)  
Q(s 2n) (x, y) q2 (x - x2) q2 (y - y2) 

Q(s~ ") (x, y) q3 (x - x3) q3 (y - y3) 

are bivariate polynomials respectively of total degree 2 n+ 1 and 2 n satisfying 
(f" .~Sgq(Zn+l)-- P(Zn+l)~a S j (xZ,yt)=O for l = l , . . . , C  ( 2 n + l )  where qi ( j=1 ,2 ,3)  is a 
coefficient in Q~s]') (x,y) chosen to minimize the number of terms in Qts2"+l) (x,y). 

Proof: We will only perform the proof for k = 2 n because the case k = 2 n + 1 is 
completely analogous. It is not  difficult to see that  in (xl, Yl), (x2, Y2) and (x3, Y3) the 
interpolation condition is satisfied. In (x~, Yz) with 3 < l___ C (2 n) the interpolation is 
proved as follows. The point (xt, Yz) belongs to at least 2 of the Sj (j = 1,2, 3) and we 
may renumber everything so that  (x~, Yz) belongs to $1 and $2. Suppose that  (x~, y~) 
does not belong to $3 (otherwise the proof is complete). 

Since 

( f .  Q~sZ,- 1)) (xz, yl) = p(2,-  1) 13~2,- ~s~ (xl, yz) and (f" ~s~ 1)) (xz, Yl) = P~s 2"- 1)(xz, Yz) 

we may write 

( f  Q(sZn-1)) (x t ,  Yt) Pl  (x l  - x l )  Pl ( Y l - Y a ) ]  

g')(2n- 1)] IX "' ~ (YI - -  Y2) P~s: ")(xz, y3 = ( f  ~s2 ,~ z ,y .  Pz (x~-  x2) P2 

p<s2, - 17 (xl, Yt) P3 (Xt -- X3) P3 (Yt - -  Y3) 

(tq, a"-t)(x , , , ,  (xt-x2)(Yt-Ye) Q~s2,,-1)(xl,yt)plp3] x t - x l  y l - y l  ) 
=f(xl, Yz) \us, t t,y~Je2P3 (xz_x3) (Yz-Y3) x l -x3  Yl-Y3 

+p(sZ,,_l)(xl, yl)plp2 Xl--Xl Yl--Yl . 
Xl--X2 Yt--Y2 

Since (x~, Yt) does not belong to $3, it lies on the straight line through (xl, Yl) and 
(x2, Y2) and so 

I x z - x l  y ' - Y l l = o .  
xt - x2 Yt - Y2 

Consequently 
P(s 2") (xz, y~) = f (xl, Yz) " Q(s 2") (xl, yl). 

To prove the degrees of P~s 2 ") (x, y), Q~s 2 ") (x, y), P~s 2" +1) (x, y) and Q(s 2" + 1) (x, y), we use 
induction. 

We know that  the degree of/~s ~) (x, y) is 1 and that  of t3m r z s  t , Y) is 0. It is easy to see 
from (5 a) and (5 b) if we expand the determinants by the first column, that  in each 
recursive step the degree of the numerator  and the denominator  is raised by one. 

4 Computing 34/l 
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powers of y 

I 

o T T 
p~1) (x,y) 

The lower bound for C(2n) and C(2n+1)  in theorem3.1 is a consequence of 
condition (b) in the formulation of the theorem: for k > 1 the set S\Sj (1 = t, 2, 3) 
contains at least two points not belonging to Sj and for k = 1 three interpolation 
points are needed to start the recursion. Remark also that the algorithm constructs a 
rather high degree rational function in order to fit rather few points. 

Let us now discuss the choice of the parameters pj and qi" We know that C (1) = 3 and 
P(~) Cx "~ and Q(s x) that in this case s t ,y~ (x,y) are bivariate polynomials of total degree 

respectively 1 and 0, which we shall indicate by means of the following figures: 

powers of y I 

powers of x OI ~ powers of x 
Q~1)(x,y) 

For S containing C (2) interpolationpoints and in order to calculate P(s 2) (x, y) and 
Q(s 2) (x, y) with a minimal number of extra terms in P~s 2) (x, y) in comparison with 
P~sl) (x, y), we have to choose Pi equal to the coefficient of x in P()](x,y). Then 
P(s 2) (x, y) and Q(s z) (x, y) have the following form: 

11 

I 

0 1 
P~2)(x,y) Q~2) (x,y) 

To calculate p~3)(x, y) and Q(s 3) (x, y) for a given s with C (3) interpolationpoints so 
that we have a minimal number of terms in Q~s 3) (x, y), we now have to choose qj equal 

(2) to the coefficient ofx in Qs (x, y). So P(s 3) (x, y) and Q(s 3) (x, y) have the following form: 

3, 

1' 

oT 

�9 2 

�9 �9 I ~ �9 

1 2 0 1 

p~3) (x,y) Q~3) (x,y) 
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We repeat  the same procedure  for the calculation of the rat ional  functions 
interpolat ing in S containing C(k) in terpola t ionpoints  (k > 3). The  P~s 2") (x, y)/ 
Q~s 2n) (x, y) and p(2.+ t)Cx s ~ , y)/Q(sZ, +1)(x, y) are then of the following form:  

k = 4: pj = coefficient of x 2 y in P~s~ ) (x, y) 

�9 3 

�9 �9 2'  �9 

I 2 3 OI I 2 

p 4)(x,y) Q 4>(x,y) 
k = 5 : qj = coefficient of x 2 y in Q~s 4) (x, y) 

5 

4 

3 

2 

1 

oT 

�9 4 

�9 �9 3 �9 

�9 �9 �9 2 �9 �9 

�9 �9 �9 1 �9 �9 

1 i 2 3 4 u l  2 

P~5) (x,y) Q~5) (x,y) 

3 

k = 6: pj = coefficient of x 3 y2 in P(s~ ) (x, y) 

and so on. 

I t  is obvious,  that,  instead of el iminating high powers  of x, we could also have 
el iminated high powers  of y; we could as well have used a mixed strategy. Wha t ' s  
more,  the obta ined  rat ional  in terpolant  does also depend on the part i t ioning of S 
into $1, $2, $3. 

4* 
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For numerical results illustrating this method we refer to section 5. However, we 
want to remark here already that if the set S contains many points, then for the 
computation of P~s z ~ (x, y)/Q~s 2 ~) (x, y) or P(s 2" + ~) (x, y)/Q~s 2~ +1 ) (x, y) a lot of interpolat- 
ing rational functions of lower degree are needed, which may cause some 
programming difficulties. Also one should preferably not choose the points (xl, Yl), 
(x2, Y2) and (x3, Y3) - in the formulation of theorem 3.1 - on one straight line in 
order to avoid degeneracy of the determinants for the calculation of the next 
interpolating rational function�9 

4. M u l t i v a r i a t e  B r a n c h e d  C o n t i n u e d  F r a c t i o n s  

We shall only consider the construction of continued fractions symmetric in the 
variables x and y because there is no reasonable argument for not doing so. The 
algorithm which we shall develop can, just as in the previous section, easily be used 
both for the calculation of the coefficients of the branched continued fraction and the 
computation of the function value of some convergent. 

Given two sequences {Xo, xl, x2, ...} and {Yo, Yl, Y2, -..} of distinct real points, 
the branched continued fraction will interpolate f (x ,y )  at the points in 
{Xo, Xl ,X2,  . . .} x {Yo, Yl ,Y2,  " ' } .  

Theorem 4.1 : 
,- ~ +  r ,  X_--Xk-1 Y - - Y k - 1  [ 

f ( x , y )=cP[Xo]LYo_I  k~l  Iq~[xo , . . . ,Xk][Yo]  = }~O[Xo][Yo, '" ,Yk]  

( x - x ~ _ l ) ( y - y j _  0 j 

o ~ ~-~ '~-~  I+ E Y-Y~-~ I 
.... ~j][yo .... .  yJJ+~=~+,Z i~O[Xo .....  ~ ] [ y o  .... .  yj] ~:j+~lq,[xo .... .  xj][yo .... .  y~] 

where the inverse dif ferences are 9iven by  

q~ [Xo] [Yo] =f (xo ,  Yo) 

q~ [Xo, ..., xp.] [Yo] - 

~o [Xo] [Yo, . .- ,  yk] = 

X k  - -  X k  - 1 

q~ [Xo . . . .  , Xg-2,  Xk] I-Y0] -- q) IX0 . . . .  , Xk-2, Xk-  1] [Y0] 

Yk -- Yk - 1 

(P IX0] [Y0 . . . .  , Y k - 2 ,  Y k ]  - -  qO IX0] [Y0, "" ", Yk-2,  Y k -  1] 

e [Xo, ..., x j] [Yo,...,Yj] = 

(xj-- x j -  ,)(Y~--yj- O 

~O[Xo, ...,x~ 2,xj] [yo, ...,yj_ ~,y~]-e[Xo, ...,xj_ 2,x~_ ,] [yo, ...,yj ~,yj]-~O[Xo, ...,xj 2,xj] [yo, ...,yj_ 2,y~_d +~O[Xo, ...,xj_ 2,x~_ ,] [yo, ...,yj_ 2,yj_,] 

and fo r  k > j  
q~ [Xo . . . . .  x~] [yo,  . . . ,  yj] = 

X k  - -  X k -  1 

~o [Xo, . . . ,  x k -  2, xk] [Yo, . . . ,  Yj] - ~o [Xo, . . . ,  x k -  2, x k -  1] [yo . . . . .  y~] 

~o [Xo . . . . .  x j ]  [Yo . . . . .  Yk] = 

Y k  - -  Y k -  1 

~0 [Xo .. . . .  xj] [Yo, ..., Yk - 2, Yk] -- ~0 IX0 . . . .  , Xj] [Y0 .. . . .  Yk- 2, Yk-  1 ] 
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Proof: We assume that the reader is familiar with one-dimensional interpolatory 
continued fractions. So we can write 

f ( x , y ) = o E x ]  [Y]=OExo] [ y ] +  
X --  X 0 

e[Xo, X] [y] 

= ~  [Xo] [Yo] q Y - Y o  q X - X o  
~[Xo][yo, y] O[Xo, X][y] 

~=1 Y- -Yk . t  I_+_ X--XO 
= e [Xo] [yo] +~= {~o [Xo] [yo . . . . .  y~] q~ [Xo, x] [y]" 

Let us introduce the function go (x, y) by 

where 

(x - Xo) go (x, y) - 
X--X 0 

e[xo, x] [y] 

go (x, y) = 
~o [Xo, x] D] 

By calculating inverse differences 4o for go we obtain 

go (x, y) = 4o Ix] [y] = 4o Ix] [Yo] -+ Y - Yo _ 
4o [x] [Yo, Y] 

1 Y - Y o  - -~ 

q~Exo, xl]EYo]+k~2 x-xk-t  1 ho(x,y) 

where h o (x, y) = 4o [x] [Yo, Y]. 

So already 

f ( x , y ) = q ) [ x o l [ Y o ] +  ~, Y - Y k - *  + 

~--1 X -- X k_ 1 ]..1_ (X -- XO) (y -- YO) 
+k= I~o [Xo . . . .  , xk] [yo] ho (x, y) 

By computing inverse differences % for h o we get 

h o (x, y) = % [x] [y] = % [xl] [y] -~ x - x 1 
~0 [ X I '  X1 r y ]  

=rio [x,] [yl] 4 Y--Y1 .1. X--X1 
r~o [-xl] [Yl, Y-[ rto [x,, 'x] [y] 

oo X- -X1  

= % [ X l ] [ Y l ] + k =  t%[Xl] [y l , . . . ,yk]  r~o[Xt,X][y] 
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where 

~o [x] [y] = 4o [x] [yo, y] 
(Y - Yo) (x - Xo) 

f (x, y) - f (xo, y ) -  f (x, Yo) + f (xo, Yo) 

= p [ X o ,  X] [Yo, Y] 

and by induction 

~o [x l ]  [Ya,...,Yk]=O[Xo, Xl] [Yo,...,Y~] 

gO[Xl, x ]  [Y]=~[Xo, XI,X] [Yo, Y]" 

So we can write 
co 

h~176176 ~=2 Y -Yk - I  l+ (x-x1)  
~= I,p[xo, X,][yo ... . .  yd  ,p[xo, x , ,x][yo,y]  

=q)[Xo, Xl][yO,yl]+k~= 2 Y--Yk-1 I+(x_x , )o l (x ,y  ) 
= I~ [-Xo, Nil ~'Yo . . . .  , Yk] 

where 
1 

91 (x, y) - 
cp [Xo, xl,  x] [Yo, Y] 

If we introduce inverse differences 41 for 91 we can repeat the whole reasoning which 
provides us with a function h I and inverse differences rq : 

Y-y~  
91 (x, y) = 4~ [x]  [y] = 41 [x] [ y d  + 

41 Ix]  [Yl, Y] 

Y-Y2 
h 1 (x, y) -- 41 [x]  [Yl, Y] = ~I [x2] [Yz] q t- 

x - - x  2 
-} - -  qO [ X o ,  Xl, X2] [Yo, Yl, Y2] + . . . .  

~1 [x~, x] [y] 

In this way we obtain the desired interpolatory continued fraction. �9 

To obtain rational interpolants we are going to consider convergents of the 
branched continued fraction given in theorem 4.1. To indicate which convergent we 
compute  we need a multi-index ~ = (n, iox, ioy .... , i.x, i.y): 

y - y k - ,  1 Pg x X--Xk-1 
~ (  ,y)=~O[Xo][yo]+k=iZ [~o[~,[Zf, L-/jd[yo] ~=~ l~O[~o][yo .... ,y~] 

" (x--xJ-I)(Y-YJ-x) l 

+~ ~o[xo ..... xj][yo ..... yj]+ 52 ]~O{Xo ..... xk][yo ..... y~] ~:~+,l~O[Xo ..... x~][yo ..... y~] 
k = j + l  
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For these rational functions the following interpolation property can be proved. 

Theorem4.2: I f  the multi-index fi is such that ioy>_ily> ...>_i,y and 
iox >-ilx >-... >-inx then ( f  . Qg-  Pg) (xz,, Y~2)= 0 for 01,/2) belongin9 to 

n 

I=  [._J ({(j,k)lj<_k <_ijy} u {(k,j)lj<_k <ijx}). 
j = O  

Proof: It is easy to construct a proof from one-dimensional results if we group the 
interpolation points as follows: 

(Xo, yo), {x~, yo), ..;, (Xio: yo)~ ~Xo, yl), ..., (Xo, yio), 
i o x po in t s  io~ po in t s  

(xl,  yO, ,(x2, yl), ... ,_(X,: Yl)~ I x~, Y2), - ,  (~,  Y . ) , , ,  
~ r  y 

i l . - - 1  po in t s  ix~,--l po in t s  

(x,,y,), (X,+l,Yn),...,(xi.,,y$), (x,,y,+l),/...,(xn, yi.,) 
�9 Y �9 

1.x - n po in t s  i n~ ,  - n po in t s  

and take into account the form of the continued fraction in theorem 4.1. 

To clarify the numbering we make a drawing of the set I in N 2 : 

ioy 

ly 

2y 

2 

1 

o 

- - 0  

J 

I ~" 2 i2x iix:ox 

The subscript zero in Pg and Qg refers to the fact that we are constructing rational 
functions interpolating a set of points starting with (Xo, Yo). The whole construction 
can also be used for the calculation of rational interpolants starting at (x~, y~), which 

p,T 
are then called J (x, y). 
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5 .  N u m e r i c a l  R e s u l t s  

Suppose we have to solve the following numerical problem. 

A bivariate function f ( x ,  y) is only known by its function values in a number of 
distinct points (x~, y j) and we need an approximation for the value of f i n  some other 
points (ui, vi). 

When using interpolation this problem can be attacked in two ways: 

(A) either by calculating the coefficients of the interpolatory function (polynomial, 
rational . . . .  ) and evaluating this function in the points (ui, vj) 

(B) or by calculating the function value of the interpolatory function at (u~, v j) 
without knowledge of all its coefficients. 

We shall compare the following methods of class (A): 

- Newton-interpolation [-3,11]: 

n 

p (x, y) = ~ f [-Xo .. . . .  x,] [-Yo . . . .  , y j] Bij (x, y) 
i+j=O 

with 

fExo] [Yo] =f(xo,  Yo) 

f [xl . . . .  , xi] [Yo] - f  [xo, �9 .., xi-1 ] [Yo] 
f[Xo,-. . ,  xi] [Yo] - 

X i - -  X o 

f [Xo, ..., xi] [Yl,... ,  Y j] - f  [Xo . . . .  , xi] [Yo .. . .  , Y j-  1] 
f [Xo, ..., xi] [Yo, "--, Yj] - ' - -  

Yj -Yo 
i - a  j - 1  

Bij (x, y) = 1-[ I~ (x - Xk) (y -- Yl) 
k=0 1=0 

where Boo (x, y) -- 1. 

- branched continued fractions (on a large number of data) introduced here in 
section 4. 

- Pad6-approximants introduced by Chisholm [1] of the type 

n n 

E E aiJ xiyj 
p(x,y) i=oj=o 

q(x,y) ~ ~ b i j x l /  
i=0 j=0 

where 

( f .  q -  p) (x, y) = Z dij xi / 
(i,j) e N2\E 

for 
E= {(i,j)[O<_i+j<_2n} 

and where d2, + 1-l,l+ dz, 2,, +1 -z = 0 for l = 1 . . . . .  n; here f ( x ,  y) is given by part of its 
Taylor series expansion 



Multivariate Rat ional  Interpolat ion 57 

Ci j X i / 

i + j = 0  

instead of by its function values in a number of points. 

We shall also compare the following methods of class (B): 

- branched continued fractions (on several small datasets) introduced here in 
section 4. 

- rational interpolants constructed as in section 3; the coefficients Pl, P2, P3 and 
ql, q2, q3 can also be calculated recursivety without the knowledge of all the other 
coefficients. 

- Pad6-approximants calculated by means of the e-algorithm [2] : 

For 
e(-k) 1 = O, k = O, 1,... 

k 
~-~ i 

i+ j=O 

where f ( x ,  y) is given by part of its Taylor series expansion 

c~j x i yJ 
i+ j=O 

e(271-1) =0  1=0, 1, ... 

1 l = 0 , 1 , . . .  

l+ 
elk+ 1 ) - - e l  k) k=  -1, - 1 + 1 ,  ... 

we have 

satisfying 

e(o~ p(x,y)  
2n- -  

n2+n 

Z a,jx'/ 
i+j=nZ 

q ( x ,  y )  n2 + n 
bij x i y1 

i+j=n2 

( f .  q -- p) (x. y) = ~, dij x i yJ. 
i+j=n2+2n+l  

The methods of class (A) could be referred to as "global" because they will 
interpolate the function f ( x ,  y) simultaneously at a large number of data spread over 
the whole region; therefore we calculate and store the coefficients of the inter- 
polatory function and evaluate that same function several times, i.e. at each point 
(u,, @. 
The methods of class (B) on the contrary could be referred to as "local", the 
branched continued fractions and the rational interpolants calculated recursively by 
means of determinants will each interpolatef(x, y) at a smaller number of data in the 
neighbourhood of every point (ui, v s) while the e-algorithm does use the same Taylor- 
coefficients at the different points (uz, v j) but has indeed to be restarted when going 
from one point to another. 
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The bivariate Beta function B (x, y) will serve as a concrete example to illustrate all 
these approximation methods. It is defined by 

r (x) r (y) 
B (x, y) - 

r (x + y) 

where F is the Gamma function. Singularities occur for x = - k  and y = - k  
(k---0,1,2 . . . .  ) and zeros for y = - x - k  (k=0 ,1 ,2  . . . .  ). 

By means of the recurrence formulas 

P ( x +  1 ) = x r ( x )  

F ( y + l ) = y F ( y )  

for the Gamma function, we can write 

1 + (x - l)(y - 1)f(x - 1, y -  1) 
B(x,y)= 

x y  

where it is possible to calculate a Taylor series expansion for f ( x  - 1, y - 1) by the 
first method suggested in 1-4]; this Taylor series expansion is necessary to compute 
Chisholm's diagonal Pad6 approximants and also to start the ~-algorithm. The 
other interpolation schemes use function evaluations. 

All the considered types of approximants R (x, y), polynomial as well as rational and 
global as well as local shall be computed for the function f ( x - 1 , y - 1 )  and 
afterwards we shall compare the exact value of B (x, y) with the expression 

1 + ( x -  l ) ( y -  1) R(x,y)  

x y  

In order to use approximately the same amount of data for each method of class (A), 
we are going to consider 

5 5 

- ~ ~ f[Xo, . . . ,x i]  [Yo . . . .  ,yj] Bij(x,y) (36 data) 
i=0 j=O 

- e [XoJ [yo] + k~ ~-~o [Xo,..., ~k] [yo] k=, I~o [~o] [yo ..... yk] 

s ( x - x j - 1 ) ( Y - Y i - 1 )  1 

k=j+, Iq~ [Xo . . . . .  Xk] [Yo .... .  YJ] k=j+, [qg[Xo, .~.,~]~] ~O0 .... .  Yk] 
(36 data). 

- Chisholm's Pad6 approximants with n = 3 (34 data). 

For (ui, vj) equal to ( -0 .75 ,  -0.75),  ( - 0 . 5 0 , - 0 . 5 0 ) ,  ( -0 .25 ,  -0.25),  (0.25,0.25), 
(0.50, 0.50) or (0.75, 0.75) we shall take {Xo, xl . . . .  , xs} = {0.76, 0.48, 0.23, -0 .22 ,  
- 0.48, - 0.73} and {Yo, Yl . . . .  , Y5 } = {0.74, 0.49, 0.22, - 0.26, - 0.51, - 0.76}. 
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�9 �9 �9 

k l : : 

- I  -0.73 -0.48 -0.22 

�9 �9 �9 

�9 �9 �9 

0,74 �9 �9 

, 0 . 4 9  �9 �9 �9 

'0 .22 �9 �9 �9 

I ( I I 

0.23 0.48 0.76 I 

- 0 . 2 6 0  �9 �9 

- 0 . 5 1 0  

-0 .76o 

Fig. 5.1 

The numerical results can be found in Table 5.1. Remark  the fact that,  because of the 
poles of the Beta function the polynomial  approximat ion is inaccurate. The 
branched continued fraction turns out to be a far better  approximat ion than 
Chisholm's Pad6 approximant .  

Newton series 
Branched cont. fr 
Chisholm's P.A. 
B(x,y) 

Table 5.1 

(-0.75,-0.75) (-0.50,-0.50) (-0.25,-0.25) (0.25,0.25) 

9.83 0.006 -6.785 7.423 
9.884 0.0008 -6.7778 7.416301 

7.0 -0.14 -6.787 7.416310 
9.88839829 0. -6.77770467 7.41629871 

(0.50, 0.50) 

3.1406 
3.14159245 
3.14159269 
3.14159265 

(0.75,0.75) 

1.69449 
1.69442617 
1.69442617 

1.694426166 

In class (B) we are going to compare  the following approximations:  

3 Y - -Yk -1  1 3 x-xk-1 I+~= 
-~o [Xo] [yo] + k=,E [~o [Xo, ...,xk] [yo] =i [~o [x~[y~,  .-.,yk] 

2 ( x -x j - l ) ( y - y j -1 )  

"JC3~--1 I 3 3 "= ~o [Xo ..... x j] [yo ..... Y~] + • x -  xk-1 1 ~+ Y- y~-I 
k=j+~ I~~ ..... x~] [yo ..... YJ] +k=j lI~~ ..... xj] [yo ..... y~] 

(15 data  around each of the 6 points (ui, vj) given above). 
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0(7)//1(7) recursively calcula ted via the de te rminan ta l  formulas  where the in- - a S  t.V-,S 

te rpola t ionse t  S is descr ibed  below (15 da t a  a round  each of the 6 points  (ui, vj) given 
above). 

-e]~ ) which needs as input  e(o ~ . . . ,do 12) (91 data).  

Since we are going to choose our da t a  in exact ly the same way for each of the points  
(u~,vj), we shall  now only  descr ibe the s i tuat ion for ( u i , v j ) = ( - 0 . 7 5 , - 0 . 7 5 ) ;  the 
other  datase ts  s imply  result  by  t ransla t ion.  

F o r  the b ranched  cont inued  fract ion we use the sets 

{Xo . . . .  , x3 } = { - 0.8, - 0.76, - 0.73, - 0.7} 
and  

{Y0 . . . .  , Y3 } = { - 0.79, - 0.77, - 0.74, - 0.71 }. 

�9 �9 - -0.71 �9 

, I 
-0.8 -0.7( 

�9 �9 

,-0.74 �9 �9 

I ! 
-0 .75  -0 .73  -0 .7  

-0.77 �9 �9 

F o r  P~sV)/Q~s 7~ we 

�9 �9 -0.79 �9 �9 

Fig. 5.2 

are given S=  {(x~, Y~)I i = ] . . . . .  15} drawn in the fol lowing figure: 

9 

r - ~  I I 
I I 

I J 4 T ~  
I I I I 

I I J ~1, 
1 I I -T 

2 
---I--~-- --"I" "-I 
__I I 1 _  4 

I t I I 

I I I I 
_ j  I 6~ j 

1 I I I 
_._I - - +  - - - ~ 4  

I I I ! 

"0"751 I I I I 

13 ~-- - I - . . . .  L . .A  
I I I I 

I t I J 
I L 2 - - - 2 - -  r 

t t lZ ,_ .L 
t---  T 
I 
r---~ 

-0.  795 
! ! 

- O. 805 

I I I 
- - i - - F - - - i -  41o 

I 14  I I I 31 I 
t - ' i '  - - I - - F -  - - ~ - - 1  
L _1 _ 1 1 ~ _  j_  _ _ l _ . . j  

-0. 755 -0. 725 -0. 695 
! ~ I I' I I 

-0. 765 -0.735 -0. 705 
Fig. 5.3 

-0.705 

-0.715 

-0.735 

-0. 745 

-0.765 

-0.775 

-0.785 

-0.795 
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In order to avoid the vanishing of certain determinants, the data are such that any 
three of the interpolationpoints never lie on a straight line; this simplifies the 
subdivision of S into smaller subsets. The numerical results are given in Table 5.2. 
The z-algorithm and the branched continued fraction both give quite good results. 
What's more, they are also easier to program than the recursive method of section 3. 

Table 5.2 

(-0.75,-0.75) (-0.50,-0.50) 

Branchedcont.fr 9.8884 -0.000003 
Recursive calc. 8.81 0.06 
~-algorithm 9.90 0.0005 
B (x, y) 9.88839829 0. 

(-0.25,-0.25) 

-6.777706 
-6.787 

-6.77767 
-6.77770467 

(0.25, 0.25) 

7.41629874 
7.4184 

7.41629871 
7.41629871 

(0.50, 0.50) 

3.14159266 
3.14152 

3.14159265 
3.14159265 

(0.75, 0.75) 

1.69442617 
1.694420 

1.69442617 
1.694426166 

All the computations were performed in floating point double precision arithmetic 
with an input of 12 significant decimal digits. A last remark concerns the weight one 
should grant to the numerical results. 

Small perturbations in the data do not very much affect the output to be found in 
Table 5.2, this is also true for the results in Table 5.1. So the numerical figures really 
represent the approximation power of the methods. 

But we want to emphasize here that the rational interpolation methods depend very 
much on the numbering of the points. By renumbering the interpolation points one 
can obtain quite different results, more or less accurate. 
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