Computing 34, 41— 61 (1985) Computing

© by Springer-Verlag 1985

Multivariate Rational Interpolation

Annie A. M. Cuyt and Brigitte M. Verdonk, Wilrijk
Received February 13, 1984

Abstract — Zusammenfassung

Multivariate Rational Interpolation. Many papers have already been published on the subject of
multivariate polynomial interpolation and also on the subject of multivariate Padé approximation. But
the problem of multivariate rational interpolation has only very recently been considered; we refer
among others to [8] and [3].

The computation of a univariate rational interpolant can be done in various equivalent ways: one can
calculate the explicit solution of the system of interpolatory conditions, or start a recursive algorithm, or
calculate the convergent of a continued fraction.

In this paper we will generalize each of those methods from the univariate to the multivariate case.
Although the generalization is simple, the equivalence of the computational methods is completely lost
in the multivariate case. This was to be expected since various authors have already remarked [2, 7] that
there is no link between multivariate Padé approximants calculated by matching the Taylor series and
those obtained as convergents of a continued fraction.

AMS Subject Classifications: 41 A05, 41 A20, 41 A63.

Key words: Multivariate functions, rational interpolation, branched continued fractions, multivariate
Padé approximants, recursive calculation of interpolants, multivariate inverse differences.

Multivariate rationale Interpolation. Das multivariate polynomiale Interpolationsproblem sowie die
multivariate Padé-Approximation sind schon einige Jahre alt, aber das multivariate rationale
Interpolationsproblem ist noch verhaltnismaBig jung [3, 87.

Fir univariate Funktionen gibt es verschiedene #dquivalente Algorithmen zur Berechnung vom
rationalen Interpolant: die Losung eines Gleichungssystems, die rekursive Berechnung oder die
Berechnung eines Kettenbruchs.

Diese Algorithmen werden hier verallgemeinert auf mulitivariate Funktionen. Wir bemerken, daf sie nun
nicht mehr equivalent sind. Diese Beobachtung ist auch schon von anderen Mathematikern gemacht
worden fiir das multivariate Padé-Approximationsproblem [2,7], das man auch auf verschiedene
Weisen 16sen kann.

1. Algorithms for Univariate Rational Interpolation

Let the univariate function f(x) be given in the non-coincident interpolation points
{X0,X1, X3, ...}. We consider the following problems:
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We shall say that the rational function “interpolates” the given function and by this
we shall mean, also in the sequel of the text, that numerator and denominator of the
rational function satisfy some linear conditions like (1) or (2).

This does not imply that the irreducible form of the rational function actually
interpolates the given function at all the data, because, by constructing the
irreducible form, a polynomial and hence some interpolation conditions may be
cancelled in numerator and denominator of the rational interpolant.

The next theorem can be proved for the solutions of the problems (1) and (2). We

denote f(x;) by f.

Theorem 1.1: The statements (a), (b), (c) and (d) are equivalent:

a 1 r'1+1,n
@ fl,n (x) and Qf’ 15 (X) respectively satisfy (1) and (2)
Jj J
®) P
()=
0
L ox=x; filx—x) (x=x) filx—x) .. (x=x)" f;(x—x)"
_ fj+2n X—X;t12n
1 x—=x;  filx=x;) ... (x—x)" fi(x—x))"
1 X-’Xj+2,,
and
r.:+1,n
;Jrl,n (X)=
J
f; X—X; file—x) (x=x)" fi(x—x)" (x—x)'"!
_ fj+2n+1 X—Xjt2n+1
1 X—X; filx—x)... (x—x)tt
1 X—=Xj+an+1
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P ()= (x—x) Pt P () — (= Xy 2 P PE T ()
(0= 06— ) P QT () — (e Xy ) P QP ()
and

PHF U (x)=(x— %) 47" Py (X) = (X — X4 201 47 PP ()

QFI’"(X)Z(X“XJ')Q?’" ) (X)—(X~xj+2n+1)q?¥'1 Q;"(x)

where

Pn n_~pj
Pr=qp X"+

and

Pr_t+1,n___p;+1,nxn+1+

n+1n q31+1 nyen + ...
n,n n+1,n

Qi' —(x)and —i—ﬂ—"(x) are respectively the (2 n)-th and (2 n+ 1)-th convergents of
i J

the continued fraction

Xk |

olul+ Z {fp[xx

]+k+11

(P[xjoxj+1]+x—xj+1

o [x]+

OLx; x4 X402+ X=X,
where

q) [xj] zf(xj)

X; —x;
jtk+1 jtk
(P[%a ,+k+1]*‘

OLxgs s X 15Xk 11— @ [X5 oo X ke 15X 4]

A proof of this theorem can be constructed from [9], [12] and [5], of course under
the assumption that none of the denominator determinants vanish. We also remark
the important fact that the recursive algorithm described in [6] is merely a
reformulation of (¢) in order to obtain a generalization of the Aitken-Neville
algorithm for polynomial interpolation. We shall now generalize the formulas (b), (c)
and (d) for multivariate functions in the sections 2, 3 and 4 respectively. These
generalizations shall be written down for the case of two variables, because the
situation with more than two variables is only notationally more difficult.
Numerical results can be found in section 5.
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2. Multivariate Determinantal Formulas

Inspired by Wynn [12] who uses the determinantal formulas (b} of theorem 1.1 and
by Thacher and Milne [10] who generalized a univariate polynomial interpolation
scheme to the multivariate case, it is easy to write down the following rational
interpolants for a function f(x,y) given in the non-coincident points {(x,, Vo),
(X1, Y1)s (x2,¥2) ...}. Let us denote f(x;, yi) by fi, x—x, by o and y—y, by .

Theorem 2.1:

n,n
i
Q"
J
Ji % By fioy iy of o B7 fiof feuBs £ o BY S £35S

(x,y)=

_ fj+f(n,n) Uitewmn Pj+cinmn
1 o

; B; S0 fiB; .. of ... BY fiog . B

1 %itcum Pi+emn
and
m+1,n
*f_,—rlj,(x’y)z

j
i % B fio; fiByoof o Y ol B G BT
j}+c(n+1,n} Livem+t,n Pjrem+i,n
1 % B S fiBy ot Bt
1 Uitem+1,m ﬁj+c(n+1,n)

are bivariate rational functions respectively of the form
n n n+1 n
Y aijxiyf/ Y byx'y and Y aijxiyi/ > obyxty
i+j=0 i+j=0 i+tj=0 i+j=0
satisfying respectively
(f-QF"—= Py (X i) =0 for k=j,....j+c(n,n)
and
(f Q;+1,n—P;+l’n)(xk>yk):O fOV k=.]5 ...,j+c(n+1,n)
where c(n,n)=n*+3nand c(n+1,n)=n*+4n+2.

Proof: We will prove the theorem for

o
J

o (05 ))
J

because the reasoning for
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n +1,n
J
nt+1,n (x’ y )
i
18 analogous.
Consider a rational function of the form

n
2 ax'y

i+j=0
: .
Y byxty
i+j=0

It has n? + 3 n+ 2 unknown coefficients a; ;and b;;. So we need n*+ 3 n+ 1 conditions
because one parameter can always be given by a normalization of numerator and
denominator.

So consider the linear system of equations
(f- QF"—PP") (x, y)=0 for k=j,...,j+c(n,n) with c(n,n)=n*+3n.
More explicitly i
oo —fboo+a10 Xkt a01 Ve —fibio X — frboy Vit . H Ao X+ +
+ g, Vi = fi buo X — . = ficbon V=0
for k=j,....j+c(n,n).

A solution of this homogeneous system of equations is given by:

P (x, y)=
10 1 0 0 x y 00 0 x* xy
_ 1 f X; Vi 5ixi Sy x5 %95 V7 %3 fixgy fivio
1 fj+c(n,n) Xitemm Yi+e(mn
and
Pyr(x,y)=
10 x y 0 0 x*xy 0 0 0

1 f; X; Vi fixi 5vi X3 %395 V3 X3 fixpy; fivi -

1.f:)'+c(n,n) xj+c(n,n) yj+c(n,n)

By making some suitable combinations of the rows and columns in the determinants

above
prr

J

o (%5 9)

i

can be written in the form given in theorem 2.1. ]
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Remark the fact that, as in the univariate case, the degree of the denominator is not
changed by going from

n,n r;+1,n
Q;,,, (x,) to —;,_—;r,,(x,y)
and that the degree of the numerator is not altered by passing from
", n— 1 n,n
Q"" —r (%)) to j (x, ).

When dealing with univariate rational interpolation, Wynn [12] suggested an
algorithm for the recursive calculation of these determinants. It is based on the fact
that only one row and column are added for the calculation of the next rational
interpolant from the previous one. The use of this algorithm is doubtful here because
in that way the number of terms in the recursion to calculate

N/ n,n—l
= (x,) from ———(x, )
Qj j

would be proportional to 2" 1. So we suggest the recursive scheme described in
section 3 which is a direct generalization of theorem 1.1 (c) but does however not
calculate the determinants given in theorem 2.1.

3. Aitken-Neville-like Algorithm for Multivariate Rational Interpolants

The univariate algorithm described in theorem 1.1(c) can be rewritten as follows:

P ()

Pn+1,n(x)= Prr(x) (X =Xjpone )4 (4a)
orrhrx) 0P (x) (x—x)q}”
Qi (x)  (X—=Xj12.+1)d541
and
P gt |
Pr) | PRTHO) (o) R (4b)
P [T )

Q;"’Jrnfl (x) (x_xj+2n) I’;'llni_l
Consider for instance formula (4 a) and remark the following three important facts:

1. If we introduce the interpolation sets
§ ={Xjp . X201} =51 U5,

Sy={X} .- s Xj4 20}

Sz—{Xj+1,--'axj+2n+1}
then
UrQn+1 n P;-'+1’n)(xk):0 for Xy, nsS

(f Q" =P} (x,)=0 for x, in S,
(f Q3 — Pl (x) =0 for x, in S,.
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2. Theset S, contains one and only one interpolationpoint which does not belong to
S,, namely x;, and the same applies to S,.

3. The coefficients ¢j-" and g}, in (4 a) are chosen such that the degree of 071" (x)
remains at most n.

Analogous conclusions can be written down for (4 b).
A first step to generalize (4a) to the bivariate case, is to consider n=0.
It is easy to check that

fi x=xy y-n
f x=x3 y—»

P%’o (x, )= fi x=x3 y-ys
P I ox—x  y-y

1 X=Xy Y—Y2
1 X—X3 V=3

is indeed a rational interpolant in the points (x,, y1), (x,, ¥,), (x5, ¥3), of degree 1 in
the numerator and degree O in the denominator.

The coefficients of x—x;, y—y; (i=1,2,3) in the determinants are also the
coefficients of the highest degree term in Q%" (x, y)=1(j=1,2,3) as is the case when
we are dealing with a univariate function.

Now consider n=1 in (4b). Suppose we are given the interpolationset

§= {(xb yl)a (x25 _)72), (x3= y3)a (X4, y4)’ (x57 yS)’ (X6’ y6)} .

—
wn
w

Then we can write S=S, U S, U S; with

Sl = {(xla yl)’ (X4, y4)7 (x5a ys)}
S2 = {(XZD yZ)’ (x4> y4)a (x6> yﬁ)}
S3 = {(X3, y3)7 (XS’ y5)> (x6> yG)}

where S; contains one and only one point which does not belong to S, or S5, and so
on.

Remark that the point (x4, y,) which belongs to S; and S, but not to S5, lies on the
straight line through (x4, y;) and (x,, y,). Similar results hold for (x5, y5) and (x,, v).
Since the points in S; are linearly independent and those in S, and S, too, we can
calculate
1,0
Eflo—(&& for j=1,2,3
Os;” (x,)
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where the subscript S; now indicates that
(fQé}O “Pé}o) (%ks Yi) =0 for (x,,y,) in S;.

It is easy to see that a rational interpolant for the points in S can be given by

Pgl(x,y)  pilx—x)  pi(y—y)
Pl (x,y)  pa(x—x3)  pr(y—y2)
iz) (x, )= Pééo (x,3)  pslx—x3) p3(y—ys)
QY 05°(x, 5y pi(x—x;)  p(y=yy)
05°(x.))  P2(x—x3)  p(y—y2)
05:°(x,y)  ps(x—x3)  ps(y—ys)

where for instance p; is the coefficient of x in P§:° (x, y) so that a minimal number of
extra terms is added to Pg;°(x, y) to obtain PP (x,y),j=1,2,3. The superscript (2)
now indicates that, in our recursion, we have twice stepped down to rational
functions of lower degree. In the same way P2 °/02:° and Pi-°/Q%° can respectively
be denoted by P{/Q{ and P{V/QLV.

For arbitrary n the recursion is formulated and proved in the next theorém.

Theorem 3.1: Let the interpolation set S=1{(xy, y1), (X2, 2), ---» (X cw, Yew)} of C (k)
distinct points be given with C (k) =2 (k — 1)+ 3. Suppose the set S of C (k) interpolation
points can be subdivided into 3 subsets Sy, S,, S5 satisfying the following additional
conditions:

@ S;uS,usS;=S,

(b) S;(i=1,2,3)contains one and only one point which does not belong to any other S,
(j#1); by means of renumbering we can call this point (x;,y;),

(c) any point (x;,y;) does either belong to S,(1=1,2,3) or is a linear combination

X; 3 X; 3
=3 oc-( J) with Y a;=1.
(Jh‘) i=1 ’ Yi j=1 !
J#l JFl

Then for k=2n:

Pfszln_l)(ny’) pi(x—x1)  pi(y—y1)
PEP(x,y)=| PE"" V(%))  pa(x—x3)  py(y—y2) (5a)
PEPD(xy) pa(x—x3)  ps(y—ys)
and
Qfszln—l)(x: y)opix—x) pi(y—y1)
Q8" (%, 0)=[08" "(x,))  plx—=x)) p2(y—y2) (5b)
08" V(x,y)  pslx—x3)  ps(y—ys)
are bivariate polynomials respectively of total degree 2n and 2n—1 satisfying
(f- Q¢™ —P¢™) (x,,y)=0 for I=1,...,C(2n), where p;(j=1,2,3) is a coefficient in
PEr=Y(x, y) chosen to minimize the number of terms in P¢™ (x,y), and for k=2n+1
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PEY(x,y)  qi(x—x;) g (y—y1)
P(SZ"H)(X;)’): P(SZZ")(x,y) Gy (x—x3) g2 (y—y2)

PEP(x,y)  as(x—x3)  qz(y—ys)
and

087 (%,y)  ar(x—x) @ (y—yy)
0§ V(e y)=| 08" (%)) Ga(x—x)) a2 (y—y2)
Q(SZ;,") (%)) g3(x—x3) q3(y—y3)
are bivariate polynomials respectively of total degree 2n+1 and 2n satisfying

(f- Q¢+~ P D) (x,,y)=0 for I=1,...,C 2n+1) where q; (j=1,2,3) is a
coefficient in Q" (x, y) chosen to minimize the number of terms in Q§"* (x, y).

Proof: We will only perform the proof for k=2n because the case k=2n+1 is
completely analogous. It is not difficult to see that in (x,, y,), (x,, y,) and (x5, y) the
interpolation condition is satisfied. In (x,, y;) with 3 <I<C (2 n) the interpolation is
proved as follows. The point (x;, y;) belongs to at least 2 of the S; (j=1,2,3) and we
may renumber everything so that (x,, y,) belongs to S; and S,. Suppose that (x;, y,)
does not belong to S; (otherwise the proof is complete).

Since
(f- Q(szln_l)) (x1>y1)=P(521n_1)(xlaJ’l) and (f- Qfszzn_l))(xbYI)=P(SZZH_1)(>C1>YZ)
we may write
(fOE" N xuy)  prla—x1) Py (i—3)

P(szn) (x, v = (ngzzn_l))(szz) P2 (x;—Xx2)  p2(i—¥2)
P(szgn_l) (1, y1) p3(xi—x3)  p3(yi—ys)
- (5—x,) (01— ¥2)
=f(x;, ) ( fsz, 1)(x1, Y)DP2P3 Lo
(—x3) ", —¥3)

X=Xy Yi—h
Xj=Xy Vi~ )2

Since (x;, y;) does not belong to S, it lies on the straight line through (x,, y;) and
(x,,¥,) and so

X=X =W

X;—X3 Yi— Vs

- ng"_l)(xz, V) P1 D3

+Pg23n—1)(xl7 V) P1 P2

Xp— Xy Yi—=»0

Xj—X2 V1= )2

=0.

Consequently
P(sln) (i y) =1 (1, 1) - (52") (X1, 31)-

To prove the degrees of P&™ (x, y), Q¢ (x,y), P¢" TV (x, y) and Q" Y (x, y), we use
induction.

We know that the degree of P§"(x, y) is 1 and that of Q{ (x, y) is 0. It is easy to see
from (5 a) and (5 b) if we expand the determinants by the first column, that in each
recursive step the degree of the numerator and the denominator is raised by one.

|

4 Computing 34/1
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The lower bound for C(2n) and C(2n+1) in theorem 3.1 is a consequence of
condition (b) in the formulation of the theorem: for k>1 the set S\S; (j=1,2,3)
contains at least two points not belonging to S; and for k=1 three interpolation
points are needed to start the recursion. Remark also that the algorithm constructs a
rather high degree rational function in order to fit rather few points.

Let us now discuss the choice of the parameters p;and g;. We know that C(1)=3 and
that in this case P{"(x,y) and Q" (x, y) are bivariate polynomials of total degree
respectively 1 and 0, which we shall indicate by means of the following figures:

powers of y
powers of x powers of x

powers of y

p(sl) (x,y) Osl)(xl.y

For § containing C(2) interpolationpoints and in order to calculate P (x, y) and

0 (x, y) with a minimal number of extra terms in P@ (x, y) in comparison with

P§(x,y), we have to choose p; equal to the coefficient of x in P{(x,y). Then
PP (x,y) and Q0P (x, y) have the following form:

L

)

To calculate P§(x,y) and 0§ (x, y) for a given S with C (3) interpolationpoints so
that we have a minimal number of terms in O (x, y), we now have to choose g; equal
to the coefficient of x in Q0§ (x, y). So P{ (x, y) and Q§ (x, y) have the following form:

kY
26 ° 2
194 . . 1 L
. - -
DEREE: o] 1
Pé”(x,y) S )
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We repeat the same procedure for the calculation of the rational functions
interpolating in S containing C(k) interpolationpoints (k>3). The P¢"”(x,y)/
0¥" (x,y) and PZ"*V(x,y)/Q¢"* Y (x,y) are then of the following form:

k=4: p;=coefficient of x* y in P§(x,y)

4
3 i 3
2 ° [ 2 [
1 ° . 1 ® .
0T 1 2 3 o 1 2 -
4
P{ (x.y) 05" ()

k=5: g;=coefficient of x>y in 04" (x,y)

P (x,y) ag (%)

k=6: p;=coefficient of x> y* in P{)(x,y)
and so on.

1t is obvious, that, instead of eliminating high powers of x, we could also have
eliminated high powers of y; we could as well have used a mixed strategy. What’s
more, the obtained rational interpolant does also depend on the partitioning of S
into Sy, S, S3.

4*
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For numerical results illustrating this method we refer to section 5. However, we
want to remark here already that if the set S contains many points, then for the
computation of PE" (x, y)/Q¢™ (x, y) or P¢"+V(x, y)/Q¢" TV (x, y) alot of interpolat-
ing rational functions of lower degree are needed, which may cause some
programming difficulties. Also one should preferably not choose the points (x4, y,),
(2, ;) and (x3, y3) — in the formulation of theorem 3.1 — on one straight line in
order to avoid degeneracy of the determinants for the calculation of the next
interpolating rational function.

4. Multivariate Branched Continued Fractions

We shall only consider the construction of continued fractions symmetric in the
variables x and y because there is no reasonable argument for not doing so. The
algorithm which we shall develop can, just as in the previous section, easily be used
both for the calculation of the coefficients of the branched continued fraction and the
computation of the function value of some convergent.

Given two sequences {Xg, X, X5, ...} and {yg, ¥4, ¥, -..} of distinct real points,
the branched continued fraction will interpolate f(x,y) at the points in
{Xo, %1, X2, - X {Vo» V1> Vas oo}

Theorem 4.1: Oo

— X1 | Y=Yr-1 |
fx,y)= (p[XOJ[yO]JrZ ](p[xo,.. xk][yo] i 1@7[%][)’0,--,)’1(]

(x=x;_)(y~y;-1) '

+
j il X = Xg1 i Y= Yk-1
= (p[x07"'7'xj][y03""yj]+ z ‘+ i

k=j+1 '(P[xo, cs Xe] [Vos -5 7] k=j+1 ’Qp[xo, ey X1 (Vs s i1

8

where the inverse differences are given by
@ [x6] [yol=1 (X0, ¥o)

¢ Xos - %] Vo] = TR
@ [x05 s X2, 3 Lol — @ [Xos s Xp— 2, %=1 1 [Vo]
Ve = V-1

@[ %01 [Vos s i) =
O 0 X0 [Vos -vs Y25 Vil — @ [X01 [Von -+ V-2 Vk—1]

@ [x0, -+ ;1 [Vos s Vi1 =
(xj—Xj—x)(}’j‘yj—x)

@x0s X 2.1 os o1 ¥jm 2, YA = 0 [0, o X 20 X511 Voo oo Vim 2o V3 = @ [Xos X 20 %0 D05 -+ s Vi 20 Vi1 1 F @ D¥os -0 X522 X1 W0s -0 Ve Vo]

andfork>] (p[XOJ'--’xk][yOa'-"yj]:

—Xg-1

O [Xg, s Xg—25 %] Vo, ~-~;J’j]-€0 [xgs +vvs X 25 X — 11 [Vos --.,J’j]

@ [Xo, "'>xj:| [y07 ---ayk]z
_ Ve = V-1
@ [x0:> "'5xj] [y07 e Ye-25 yk] -0 [x07 ---9xj] [y05 -"’yk—Zayk—l:'
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Proof: We assume that the reader is familiar with one-dimensional interpolatory
continued fractions. So we can write

— Xo
Jx =0 xX1[yI=¢[x0] [¥] +“[—;—]fy’]‘
_ Y—Yo X~ X*o
@ [xo1 [yol+ @ (%1 [Vos¥] @ [X0r X1 [7]

Y= Yi-1 1 X —Xg

100 v o lxox] Dl

= [xo] [yol+ Z !(,0 [x

Let us introduce the function g, (x, y) by

(x—x0) go (x,¥) = o]l Coxl D]
where
O
To = xex1 D]

By calculating inverse differences &, for g, we obtain

go(x, y) =& [x] V1=, [x] [yol+cf—[“fyyo_yi
0 0>
) 1 Yy—JYo
X=Xy | ho(x,y)
(p[xo,xl] Lol + Z s 10 Dxos - % [Vo]
where hy (x, y)=E0 [x] [o, y]-
So already
V= Vi~1 }
£x,9)=0[xo] [yo] + Z [0 Txo os - ]
0 s vees VE

K

X—=Xp—1 J (x_xo)(y—}’o)‘

L ool T hetny)

By computing inverse differences =, for h, we get

) _ _xmx
ho (x,y)=mo [x] [Y]=m, [x, 1 [¥]1+ 7o [%1, x]1[V]
Y=y X=X

e L o T Ry o e

Y=Yr-1 J_'_ X—X
X130y oyl o lxg, x][¥]

-—no[xl][h]“‘ Z 111 [
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where

o [x1 [y]=&o [x] [yo, ¥]
_ (v — o) (x—xo)
S, 3)=f (X0, Y) = F (X, yo) + £ (X0, ¥o)
=@ [x0,x] [vo, ¥]

and by induction

7o {1 11, -0 Vil =@ [X0, X1 1 [Vos -+ Vi)

o [ %1, x] V] = @ [X0, X1, X1 [Vo, V]

So we can write

Y=Vi-1 | (x—x,)

x1 1o, s Vi @ Ix0, %1, X1 [0, V]
Y= Vg1
x11[Vos -5 Vil

ho (x,y)= [ X0, %11 [Yo, Y11+ Z |(P[x

= [X0, %11 [Vo, Y11+ Z |(p[x ’+(x—x1)g1(x,y)
0>

where
1

@ [x()axl:x] [yO:y] '

g1 (X>J’)=

If we introduce inverse differences &, for g; we can repeat the whole reasoning which
provides us with a function h, and inverse differences =, :

y—»
¢ [X1 [y, v]
y—Ja

by (6 3)= 6 D D] =m Dl DT+ 2t

g1, y)=& [xJy1=¢ [x] [y, ]+

I S
7wy [, x] [¥]

In this way we obtain the desired interpolatory continued fraction. |

=@ [ X0, X1, %21 [Vo» V1, V2l + ...

To obtain rational interpolants we arc going to consider convergents of the
branched continued fraction given in theorem 4.1. To indicate which convergent we
compute we need a multi-index 7= (1, io,y» -+ inx> Iny

& Xp-1 l o Y= Vi-1 |
x,y)=¢ [xo] [ Vol +
Qo( =%l Ly Z'fp[xo;- X Lol kz1‘§0[x0][J’0=--~,yk]
(x=x;- )y =y;-1) J
+j§1 r = X~ Xp-1 [ Z V= Vi-1 l
@ [X0s s X oy - yi1+ 2, 2.

k=j+1 ,(P[Xo,- > %] [os oo 7yj:| k=j+1 ’;[x()s---’xj][.VOa--wyk]
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For these rational functions the following interpolation property can be proved.

Theorem 4.2: If the multi-index n is such that ig,>1i;,>...>1,, and

fox =15 ... =i,y then (f+ Q5 —P}) (x,,y,)=0 for (I}, 1,) belonging to

I=U ({G, blj<k<i;} v {k)]j<k<i;}).
j=0

Proof: It is easy to construct a proof from one-dimensional results if we group the
interpolation points as follows:

(an y0)7 le’y())’ "'5(xi0xa yO)j (Lx()’yl)’ "’7(x0, yioy):
iox Sgints ioy p\orints
(x15¥1)s \(xz, Y1)y ooes (Xiy 0 J’1)3 {xu y2)s -'~>(x19yi1y)aj"’ s
iy, — 1 points il},—rgoints
)

(xmyn)a (acn-i»l:yn)a "-,(xi,,xayn)a (\xmyn+1): '--9(xn:yin

i,x— 1 points i,y —H points

and take into account the form of the continued fraction in theorem4.1.

To clarify the numbering we make a drawing of the set I in N?:

The subscript zero in P} and Q} refers to the fact that we are constructing rational
functions interpolating a set of points starting with (x, y,). The whole construction
can also be used for the calculation of rational interpolants starting at (x;, y;), which

are then called —’ﬁ (x, ).
J
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5. Numerical Results

Suppose we have to solve the following numerical problem.

A bivariate function f(x,y) is only known by its function values in a number of
distinct points (x;, y;) and we need an approximation for the value of f'in some other
points (u;, v;).

When using interpolation this problem can be attacked in two ways:

(A) either by calculating the coefficients of the interpolatory function (polynomial,
rational, ...) and evaluating this function in the points (u;,v;)

(B) or by calculating the function value of the interpolatory function at (u;,v))
without knowledge of all its coefficients.
We shall compare the following methods of class (A):

— Newton-interpolation [3, 11]:

p(x, V=Y f[xo ... x1[Vo, ..., y;1 B;;(x, )
i+j=0
with

S [xo] [yol =1 (x0, ¥0)

F%o0s - X1 [vo] :f[xla e X [Vod =S [X0, s Xi 11 [Vo]

xi—xO
F D%y - % Do, ...,yj]:f[xo’ s X1 [Y1s s Vi1 =S [X0s s X1 [Vos -5 V- 1]
Yi—Yo
Bij(an’)= H n (x—x)(y—y)
k=0 1=0

where By, (x,y)=1.

— branched continued fractions (on a large number of data) introduced here in
section 4.

- Padé-approximants introduced by Chisholm [1] of the type

a;; x'y!
P(xa)’)zi;o jgo ’
(%)) < < i
2 2 byx'y
i=0 j=0
where
(f-q—p) ()= Y d;x'y
(i,)e NA\E
for

E={(i,j)|0<i+j<2n}

and where dy, 111+ d; 3,411 =0for I=1, ..., n; here f(x, y) is given by part of its
Taylor series expansion
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«© .
Z e X'y
i+j=0
instead of by its function values in a number of points.
We shall also compare the following methods of class (B):

— branched continued fractions (on several small datasets) introduced here in
section 4.

— rational interpolants constructed as in section 3; the coefficients p;, p,, p; and
41, 42, 45 can also be calculated recursively without the knowledge of all the other
coefficients.

— Padé-approximants calculated by means of the e-algorithm [2]:
For

¥ =0, k=0,1, ...
k
y o
&) = Z ci;x'y
i+j=0

where f(x,y) is given by part of its Taylor series expansion

Xy
i+j=0
&' V=0 1=01,...
1 1=0,1,...

k) _ . kt+1)
Gr1=8-1 T
gkt g =] —]41,...
we have
n2+n
Y ayx'y
(20)= p(x,Y) :i+j=n2
gy I
2 byx'y

i+j=n2

satisfying

(f-q=-px-y)= Y  dyx'y.
i+j=n24+2n+1

The methods of class (A) could be referred to as “global” because they will
interpolate the function f(x, y) simultaneously at a large number of data spread over
the whole region; therefore we calculate and store the coefficients of the inter-
polatory function and evaluate that same function several times, i.e. at each point
(u;,v j)-

The methods of class (B) on the contrary could be referred to as “local”, the
branched continued fractions and the rational interpolants calculated recursively by
means of determinants will each interpolate f (x, y) at a smaller number of data in the
neighbourhood of every point (u;, v;) while the e-algorithm does use the same Taylor-
coefficients at the different points (u;,v;) but has indeed to be restarted when going
from one point to another.
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The bivariate Beta function B(x, y) will serve as a concrete example to illustrate all
these approximation methods. It is defined by

Iy

me-ru+w

where I' is the Gamma function. Singularities occur for x=—k and y=—k
(k=0,1,2,...) and zeros for y=—x—k (k=0,1,2,...).

By means of the recurrence formulas
I'ix+1)=xTI(x)
Fy+1)=yI(y)
for the Gamma function, we can write
I+x-D-Dfx-Ly-1)
xy

where it is possible to calculate a Taylor series expansion for f(x—1,y—1) by the
first method suggested in [4]; this Taylor series expansion is necessary to compute
Chisholm’s diagonal Padé¢ approximants and also to start the e-algorithm. The
other interpolation schemes use function evaluations.

B(x,y)=

All the considered types of approximants R (x, y), polynomial as well as rational and
global as well as local shall be computed for the function f(x—1,y—1) and
afterwards we shall compare the exact value of B(x,y) with the expression

1+(x—1D{y—1) R(x,y)
xy

In order to use approximately the same amount of data for each method of class (A),
we are going to consider

- z Z f[x07 -">xi] [yO’ "'ayj] Bij(xay) (36 data)
i=0 j=0

2 X = Xg—1 | 2 Y=Y ‘
— ¢ [xo] [yol+ +
ol k§1 ]‘P [xos s X o] kgl .(0 [xo1[yo, o il
2 (x"xj~1)(y_J7j~1) '
+j§1 olx <1y v+ i X=Xy N i Y=Yr-1 I
ornTEEe k=j+1 lfP[xo,..‘,Xk] Do, -5yl 1741 ’(P[Xo,---,xj] [Yos - ¥
(36 data).

— Chisholm’s Padé approximants with n=3 (34 data).
For (u;,v;) equal to (—0.75, —0.75), (—0.50, —0.50), (—0.25, —0.25), (0.25,0.25),
(0.50,0.50) or (0.75,0.75) we shall take {xq,xq,...,x5}={0.76, 0.48, 0.23, —0.22,
—0.48, —0.73} and {yg,y;,.--,¥s} =10.74, 0.49, 0.22, —0.26, —0.51, —0.76}.
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° ] . 10.74 o L *
Y ™ ° +0.49 o ° .
. . . +0.22 o . [
T -0%73 -04.48 -0.“22 073 O.:g 0%76 ;
° ) . +-.0.269 ) .
. . o +-0.51¢ . )
. * . +-0.76e . .
‘L-l
Fig. 5.1
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The numerical results can be found in Table 5.1. Remark the fact that, because of the
poles of the Beta function the polynomial approximation is inaccurate. The
branched continued fraction turns out to be a far better approximation than
Chisholm’s Padé approximant.

Table 5.1
(—0.75, —0.75) [ (—0.50, —0.50) | (—0.25, —0.25)| (0.25,0.25) | (0.50,0.50) | (0.75,0.75)
Newton series 9.83 0.006 —6.785 7423 3.1406 1.69449
Branched cont. fr. 9.884 0.0008 -6.7778 7416301 | 3.14159245 } 1.69442617
Chisholm’s P.A. 7.0 —0.14 —6.787 7416310 | 3.14159269 | 1.69442617
B(x,y) 9.88839829 0. —6.77770467 | 7.41629871 | 3.14159265 L1.694426166

In class (B) we are going to compare the following approximations:

3
—o[xo]1[yol+ Y,

k=1

2

X —

Xie—1

3

Y=Ye-1 |

l(p[xo,..

- xk] [yO]

L3

(x=x;-1)y~y;-1)

= [0 Tx01 [Vos ---» Y]

|

+ X

i

- o [xo, ...

3
,xj] [Yo;---:)ﬁ‘]“’ z

X = Xp-1

J 3

V=3

. (

k=j+1

“P [x0, +- s X1 [Vos ~~-an]

(15 data around each of the 6 points (u;,v;) given above).

+ X
k=j+1 I(p[XOa cens X7 Doy oo Vi)



60 Annie A. M. Cuyt and Brigitte M. Verdonk:

— P{/Q" recursively calculated via the determinantal formulas where the in-
terpolationset S is described below (15 data around each of the 6 points (u, v;) given
above).

—&{’) which needs as input £, ..., sl (91 data).

Since we are going to choose our data in exactly the same way for each of the points
(,v;), we shall now only describe the situation for (i;,v;)=(—0.75, —0.75); the
other datasets simply result by translation.

For the branched continued fraction we use the sets
{xgs...,%3}={—0.8, —0.76, —0.73, —0.7}

and
os e y3} ={—0.79, —0.77, —0.74, —0.71}.
o s -0.71 e
) o +-0.74 o .
-0.8 -0.76 -0.75 -0.73  -0.7
. ° T-0.77 ° ™
o e +-0.7¢9 e .
Fig. 5.2
For P{/Q" we are given S={(x;,y;)|i=1,...,15} drawn in the following figure:
9 2
i Slnbeial s s Shurhu it M WS S AAe
L el L4 Lo
[ ! 4, | | ‘ I
: : ¢ | : [
AR Y N /N AN DL - G
' n I : ; ’ ' ~0.735
B 4 — —— =L 4 2y — — - '}-0.745
|L+7-— - - —"-—--:—«——1—65— ——:——1 1 -0.765
oy
,_.T___L‘_J‘_i._ ~—pF——+ 40 1-0.775
l 114 P 3l
FA————t+ —4t——— [ —“¢-— {-0.785
e d bl o Loy
L-O..795 .‘0.155 . -9.725 . -‘0.695
-0.805 -0.765 -0.735 -0.705

Fig. 5.3
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In order to avoid the vanishing of certain determinants, the data are such that any
three of the interpolationpoints never lie on a straight line; this simplifies the
subdivision of S into smaller subsets. The numerical results are given in Table 5.2.
The g-algorithm and the branched continued fraction both give quite good results.
What’s more, they are also easier to program than the recursive method of section 3.

Table 5.2
(~0.75, -0.75) { (~0.50, —-0.50) | (— 0.25, —0.25)| (0.25,0.25) | (0.50,0.50) | (0.75,0.75)
Branched cont. fr. 9.8884 —0.000003 —6.777706 | 741629874 | 3.14159266 | 1.69442617
Recursive calc. 8.81 0.06 —6.787 74184 3.14152 1.694420
e-algorithm 9.90 0.0005 —6.77767 | 741629871 | 3.14159265 | 1.69442617
B(x,y) 9.88839829 0. —6.77770467 | 7.41629871 | 3.14159265 |1.694426166

All the computations were performed in floating point double precision arithmetic
with an input of 12 significant decimal digits. A last remark concerns the weight one
should grant to the numerical results.

Small perturbations in the data do not very much affect the output to be found in
Table 5.2, this is also true for the results in Table 5.1. So the numerical figures really
represent the approximation power of the methods.

But we want to emphasize here that the rational interpolation methods depend very
much on the numbering of the points. By renumbering the interpolation points one
can obtain quite different results, more or less accurate.
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