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Summary. Pad6 approximants are a frequently used tool for the solution of 
mathematical problems. One of the main drawbacks of their use for multi- 
variate functions is the calculation of the derivatives of f ( x  1 .... ,xp). There- 
fore multivariate Newton-Pad6 approximants are introduced; their com- 
putation will only use the value of f at some points. In Sect. 1 we shall 
repeat the univariate Newton-Pad6 approximation problem which is a 
rational Hermite interpolation problem. In Sect. 2 we sketch some problems 
that can arise when dealing with multivariate interpolation. In Sect. 3 we 
define multivariate divided differences and prove some lemmas that will be 
useful tools for the introduction of multivariate Newton-Pad6 approximants 
in Sect. 4. A numerical example is given in Sect. 5, together with the proof 
that for p = l  the classical Newton-Pad6 approximants for a univariate 
function are obtained. 

Subject Classifications." AMS(MOS): 65D15 CR: 5.13. 

1. Univariate Newton-Pad6 Approximants 

The Newton-Pad6 approximation problem is a rational Hermite interpolation 
problem. 

get f be a real-valued function, whose derivatives f)k~ (k = 0  .... , rj) are given 
in distinct points x j, j =  0,.. . ,  I. Let n and m be chosen such that 

l 
n + m + l =  ~ ( r j + l )  

j = o  

Define 

R,.(x) . . . .  p(x) aixi, q(x) bjx  -i 
i=o j=o 
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The rational Hermite interpolation problem consists in finding an element -P in 
R~,(x) such that q 

(f.q--p)(k)(xj)=O k = 0  . . . . .  r~ for j = 0  . . . . .  l (la) 

Problem (1 a) is the way to interprete the rational interpolation problem 

( f  .q-p)(x i )=O i = 0  . . . . .  n+m 

if some of the x i coincide. 
In [11] is proved that we have at least one nontrivial solution of (la) and 

that two different solutions Pl, ql and Pz,q2 are equivalent, i.e. that Pl q2(x) 
=P2ql(x). 

In [3] the rational Hermite interpolation problem is reformulated as fol- 
lows. In a formal manner we can construct for f (x )  the Newton interpolation 
series 

f (x )  = ~ f [ x  o . . . . .  xi] Bi(x ) 
i = 0  

i - 1  

where Bi(x)= l-I (X--Xk) and f [ x  o . . . . .  xi] is a divided difference with possible 
k = 0  

coalescence of points x i. 
Redefine 

f p ( x )  l , , m 
R~.(x)= ~ q ~  ptx)= i=o ~ aiBi(x)'q(x)=,~-objB'(x) 

3 

and calculate p- such that 
q 

( f .q  -p ) (x )=  2 d k Bk(X ). (l b) 
k > n + m + l  

It is easy to see that the problems (1 a) and (1 b) are equivalent. The Newton- 

Pad6 approximant is now defined as the irreducible form Po of a solution p(x) 
qo q(x) 

of (1 a) or (1 b). Now Po itself does not necessarily satisfy (1 a) or (1 b) anymore. 
qo 

More information about Newton-Pad6 approximants can be found in [3] and 
[2]. 

The following important theorem concerning the interpolation properties of 

-P with p and q satisfying (1 a) or (1 b) was proved in [8, p. 487] 
q 

Theorem 1.1. I f  q (x j) * 0 then f(k)(xj) = (X j) for k = 0 .. . . .  r~ and j = 0 .. . . .  I. 

This result will be generalized to the multivariate case in Sect. 4. 
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2. Multivariate Interpolation Problems  

For the sake of simplicity we restrict ourselves to the case of two variables 
because the generalization to more than two variables is straightforward. 
Consider for instance the following set of data at points (x~,yj). 

| �9 

A A 
w w 

i 

Of Of Of 
Where a circle indicates that ~xx is given and a square indicates that ~ x '  (?y' 

0 z f  
0y 2 are provided, in addition to fu=f(xl ,y~) .  

This situation is equivalent with 

0 3 1 ~ 2 i 

(2a) 

where we let X 3 "-~XO, X 4 - ' ~ X l ,  Y3 --~ Yl a n d  Y4--*Yl. 
If we want to interpolate these (x i,y;,.fu) by using tensor product methods 

following [10] then the data fq and the numbering of the xl and yj have to be 
given such that 

a) x o is that x-coordinate for which the number of y-coordinates at which 
data are given is maximal, x a should be that one of the leftover points for 
which the same is true, and so on 

b) Yo is that y-coordinate for which the number of x-coordinates at which 
data are given is maximal ... .  

c) the data set has the inclusion property, meaning that when a point 
belongs to the data set then the rectangular subset of points emanating from 
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the origin with the given point as its furthermost corner also lies in the data 
set. 

For  the situation (2a) this is clearly not the case. So we try to reformulate 
the given problem by introducing a new numbering (xv,y~,). 

J 

Z.' 

3 '  

2' 

1' 

O' 

O' 1' 2' 3' 

(2b) 

Xo,=Xo ,  X I , = X 2 ,  X2,~---X1, X 3 , ~ X 4 .  ~ X 4 . , ~ X  3 

Yo,=Yl,  Yr=Yo ,  Y2,=Y2, y3,=Y4, y4,=y3 �9 

The interpolation problems that can be reduced to situation (2b) are of course 
not the most general ones. But it is important to gain insight in these si- 
tuations before generalizing to other sets of data. 

In the sequel of the text we shall assume that the given interpolation 
problem is already structured as in (2b); this will enable us to adapt  the 
notation (xl, y j) instead of (xi,, y j,). 

3. Multivariate Divided Differences 

Let the function values fij be given in the points (x i, y j) with (i,j)eE ~ IN 2 where 
E has the inclusion property, i.e. if (i,j)~E then (k,l)~E for k<=i and I<=j 

I 

We know from the previous section how to deal with coalescent interpolation 
points. 

Consider the following set of basis functions for the real-valued poly- 
nomials in two variables: 

i-1 j -1 
Bij(x,Y)= 1-I (X--Xk) [I  (Y--Yt)" 

k=O l=O 
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Clearly B~j(x, y) is a bivariate polynomial  of degree i +j .  
In order  to write a formal bivariate Newton  interpolation series 

f ( x , y ) =  ~, cijBij(x,y) (3) 
(i ,  j )  eh'q 2 

we introduce bivariate divided differences as follows 

f [Xo]  [Yo] = f ( x o ,  Yo) 

f [Xo] [Yl . . . . .  Ys] -- f [xo] [Yo . . . . .  Y.~- 1] 
.f [Xo] Fyo . . . . .  Ys] = 

Y~- Yo 

.rEx1 . . . . .  xr] [ Y o ] - . f [ X o  .. . .  ,xr 1] [Yo] 
f [x o . . . . .  x,] [Yo] = 

X r - -  X 0 

f [Xo  . . . .  ,x~][yo . . . .  ,Ys] 

= f E x o  .. . .  , x r ] [ y l  . . . . .  y s ] - f E x o  . . . . .  xrlEyo . . . . .  ys 1] 

Y~- Yo 

= f [xt  . . . . .  xr] [Yo . . . .  , Ys] - f [Xo . . . . .  xr-1  ] [Yo . . . .  ' Ys] 

X r - -  X 0 

The last equality is not  a demand of the definition but can easily be proved by 
induction. 

F r o m  now on we shall most  of the times use the abbreviated nota t ion fp,.qs 
for f Ix v . . . . .  x~] [yq . . . . .  y~] with the convention thatfvr.q~ = 0 if p > r or s > q. 

L e m m a  3.1. fvr.q~ is independent of  the order of  the points x v . . . . .  x r and yq,. . . ,  Ys. 

Proof. The proof  is only a modificat ion of the proof  for univariate divided 
differences. []  

When certain interpolation points in fp~,qs coincide, we must  bear in mind 
the following remarks. 

Let r i be a positive integer indicating that r i+  1 of the x-coordinates in E 
coincide with xl and let s~ indicate that  s j +  1 of the y-coordinates  in E coincide 
with yj. These coalescent x- and y-coordinates are not necessarily consecutive. 
To indicate which x- or y-coordinates coincide respectively with x~ or yj we 
introduce the following nota t ion:  

i(0) . . . . .  i(r~) denote the numbers  of the 
x-coordinates  coinciding with x~ 

and analogously 
j(O) .. . .  ,j(s~) denote the numbers  of the 

y-coordinates  coinciding with Yi" 

For  the calculation of the divided differences we need then the starting values 

= ~ k f  0 < k < r ~  
f [X i (o ) , ' " ,  xir [Yl] ~3xk t~,,,o -- 

- c~z,f l 0<1 f [Xk] [Yj(o) . . . .  , YjtU] -- ~ <-- SJ 
?Y I~x~,y,) 
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o k + I f  

f[Xl(o) . . . .  , Xi(k)] [Yj(o) . . . .  ' YJ(0] = ~  (x,,y,) 

O<k<r~ and O<_l<s i 

The coefficients c~ in (3) are now given by [1, 10] 

co = f [Xo . . . . .  xi] [Yo .. . .  , Y~] = foi, or. 

So we can write in a purely formal manner  

f (x ,y )=  ~, f o i , o j B o ( x , y ) .  
( i, j l  e N  2 

Before going on to the next section, let us formulate and prove the following 
two lemmas which will play an impor tant  role in our  discussion: the first 
l emma is a generalization of  the Leibniz rule for differentiating a product  of 
functions and the second one concerns the basisfunctions Bij(x, y). 

Lemma 3.2. 

( f .  g) [x v . . . .  , xr] [yq . . . . .  ys] 

= ~ ~, f [ %  ..... x.] [yq . . . .  , y ~ ] . g e x .  . . . . .  x, ] [y  ...... y,] 
# = p  v = q  

Proof The proof  is by induction. 
First we observe that for all p < r  and for all q [9, p. 18] 

( f .  g) [Xp . . . .  , x r] [yq] = ~ f [xp . . . . .  x , ]  [yq]. g [x u . . . . .  xr] [yq] 
# = p  

To proceed we assume that  the product  rule is valid for 

(f- g) Ix v . . . .  , x,] [yq . . . . .  Y,- 1] 

with q =< s - 1 and p __< r. 
Now 

( f .  g) [xv, " .... x,] [yq . . . . .  Ys] 

_ (f 'g)vr, q + i s -  (f" g)pr, q s- 1 
Y s -  Yq 

Ys--Yo =pv=q+l  
- -  fp# ,qv"  gur, v s -  1 

#=p v=q 
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_ 1 (~=p ~, ( fpla,q+lv-- fp#,qv--1) 'gp.  . . . .  
Y~--Yq - ,~=q+l 

# = p  v = q + l  

_ 1 ~ ~ (fpu,qv'g. .... "(Yv-Yq)+fpu.qv l " g .  . . . .  l s ' (Y . -Y~- I ) )  
Y s - - Y q u = p  v = q + l  

= ~ ,  fpu ,  qs" gu . . . .  
#=p 

1 ~ s-1 
+ 2 (fpu,q~'g. .... "(Y~-Yq)+fpu, o~'g. .... "(Ys-YO) Ys--Yq u=p v=q+l 

-Jr- ~ fp•,qq" gur.qs 
la=p 

# = p  v = q  

L e m m a  3.3. For k + l >= i +j the product 

i j 

Bij(x,y)'Bkl(x,Y)= ~ Y', 2u~Bk+u.,+~(x,y) 
# ~ 0  v=O 

Proof We write Bij(x, y) = R i o ( X  , y ) .  Boj(X , y). 
Since 

and 

we have 

i - -1  i k + # - I  

Bio (x, y) = l~ (x-- x.) = 2 c~. l ]  ( x -  x,) 
r=O # = 0  r = k  

j - 1  j l+v--1  

Boj(X,Y)= ]-i (Y-Y , )=  Y', fl~ Iq (Y-Y~) 
r = 0  v = 0  r=l 

Bkt(X, y)" Bij(x, Y) = (Bkt(X, y)" Rio(X, y))" Boj(X, Y) 

= ( ~oC~uBk+u,l(x,Y))'Boj(X,Y) 

j i 
= Z Z 

v=O tt=O 

which gives the desired formula for 2.~=%-flv.  [ ]  

A figure in N z will clarify the meaning of this lemma. 
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If we multiply B~.i(x, y) with Bkz(X, y) and k + l>i+j ,  then in the product the 
only occurring B,s(x, y) are those with (r, s) lying in the shaded rectangle. 

IN 

- - - I - -  

I 
I i 

k 
IN 

k§ 

4. Multivariate General Order Newton-Pad6 Approximants 

Because Levin's introduction of multivariate Pad6 approximants in [6] is 
perhaps the most general one, we intend to generalize it for multivariate 
Newton-Pad6 approximants.  We will again restrict ourselves to the case of two 
variables, because the generalization to more than two variables is only no- 
tationally more difficult. 

With any finite subset D of N 2 we will associate a polynomial 

~. boBij(x,Y) 
(i,j)~D 

and we will call D the rank of the polynomial. 
Given the double Newton series 

f ( x , y )= ~ foi, ojBij(x,y) 
( i ,  j )  e N  2 

we choose three subsets N, D and E of 11',I 2 and construct an [N/D]~ Newton- 
Pad6 approximant  to f (x ,y)  as follows: 

p (x, y) = 

q(x,y)= 

(f. q - p) (x, y) = 

y" aijBij(x,y) (N from "numerator")  (3a) 
(i,j)EN 

bijBij(x,y ) (D from "denominator")  (3b) 
(i,j)~D 

E dij Bij(x , y) (E from "equations") (3 c) 
( i ,  j)E~N 2 ~ E 

We select N, D and E such that 
D has m + 1 elements, numbered (io,Jo) .... .  (i,,,jm) 
N c E  
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E has the inclusion property 
E \ N has at least m elements 

Clearly the coefficients dij in 

( f .q--p)(x,y)= ~" dijBij(x,y ) 
(i, j)~h'g 2 

are 

dij  = (f" q-- P)oi, O j" 

So the conditions (3c) are equivalent with 

(f.q-p)o~,oj=O for (i,j) in E (4) 

N o w  the system of Eqs.(4) can be divided into a nonhomogeneous  and a 
homogeneous  part :  

(f.q)oi, oj=Poi, oj for (i,j) in N (4a) 

(f.q)o~,oj=O for (i,j) in E \ N .  (4b) 

Let's take a look at the condit ions (4b). 
Suppose that E is such that exactly m of the homogeneous  Eqs.(4b) are 

linearly independent;  we number  the respective m elements in E \ N  with 
(hi,k1) ..... (hm,km) and define the set 

H={(hl ,k l )  . . . . .  (hm,km)}~_E~.N (H from "homogeneous  equations"). 

By means of Lemma 3.2 we have 

i j 

(f'q)oi, oj=(q'f)oi, oj = ~ ~ qor,o~'fri,.~j" 
r = O  s = O  

Since the only nontrivial qor,o~ are the ones with 

(r, s)cD = {(io ,Jo),---, (ira,Jr,)} 

(f'q)oi, oj = 2 brsfri,sj 
(r,s)eD 

So the homogeneous  system of m equations in m + 1 unknowns  is 

As we suppose the rank of the coefficient matrix to be maximal,  a solution 
q(x, y) is given by 

Bio~o(x,y) ... Bi~jm(x,y) 
q(x,y)= .~oh~,jok~ "'" f.i~h~,j~k~ 

"~iohm,jok m . . .  fiimhm,jmkm 
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By the conditions (4a) and Lemma 3.2 we find 

p(x ,y)= ~, aijBij(x,y ) 
(i,j)eN 

= ~ Poi, o iBi.i(x,Y) 
(i,j)~N 

= ~ (q'f)ol,ojBii(x,Y) 
(i,j)~N 

i j 
= E Z Z qo,',o,~f,i,~,.iBi.i(x,Y) 

(i,j)eNr=O s = O  

= ~. b,'s( E Li,s~Bij(x,Y))" 
(r, s)eD (i, j)~N 

Consequently a determinant representation for p(x,y) is given by 

(i,j)eN2 floi,jojBij (X, y) "'" (i,~j)eNfimi,jmjBij (X' y) 

!i ... . p(x, y) = .. _i~176 .~mh~,jmk, 

I fiohm.jokm "'" flmhm,jmkm 

Remark  the fact that if all the interpolation points coincide with the origin, 
then these general order Newton-Pad6 approximants reduce to Levin's general 
order Pad6 approximants because in that case 

Bii(x, Y) = xiyj 
and 

~h-i+k-  j f 

f , , , ~ k - , ~ ~  co,o, 

If q(xk, Yz):#O for (k, l)eE then 1-(x,y) can be written as 
q 

1 
- (x ,  y) = ~ % Bij(x, y) 
q (i,j)~l 2 

Hence by the use of Lemma 3.2 

(i, j )  ~ 2  -.. E 

Theorem 4.1 describes which interpolation properties are now satisfied by-P. 
q 

Theorem 4.1. I f  q(Xk, Yt) =4= 0 for (k, I)sE then 

t3x ~ ~y~ (Xk, Yl) = (3X ~ 8y~ (Xk, YZ) 
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f o r  

(~, v)e / = ((m v) lO < u < rk, 0__< v < st} n ((~, v) l(k@, l(v))e E} 

(where Xk=Xk(.) for # = 0  . . . . .  r k and yt=yt(v) for v=O . . . . .  s,). 

I f  rk=O=s, this reduces to f (xk ,Yt )= (~)(xk,y ,)  for (k,l) in E. 

Proof Given  r k and  s t for fixed (Xk, Yl) in E, consider the following si tuat ion for 
the in terpola t ion points  with respect to E; the number  of dotted points  equals 
the n u m b e r  of elements in I. 

IN 

JE -----~____ E 

Jc I I t 
I t I 

- - i - - r q  
t(o) - - ~ - - ~  

k(O) I c k(r k) i E 

= IN 

We define 
i E = max {il(i,j)r 

JE-- max {j I (i,j)~ E} 

i c = max {i[Vj, 0 <=j ~=JE: (i,j)r 

j c =  max {jl V i, O <= i <= iE: (i,j)~ E} 

Using these definitions we rewrite E as 

E = E 1 u E  2 
with 

E 1 = {(i,j)[0 < i<=iE, O<j<jc  } 

E 2 = {(i,j)]O<=i<=ic, O<=j<=jE} 
and I as 

I = I l w I  2 
with 

11 = {(#, v)lO N # < rk, O N v < st, (k(#), l(v))e E1} 

I z = {(#, v)lO < # < rk, ON V <S,, (k(l~), l(v))~ E2} 

Because q(xk,Yt)4:0 for (k,l) in E we have 

f P ( - q ) ( X . y ) =  ~ ./u ..~(x. y) 
( i , j ) e ~ 2 \  E 

(6) 



304 A.A.M. Cuyt and B.M. Verdonk 

To check the interpolation conditions we write 

6~ u+ VBij 63 ~+ ~(Bio. Bo~) =~UBio 8~Boj 
8 x "  8 y  ~ 8 x "  8 y  ~ 8 x "  8 y  ~ 

If we subdivide N 2 \  E in 3 regions 

A = {(i,j)  li > iE} 

B = {(i,j) lj >J~} 

C = {(i , j)  li c < i < i E , j c  <J  <JE} 

it is easy to see that 

Finally 

O~' Bi o 

8~Boj 
8y ~ 

63U Bio 
c3 x ~ 

8~Boj  

=0  
(xk, y0 

=0  
xk ,y0  

=0  
[Xk,y9 

=0  
xk,y0 

for (i , j)  in A and (#, v) in I. 

for (i,j) in B and (#, v) in I. 

for (i , j)  in C and (#, v) in 12 

for (i,j) in C and (#, v) in 11 

(~k,y =0  for (#,v) in I and (Xk ,Y  l) in E 
8x" 8y v 

The most general situation for the interpolation points with respect to E is 
slightly more complicated but completely analogous to the one given in (6); we 
illustrate this remark by means of the following figure 

IN 

JC3 

JC2 . . . . . .  

J c l  . . . .  I . . . . .  
I 
I 
I 
I 

IC 3 IC 2 IC 1 tE 

_2"- 

IN 
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The proof in this case is performed in the same way as above. [] 

It is our intention to define these Newton-Pad6 approximants also for more 
general sets of interpolation points, since the Newton interpolating formula (3) 
can be written down for more general sets of data; we refer to [5] and [7]. 

5. Examples 

a) Univariate Newton-PadO Approximant 
Consider the Newton interpolation series for f(x,O) and choose 

D={(j,O)lO<=j<=m} 

N={(i,O)lO<=i<-_n} 

E~_ {(k,O)lO<k <n+m} 

If the points in {(k,O)ln+l<k<n+m} supply linearly independent equations, 
then the determinant representations for p(x,O) and q(x, 0) are 

m--1 

1 (X-Xo) . . .  1-I ( x -  x~) 
k=O 

q(x, O) fo.+ ~.oo .f,.+ ,,oo ... fm,+l.O0 

fOn+m,OO fln+m,O0 "'" fmn+m,O0 

p ( x , 0 ) =  

i-1 i-1 

i ro, ... iJ ,oon(x-  )l 
i = 0  k = 0  i = 0  k=O 

f O n +  1 .00  " "  f i n n +  1 ,00  

fOn+m,O0 fmn+m,O0 

which coincide with the formulas given in [4, p. 36] for the unlvariate Newton- 
Pad6 approximant.  

b) Numerical Example 
Consider 

and 

X 
f (x ,y)= 1-~ O. 1 - y  +sin(xy) 

Xk=k.u k = 0 , 1  . . . .  

y ~ = ( I - 1 ) . u  l=0 ,1  . . . .  

The Newton interpolating series looks like 

1 10 x(y+l//~)_b 10 x(y+ll/~)y + ... 
f (x ,y)= 1-# O. 1 + l / ~  x-~ O. 1 +]//~ 0.01 - u  
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Choose 
D =  {(0,0), (1,0), (0, 1)} 

N = {(o, o), 0,o), (o, 1), (1,1)} 
E = U vo {(2, 0), (2, 1), (0, 2), (1,2)} 

Writing down the system of equations (4b), it is easy to check that 

H = {(2, 1), (1, 2)} 

The determinantal formulas for p(x, y) and q(x, y) yield 

folo12 x y + ] / 7  y)= f12,01 f02,11 
q(x, fo, o~ L,,o~ fo,,,~ 

l o o ( 1  1 ) 
- 0 . 0 1 - ~  0 .1+V7 (y+V~) 

I 1 1 1 1 1 1 
~ Z foi,ojBo(x,Y) Z Z fll,o~Bi~(x,Y) Z Z foi, ljBij(x,Y) 

i=0 j=0  i=0j=O i=Oj=O 

p(x,y)= f02,01 f12,0x f02,11 

,fo,,02 ./'11.02 .fo 1,12 

with 
i 1 x 10 

Z Z fo,,ojBij(x,Y) =1+ -~ - -  x(y§ 
,=o~=o o . 1 + / ~  o . l + V ~  

I 1 0" 1 + 2 ] / 7  1/7 
2 fli,ojBij (X,y): x Jr 

/=oj=o 0.1 +1/7  0.1 (0.1 +]//7) 
1 1 

Y, Z fo,,~B~(x,Y)=(Y+l/7) + lOx(y+l/7) 
i=0 j=O 

Finally we obtain 

IN/D] E(x, y) = p (x, y) = O. 1 + ]//7 + x - (y + 1/7) 
q o. 1 + VT-  (y + VT) 

x(y+V% 
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