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General Order Newton-Padé Approximants
for Multivariate Functions

Annie A.M. Cuyt* and Brigitte M. Verdonk
Department of Mathematics U.L.A., Universiteitsplein 1, B-2610 Wilrijk, Belgium

Summary. Padé approximants are a frequently used tool for the solution of
mathematical problems. One of the main drawbacks of their use for multi-
variate functions is the calculation of the derivatives of f(x,,...,x,). There-
fore multivariate Newton-Padé approximants are introduced; their com-
putation will only use the value of f at some points. In Sect.1 we shall
repeat the univariate Newton-Padé approximation problem which is a
rational Hermite interpolation problem. In Sect. 2 we sketch some problems
that can arise when dealing with multivariate interpolation. In Sect.3 we
define multivariate divided differences and prove some lemmas that will be
useful tools for the introduction of multivariate Newton-Padé approximants
in Sect. 4. A numerical example is given in Sect. 5, together with the proof
that for p=1 the classical Newton-Padé approximants for a univariate
function are obtained.

Subject Classifications: AMS(MOS): 65D15 CR: 5.13.

1. Univariate Newton-Padé Approximants

The Newton-Padé approximation problem is a rational Hermite interpolation
problem.

Let f be a real-valued function, whose derivatives /¥ (k=0, ..., 1;) are given
in distinct points x;, j=0,...,I Let n and m be chosen such that

1
n+m+l=3 (r;+1)

j=0
" p(x)
re= {2
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The rational Hermite interpolation problem consists in finding an element Pin
R? (x) such that

(frg—p®(x)=0 k=0,...,r; for j=0,...,1 (1a)
Problem (1a) is the way to interprete the rational interpolation problem
(frq—p)x)=0 i=0,...,n+m

if some of the x; coincide.

In [11] is proved that we have at least one nontrivial solution of (1a) and
that two different solutions p,, q, and p,,q, are equivalent, ie. that p, ¢,(x)
=P, 4q,(x).

In [3] the rational Hermite interpolation problem is reformulated as fol-
lows. In a formal manner we can construct for f(x) the Newton interpolation
series

1= 3 ST x1 B

i—-1
where B;(x)=[] (x—x,) and f[x,,...,x;] is a divided difference with possible
k=0

coalescence of points x;.

Redefine
" p(x)
R (x)= { =)

(x)—ZaB(x)qx)—ZbB(x}

i=0
and calculate b such that
q

(f-g—=p)x)= Z d, B, (x). (1b)

kzn+m+1
It is easy to see that the problems (1a) and (1b) are equivalent. The Newton-

Padé approximant is now defined as the irreducible form Po o a solution 22 )

do q(x)

of (1a) or (1b). Now — Po itself does not necessarily satisfy (1a) or (1b) anymore.
)

More information about Newton-Padé approximants can be found in [3] and
(21

The following important theorem concerning the interpolation properties of

Z with p ;md g satisfying (1a) or (1b) was proved in [8, p.487]

Q)
Theorem 1.1. If g(x)+0 then f®(x )= (2) (x;) for k=0,...,r;and j=0,...,1.

This result will be generalized to the multivariate case in Sect. 4.
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2. Multivariate Interpolation Problems

For the sake of simplicity we restrict ourselves to the case of two variables
because the generalization to more than two variables is straightforward.
Consider for instance the following set of data at points (x;, y,).

. .l of . . . aof 0
Where a circle indicates that —f is given and a square indicates that ﬁf, —f,
0x Ox’ 0Oy
22 f
—— are provided, in addition to f;;= f(x;, ).
@y () LX)
This situation is equivalent with

—

2 ®

4

3 (2a)
1 e o o o

0 @ @

where we let x5 —» x4, x, »x;, y; =y, and y, - y,.

If we want to interpolate these (x;,y;,f;;) by using tensor product methods
following [10] then the data f;; and the numbering of the x; and y; have to be
given such that

a) x, is that x-coordinate for which the number of y-coordinates at which
data are given is maximal, x, should be that one of the leftover points for
which the same is true, and so on

b) y, is that y-coordinate for which the number of x-coordinates at which
data are given is maximal, ...

c) the data set has the inclusion property, meaning that when a point
belongs to the data set then the rectangular subset of points emanating from
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the origin with the given point as its furthermost corner also lies in the data
set.

For the situation (2a) this is clearly not the case. So we try to reformulate
the given problem by introducing a new numbering (x;, ;).

v
3

(2b)
2 °
1 o o
o

Xog=Xg, X1 =Xy, X3 =X{, X3 =X,, Xz =X,
Yor=V1s Vir=Vo» V2r=V2, V3:=V4, Var=V3-

The interpolation problems that can be reduced to situation (2b) are of course
not the most general ones. But it is important to gain insight in these si-
tuations before generalizing to other sets of data.

In the sequel of the text we shall assume that the given interpolation
problem is already structured as in (2b); this will enable us to adapt the
notation (x;, y;) instead of (x;,y).

3. Multivariate Divided Differences

Let the function values f;; be given in the points (x;, y;) with (i,j)eESIN? where
E has the inclusion property, i.e. if (i,j)eE then (k,l)eE for k<iand [<j

w

= [N

We know from the previous section how to deal with coalescent interpolation
points.

Consider the following set of basis functions for the real-valued poly-
nomials in two variables:

i1 j-1
Bij(xa)’)z n (x—x,) H =y
k=0 -0
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Clearly B;(x,y) is a bivariate polynomial of degree i+j.
In order to write a formal bivariate Newton interpolation series

fx,y)= Z CijBij(x’y) (3)

(i, j)eIN?

we introduce bivariate divided differences as follows

FIxollyol=f(x0,¥0)

fxo10y y]=f[x0][y1’""ys]—f[xo][yO’""ysfl]
' g Ys—Yo

S enx el —f x5 %, 1 1ol

X, —Xg

Sxos s x,1[yo]=

Sxo, - X1y, -5 ¥l
zf[xoa-'-7xr][y19""ys]_f[x0>""xr][y0a-"’ysfl]

ys_y()
___f[xl’"'axr][yOa...vys]_f[an--'7xr_1][y()""’ys]
xr_XO .

The last equality 1s not a demand of the definition but can easily be proved by
induction.

From now on we shall most of the times use the abbreviated notation f,, .
for f[x,,....x,1[y,---»¥,] with the convention thatf,, ,=0if p>r or s>gq.

pr.qs

Lemma3.l. f,, . is independent of the order of the points x,,,...,x, and y,, ..., y,.

Proof. The proof is only a modification of the proof for univariate divided
differences. [

When certain interpolation points in f,, .. coincide, we must bear in mind
the following remarks.

Let r, be a positive integer indicating that r,+1 of the x-coordinates in E
coincide with x; and let s; indicate that s;+1 of the y-coordinates in E coincide
with y;. These coalescent x- and y-coordinates are not necessarily consecutive.
To indicate which x- or y-coordinates coincide respectively with x; or y; we
introduce the following notation:

i(0),...,i(r) denote the numbers of the

x-coordinates coinciding with x;
and analogously
j),....j(s;) denote the numbers of the
y-coordinates coinciding with y;.
For the calculation of the divided differences we need then the starting values

ot f
P = 0<k=<r
f[xl(0)7 ,xl(k)] [yl] ox* _— SKET
al
f[xk][yj(O)""ayj(l)]ze—j; 0§l§5j
YV iy
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and

ak+lf
6xkayl (xi,¥,)
0<k<r, and 0=gI<s;

f[xi(o), sy xi(k)] [yj(O)a cevs yj(l)} =

The coefficients c;; in (3) are now given by [1,10]

Cij:f[xo, X1 o> -"’yj]=f0i,0j‘

So we can write in a purely formal manner

S, y)= Z fOi,OjBij(x’y)'

(i, HeN?

Before going on to the next section, let us formulate and prove the following
two lemmas which will play an important role in our discussion: the first
lemma is a generalization of the Leibniz rule for differentiating a product of
functions and the second one concerns the basisfunctions B;;(x, y).

Lemma 3.2.

(f-Alxps %, gs -5 3]

r

D IND I A E SN | NN -] ENOSE | AN

u=p v=q

Proof. The proof is by induction.
First we observe that for all p<r and for all q [9, p. 18]

(f &) [xps > X, 11 = Z VAR MINA LB RS A | BA
u=p

To proceed we assume that the product rule is valid for

(f g)[xps‘“’xr] [yq> ~~’ysA1]
with g<s—1and p<r.

Now

(f'g)[xpz'--axr] [yq’ ""ys]
15— 8prigs s
Ys— Y,

r s-—1
(Z Z fpuq+1v gurvs Z pru,qv'gur,vs~1)

.Vq pH=p v=qg+1 pu=p v=gq
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r K
1 f _1)°8 ,
y yq (uzpv ;+1 pu.g+1v pu.gv—1 nr,vs
r H

- z Z fpu,qv—l'(gur,v~1s~l_gur vs))
u=p v=q+1

—y ,;Zp §+1(fpu qv " Bur,vs (yv_yq)+fpu.qv 1 8ur,v_1s Ws—vo_1)
q v
= z fpu.qs'gur,ss

y yqu pv=q+1

+ z fpu,qq “Eur.gs
p=p

Jpu,qv gyr vs ( v—yq)+fpu,qv.gur.vi.(y$_yv))

= Z Z f‘pl.t.qv.gur,vs‘ D

H=p v=gq

Lemma 3.3. For k+1Zi+j the product

i J
Bij(x’y)'Bkl(x’y)= Z Z j';wBk«;—u.l-;—v(-x’y)

n=0 v=0

Proof. We write B;(x,y)=B;y(x, y)- By;(x,)
Since

i k+p—1
xy=Ux x,)=2<xu [T -

p=0 r=k
and

I+v—-1

o,xy)—ﬂ(y y,)—Zﬁ ﬂ =)
we have

Bkz(an’)‘Bij(XJ):(Bkz(x y): Bip(x, ))'BOj(an)

~ (% B Bo)

= Z Z auﬁka+u.l+v(x7Y)

v=0 u=0

which gives the desired formula for 4, ,=a -8,. 0O

A figure in N? will clarify the meaning of this lemma
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If we multiply B;;(x,y) with B,,(x,y) and k+[=i+], then in the product the
only occurring B, (x, y) are those with (7, 5) lying in the shaded rectangle.

L

4. Multivariate General Order Newton-Padé Approximants

Because Levin’s introduction of multivariate Padé approximants in [6] is
perhaps the most general one, we intend to generalize it for multivariate
Newton-Padé approximants. We will again restrict ourselves to the case of two
variables, because the generalization to more than two variables is only no-
tationally more difficult.

With any finite subset D of N? we will associate a polynomial

Z bij Bij(x’ y)
(i, jleD

and we will call D the rank of the polynomial.
Given the double Newton series

fx,y)= Z fOi,OjBij(x7Y)

(i, jyeN2

we choose three subsets N, D and E of N? and construct an [N/D], Newton-
Padé approximant to f(x,y) as follows:

p(x,y)= ), a;By(x.y) (N from “numerator”) (3a)
(i, )eN
q(x,y)= Y b;B,{x,y) (D from “denominator”) (3b)
(. )eD
(f-a—p).y)= Y  d;B;x,y)(E from “equations”) (o)
(i, DeN2 N E

We select N, D and E such that
D has m+1 elements, numbered (iy,jo), -« (ipsJm)
NcE
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E has the inclusion property
E~ N has at least m elements
Clearly the coefficients d;; in

(f-qa—p)xy)= Z dijBij(st)

(i, jleIN2
are

dijz(f'Q"P)Oi,Oj-
So the conditions (3¢) are equivalent with

(f'q_p)Oi,OjZO for (i,j) in E 4)

Now the system of Egs.(4) can be divided into a nonhomogeneous and a
homogeneous part:

(f q)Oi.OjZPOi.Oj for (ij)in N (4a)
(f* @i 0;=0 for (i,j) in ExN. (4b)

Let’s take a look at the conditions (4b).
Suppose that E is such that exactly m of the homogeneous Eqs.(4b) are

linearly independent; we number the respective m elements in E~ N with
(hy,ky),....(h,,k,) and define the set

H={(h,,k)),...,{(h,. k) } SE~N (H from “homogeneous equations”).

By means of Lemma 3.2 we have

i

(f* Doi.0; =" foi,0;= Z Z Gor,0s Jri.sj-

r=0 s=0

Since the only nontrivial g, o, are the ones with

(r,9)eD={(ig,Jo) ---»(imsim)}
(f q)()i,()j: Z b, fri,sj

(r,s)eD

So the homogeneous system of m equations in m+ 1 unknowns is

-_ﬁohl-jokl "f;mhlvjmkl l_’iu-jo 0
; : ; =[] (5)
inhm’jOkm fimhm-jmkm bim-jm 0
As we suppose the rank of the coefficient matrix to be maximal, a solution
q(x,y) is given by

Biojo(xay) Bimjm(x’y)

q(x,y)= -ﬁohl-joh ‘(;mhlsjmkl

ﬁohm Jokm Tt -f;mhm,jmkm
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By the conditions (4a) and Lemma 3.2 we find

p(x,y)= Y a;B;(x,y)

i, )eN
= Z pOI 0j (x y)
(i, peN
= Y. @ oi0;Bij(x.y)
(i, peN

z z 2 qOr Os f;’l sj U(x y)

(i, j)eNr=0 s=0

= 2 b (Y fusByxy).

(r,s)eD (i, )eN

Consequently a determinant representation for p(x, y) is given by

Y Jorioi Bl y) o X o Bifxy)
(i.)eN (i, ))eN
p(x,y)= 'f;Ohl-jOkl fimhbjmkx
fiohm.jokm ﬁmhmxjmkm

Remark the fact that if all the interpolation points coincide with the origin,
then these general order Newton-Padé approximants reduce to Levin’s general
order Padé approximants because in that case

B,j(x, y)=x'y’
and
ah~i+k—jf
ax"=10y* )00,

fih, k=
1
If g(x,,y,)+0 for (k,l)eE then 5(x, y) can be written as

1
E(x, y)= Z €;; Bij(x’ y)

(i, j)eN?

Hence by the use of Lemma 3.2

Q>§mw=euw—ﬂuw= S d,Bx)

q (i, )eN2\ E
Theorem 4.1 describes which interpolation properties are now satisfied by S
Theorem4.1. If q(x,,y)+0 for (k,))eE then

()
all+vf q
%" By = X V)= u—ayv(xk’yl)
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for
(.u7 V)EIZ {(#’ V)IO é,u' é rk’ 0 é v é sl} M {(.u" V)t(k(u)a l(V))EE}
(where x,=xy,, for u=0,...,r, and y,=y,,, for v=0,...,s).
If r,=0=s5, this reduces to f(x,,y,)= (g) (x4, y,) for (k1) in E.
Proof. Given r, and s, for fixed (x,, y,) in E, consider the following situation for

the interpolation points with respect to E; the number of dotted points equals
the number of elements in I.

IN
Jg £
Hst)‘—'—r—
o T T (6)
|
i e
I I
L) +—k -~
| o
—t—— N
k{0) 1¢ kir) ig

We define
i =max {i|(i, )€ E}
Jje=max{j|(i,j)e E}
ic=max {i|¥},0£j < (.j)eE)
Je=max {j|Vi,0<i<ip: (i,/)e E}

Using these definitions we rewrite E as

E=E UE,
with
E,={i.)I0Li<ip, 05j <)}
Ez = {(i,j)|0§i§ic’ 0§j é]E}
and [ as
I=1,01,
with

I ={(wI0=p=sr, 0 vEs, (k(w), l(V)eE,}
12: {(,Ll, v)|0§“§rk’ O§V§Sl, (k(/")’ l(v))EEZ}

Because g(x,,y,)*0 for (k,]) in E we have

Q>9mw= Y 4B %)

(i, )eN2 < E
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To check the interpolation conditions we write

6“+VBU._6”+"(Bm-Boj)_B“BioavBoj
oxtdy’  Ox*dy*  OxMoy

If we subdivide N2~ E in 3 regions
A={@)i>ig}
B={(i,)j>Jg}
C={GEJ)l i< iSip,jc <Jj §JE}

it is easy to see that

0" B,
— i =0 for (i,j) in A and (i, v) in I.
ox* (X3, 31)
0B, ;
S =0 for (i,j) in B and (u,v) in L.
ay (X1c5 ¥1)
0" B,
—a)-ciﬂ (xwl):O for (i,j) in C and (i, v) in I,
d"B,
R =0 for (i,j) in C and (u,v) in I,
_ Y Nxiory
Finally
e (1)
q . .
oy (XH”:O for (g, v) in I and (x,,y) in E

The most general situation for the interpolation points with respect to E is
slightly more complicated but completely analogous to the one given in (6); we
illustrate this remark by means of the following figure

N
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The proof in this case is performed in the same way as above. []

It is our intention to define these Newton-Padé approximants also for more
general sets of interpolation points, since the Newton interpolating formula (3)
can be written down for more general sets of data; we refer to [5] and [7].

5. Examples

a) Univariate Newton-Padé Approximant
Consider the Newton interpolation series for f(x,0} and choose

D={(,0)|0<j<m}
N={(0)0gi=n}
E2{(k,0)0<k<n+m)

If the points in {(k,0)|n+1=<k=<n+m} supply linearly independent equations,
then the determinant representations for p(x,0) and g(x,0) are

1 (x—xq) ... mﬁl(x—xk)
k=0

q(x,0=|fons1.00 Sinit.00 -+ Suni1.00

fOn+m,00 f1n+m,00 fmn+m,00

i1 i-1

'Zofol'.ookljo(x“xk) _Zofmi.oon(x"xk)

k=0

p(x,0)= f0n+1.00 fmn+1,00

f0n+m,00 fmn+m.00

which coincide with the formulas given in [4, p.36] for the univariate Newton-
Padé approximant.

b) Numerical Example

Consider
X .
f(x,y)=1+0.1_y+sm(xy)
and
x=k-m k=0,1,...
y=(I-1)-n [1=0,1,...

The Newton interpolating series looks like

1 10 — 10 .
(x,y)=1+ — x4 —x(y+yn)+——x(y+yYn)y+...
Jie) 0-1+Y/7 0-1+Y/x VAo 0tV
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Choose
D={(0,0),(1,0), (0, 1)}
N={(0,0),(1,0),(0,1), (1,1)}
E=Nu{(2,0),(2,1),(0,2), (1,2)}
Writing down the system of equations (4b), it is easy to check that
H={(2,1),(1,2)}
The determinantal formulas for p(x, y) and g(x, y) yield

1 x y+]/;
a5, 9=\ fo3.01 fiz.01 Joz1a
Jor02 firoz Jor1z

100

:0-01—7:(1 0-1 V“yﬂ/n))

Z Az,ofOi,OjBij(x’y) 2 Z fu o; x ») Z Z fol 1]sz(x y)

(=

i=0j i=0 j= i=0j=0
p(x, y)= Joz2,01 f12,01 Joz.11
Jot.02 fit.02 Jo1,12
with
1 1 x 1 l/
i, ( + 7[
i:zojzzof‘) 05 Bl 1) = 0-1+]/71: 0-1+)/n v
L 0- 1+21/n Vr -
Sii,05Bifx, y)= =x(y+1'n)
;o,zo ey A+ 010-147/7) 4

o1 B )= (y+1/ 1) +10x(y+)/ 1)

I
(=]

M»—
llMo—-

i

Finally we obtain

) 0-1+Yn+x—(y+ )
N/D L V) ==(x, y)= — -
NI =pn =2 T L
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