Computing 66, 309-320 (2001) .
Computing

(© Springer-Verlag 2001

Printed in Austria

A Remarkable Example of Catastrophic Cancellation Unraveled
A. Cuyt, B. Verdonk, S. Becuwe, and P. Kuterna, Antwerp

Received December 22, 1999; revised May 5, 2000
Abstract

In this paper we reinvestigate a well-known expression first published in [7], which is often used to
illustrate catastrophic cancellation as well as the fact that identical output in different precisions does
not imply reliability. The purpose of revisiting this expression is twofold. First, we show in Section 2
that the effect of the cancellation is very different on different IEEE 754 compliant platforms, and we
unravel the underlying (hardware) reasons which are unknown to many numerical analysts. Besides
illustrating cancellation, this expression also counters the common misbelief among many numerical
analysts that a same program will deliver identical results on all IEEE conforming systems. Second, in
Section 3 we use, illustrate and comment upon the cross-platform didactical tool Arithmetic Explorer
developed at the University of Antwerp, by means of which we performed the bit level analysis of the
expression evaluation under investigation on the different machines. We believe that this tool, which is
freely available from the authors, can be of use to all of us teaching a first numerical analysis course.

AMS Subject Classifications: 65-04, 65G10, 65Y99.

Key Words: Computer arithmetic, IEEE floating-point, catastrophic cancellation.

1. Catastrophic Cancellation

Subtraction of nearby floating-point operands with equal signs can be a dan-
gerous operation. Several examples hereof can be found in the literature and are
often used when teaching the principles of rounded arithmetic in a numerical
analysis class.

Let us denote by F(f,t¢,L,U) the set of normalized floating-point numbers
+dy-dy...di_1 x f° where

0<d; <p—-1
dy #0
L<e<U

In order to be able to take care of overflow, the set is enlarged with the repre-
sentations £1.0...0 x fY*! for signed infinity. In order to take care of underflow
the set is also enlarged with the denormalized numbers +0.d, ...d,_; x f*, where
+0.0...0 x f* represents signed zero. This enlarged set will be denoted by

=F(p,t,L,U)

310 A. Cuyt et al.

Because the set of floating-point numbers is only a discrete approximation of the
real number set, each arithmetic operation in F usually involves a rounding error.
Let us introduce the notation x ® y for the computer arithmetic approximation of
the mathematical operation x % y where * € {+, —, x, +}. IEEE-compliant arith-
metic guarantees exactly rounded results, meaning that for x,y € F

x@y=0O*y)

where
O:R—=F:x— Q)

rounds x to its nearest floating-point neighbour (O(x). Other roundings besides the
usual round-to-nearest are possible, but rounding to the nearest neighbouring
float with break to even is an unbiased and monotone rounding. It is therefore the
default. If x % y is undefined in R (e.g. +00 — (+00),0/0,...), then the represen-
tation of O(x * y) is NaN (Not-a-Number).

In the case of cancellation during subtraction one has to distinguish between
benign and catastrophic cancellation. The former occurs when two nearby, exact
operands x and y are subtracted. For instance, with f=2 and =4, the
subtraction of x= ((x) =1.000 x2¢ and y=(y) = 1.111 x 2¢7! yields
z=x0y=x—y=1000x 2% The latter occurs when at least one of the
operands is inexact. For example, if x =, y =sin (), =10 and ¢ = 10, one
obtains

x ~ Ox) = 6.666666667 x 1072
y= Q) = 6.661729492 x 1072
O (x) & O(y) = 4.937175000 x 1073

Although the subtraction is exact, the last 3 digits in the approximation for x — y
are meaningless because they do not originate from reliable digits in x and sin(x).

They are only meaningful for O(x) — O(y) = Okx) & O©»).

2. A Remarkable Example

The following example was found in [7] where it was used to illustrate that it is not
mathematically correct to conclude that a floating-point result is reliable if the
same leading digits are delivered in single and double or in double and extended
precision. For the expression given below this is the case, while in fact none of the
leading digits in the output is correct. But a lot more can be told about this
example, which is really a remarkable illustration of catastrophic cancellation.

When we want to compute, for a = 77617 and b = 33096, the expression

y = 333.75b% + a*(11a*p* — b° — 1216* — 2) + 5.55° +% (1)

A Remarkable Example of Catastrophic Cancellation Unraveled 311

2576461 ... x 10"
2 6.33825... x 10%
21.1726. ..

2 -0.82739%. ..

we obtain quite a lot of different results depending on the hardware platform on
which we run our program or the precision used for the literals, variables and for
the evaluation of the expression. Note that in a C-program all literals are, by
default, converted to double precision at compile-time, while in FORTRAN
constants with exponent letter E or without an exponent part are by default of the
kind KIND (0. 0), meaning that they are converted to single precision [4].
Luckily, this is of no importance for the evaluation of y since all literals in the
expression for y are exactly representable in the smallest basic format of single
precision (float in C, REAL in FORTRAN), which corresponds to the floating-
point set F(2,24,—126,127). For completeness we shall also discuss the output
obtained using Matlab or using interval packages and compilers such as PRO-
FIL/BIAS [6] and Sun Forte Fortran.

Let us have a look at what happens and why it is happening. In the sequel, we
assume that the expression for y is evaluated in one single compound statement,
rewriting the integer powers of @ and b as multiplications. In this way we only use
the basic operations.

One distinguishes 4 different floating-point architectures, namely the extended-
based (such as the Intel PC-family), the double-based (such as the IBM RISC
machines), the single-double based (such as the Sun Sparc machines) and the
single-double-extended based (such as VAX). It is therefore important that we
analyze the effect of evaluating y, using on one hand architectures that support
one single widest precision and on the other hand those that support all dif-
ferent precisions in hardware. We concentrate our detailed analysis on the ar-
chitecture of the Intel PC-family and the Sun Sparc, although the test programs
were also executed on other architectures, without adding different output to the
list.

2.1. Intel

When we perform our computations on an Intel personal computer equipped
with a Pentium chip or with an older mathematical coprocessor, we have a
choice between several ways to evaluate this expression. The Intel is an extended-
based machine, meaning that its floating-point unit consists of extended preci-
sion registers (f=2,t=64,L = —16382,U = 16383) and primarily produces
extended format results. If one wants to perform certain computations in single
or double precision, it is not sufficient to declare the variables and occurring
literals accordingly. To mimic pure single and double precision (in the absence of
overflow and underflow, which do not occur here), one also has to set the

312 A. Cuyt et al.

rounding precision (alternatively called precision control) to 24, respectively 53
bits. During the evaluation of a single compound statement, intermediate results
are then rounded to 24, respectively 53 bits precision, rather than to the default
64 bits. This of course has an effect on the final result for y. How to set and get
the rounding precision is language and compiler dependent and is very often
poorly documented. The results below were obtained using a Borland C++
compiler:

(2.1a) if the variables a,b and y and the occurring literals are declared single
precision and if the default rounding precision of 64 bits is not changed,
then one obtains for y the value 5.76461 ... x 107;

(2.1b) if the variables a,b and y and the occurring literals are declared double
precision and if the default rounding precision of 64 bits is not changed,
then one also obtains for y the value 5.76461 ... x 10'7;

(2.1c) if the variables a,b and y and the occurring literals are declared single
precision and if the rounding precision is set to 24 bits, then one obtains for
y the approximation 6.33825... x 10%;

(2.1d) if the variables a,b and y and the occurring literals are declared double
precision and if the rounding precision is set to 53 bits, then one obtains for
y the totally different value 1.1726.. ;

(2.1e) if the variables a,b and y and the occurring literals are declared extended
precision and if the default rounding precision of 64 bits is not changed,
then one also obtains for y the value 5.76461 ... x 107,

From the above results, one would think that the more ‘precise’ results are (2.1a),
(2.1b) and (2.1e) because of the larger precision for the intermediate results and
because of the fact that the outcome is the same. A naive programmer is tempted
to decide that the result obtained in (2.1a), (2.1b) and (2.1e) is a reasonable
approximation for y. He or she could not be more wrong! A suspicious pro-
grammer may turn to more powerful tools and repeat the experiment on a Sun
Sparc workstation.

2.2. Sun

The Sun Sparc is a single—double based architecture that supports single and
double precision floating-point arithmetic in hardware and also offers a library for
quadruple precision arithmetic, i.e. f =2, t =113, L = —16382, and U = 16383.
When computing y the following results were obtained using the Sun Forte C+ +
compiler:

(2.2a) if all literals and variables are declared single precision, then all interme-
diate results are also single precision and the value obtained for y is
6.33825... x 10%;

(2.2b) if all literals and variables are declared double precision, then all intermediate
results are also double precision and the value obtained for yis 1.1726. . .;

A Remarkable Example of Catastrophic Cancellation Unraveled 313

(2.2¢) the only possible attempt left is to use the quadruple 113 bit precision for
literals and variables, which delivers for y the approximation 1.1726.. ..

Now the single and double precision results don’t exhibit the same leading digits
but double and the much more precise quadruple do, so one is tempted to con-
clude that (2.2b) and (2.2¢) provide a reasonable approximation for y. Wrong
again! Not even the sign is correct.

2.3. Matlab, Computer Algebra Systems and Interval Computations

When using Matlab Version 5.3.0 on either Intel Pentium or Sun Sparc, the
outcome of the computation is always 1.1726.... The explanation of this phe-
nomenon can be found in [5]: current versions of Matlab set the precision control
bits of the Intel PC processors such that internally double precision is mimicked
instead of using the full extended precision at their disposal. Hence the hardware
architecture doesn’t really make a difference anymore. This on one hand causes
the build-up of larger rounding errors but on the other hand guarantees identical
output on different platforms.

Maple V Release 5.1 on Intel always returns —1.18059 ... x 10?! when using the
underlying hardware floats. The result —1.18059... x 10?! is also obtained in
Matlab when programming the expression for y using integer exponents instead of
multiplications. So we assume Maple algebraically preprocesses our expression
for y.

Mathematica Version 4.0.2, when computing with hardware floats on either Intel
Pentium or Sun Sparc, returns one of 1.1726... or —1.18059 ... x 10%', depending
on some small syntactic differences when inputting (1). Whether the integer co-
efficients in the expression for y are entered “exactly” (without decimal point) or
“inexactly” (with .0 added) actually makes a difference. In fact, only replacing 11
by 11.0 and leaving the other integer coefficients unchanged is sufficient to obtain
one or the other result. Even if all integer coefficients in the expression are entered
exactly, the result returned is different, depending on whether the values for a and
b are entered as integers or with a decimal point. Apparently, small (irrelevant)
syntactic changes have large semantic consequences.

The multiprecision arithmetic implemented in Mathematica and Maple is not very
useful for the evaluation of y, because the working precision must be specified by
the user and this naturally implies some guess work. At least one significant digit
is returned for precisions starting at 37 decimal digits. Before that, both systems’
results are different, unpredictable and unreliable.

The double precision interval output for the expression under consideration is
[—8.264 ... x 10*,7.0835... x 10*!]

using either PROFIL/BIAS (with the gcc-compiler version 2.95.1), the Fortran
compiler (option -xia=strict) from Sun Forte or the Arithmetic Explorer tool

314 A. Cuyt et al.

discussed in section 3. This clearly signals that something is wrong and that one
should worry about the reliability of the output!

2.4. Mathematical Analysis

Although all the computed results mentioned above are precise, they are not at all
accurate. It is not difficult to find out what causes this confusion. Why exactly
things go so wrong on the different platforms is explained in the next section.
When we rewrite y as

z=333.75b% + & (11a*b* — b° — 121b* — 2) 2)
x = 5.568 (3)

e

re 2b

then
z=—7917111340668961361101134701524942850
x = +7917111340668961361101134701524942848

z+x=-2

In other words, z and x have 35 out of 37 decimal digits in common. Conse-
quently, whenever the precision is not large enough, rounding errors will con-
taminate the last few bits in the floating-point representation of z and x. This
contamination can be such that either z ® x = 0, in which case y =~ 5; = 1.1726.. . .,
or z and x differ in the last few bits of their floating-point representation, in which
case y ~ z @ x. One needs at least 122 bits precision to get z + x right (2'?* ~ 10°¢)

and the significant digits in the final result y then follow automatically. Actually

54767

2.5. Bit Level Analysis

Why do both architectures exhibit a similar behaviour while delivering totally
different results, namely respectively 5.76461 ... x 10! and 1.1726.. ., misleading
the programmer in both cases?

Let us first consider the Intel platform. The fact that this platform is extended-
based has implications for expressions evaluated in one single compound state-
ment. Let us denote by

E(X1y. . yX;Clye ey Cn)

A Remarkable Example of Catastrophic Cancellation Unraveled 315

a mathematical expression involving the basic operations +, —, X, +, rem and NE
the variables xy, ... ,x, and the literals ¢y, ..., c,. As we have seen in Section 2.1, a
mathematical expression E can be evaluated in many ways on an Intel platform,
dependent on the rounding precision and the precision of the variables and lit-
erals. We shall therefore denote by

El) 1€{24,53,64}, me{s,d.c}

the floating-point value of the mathematical expression E when evaluated in a
single statement on an Intel platform with the rounding precision set to ¢ and with
m the precision used for the variables and literals. Note that, since we assume
absence of underflow and overflow during the evaluation of E, the exponent range
has no influence on the evaluation and hence only a precision-dependent notation
is introduced. The rounding precision can be either 24 for single, 53 for double or
64 for the default extended precision. The possible values for m are s,d or e to
indicate that the variables and literals are declared single precision as in (2.1a) and
(2.1c), double precision as in (2.1b) and (2.1d), or extended precision as in (2.1e).
Clearly, one should choose the rounding precision ¢ at least as large as the pre-
cision of the variables and constants, meaning that in Et(fs), t>24 and in Ef_ld),
t > 53. It is now quite easy to see that

)) Xi,...,x, € F(2,24,-126,127)
Eeas = Fota = Boae © {cl, Cyen € F(2,24,-126,127)
Since these conditions are fulfilled for the expression y given by (1), this explains
why (2.1a), (2.1b) and (2.1e) return the same value on the Intel platform. In fact,
in all three cases the value of y is evaluated in precisely the same way, with
intermediate results rounded to 64 bits precision. The fact that variables and
literals are declared single or double precision may mislead the numerical analyst
into thinking that the evaluation of the expression is performed in single,
respectively double precision. This is only the case if also the rounding precision
is set to 24, respectively 53, as in (2.1¢) and (2.1d).

In contrast to the Intel personal computer platform, the Sun Sparc platforms are
single-double based architectures. This implies that during the evaluation of an
expression involving only single precision variables and constants, all intermedi-
ate results are rounded to 24 bits. If an expression involves only double precision
operands, then all intermediate results are rounded to 53 bits precision. This is
also the case when single and double precision operands are mixed, since then the
principle of type promotion comes into play as soon as a double precision op-
erand is involved. For a Sun platform, the floating-point value of a mathematical
expression E is therefore only dependent on the precision of the variables and
literals in the expression. We therefore introduce

Efns) m € {s,d,q}

316 A. Cuyt et al.

to denote the floating-point value of the mathematical expression £ when eval-
uated on a Sun platform with m the precision used for variables and literals. The
possible values for m are s for single precision as in (2.2a), d for double precision
as in (2.2b) and ¢ for quadruple precision as in (2.2c).

Taking these architectural aspects into consideration, we can explain why, when

E =y as given by (1), then yéfas on Intel is equal to on Sun and yS(S), while yé?d is
equal to de .

It still does not explain, however, why yX) and yd are so different, nor why y;)
equals ytg , the result obtained on Sun in quadruple precision. If we look at what
happens at bit level, then the effect of finite precision rounded arithmetic on this

expression can be further detailed.

Let us look at the machine representations for z and x, respectively defined by (2)
and (3) and obtained on the different platforms and in different precisions. One
can check that [3] when rounding in double and quadruple precision

NI
(
q

= —x‘(]S)

and hence

S _050a0b~1.1726...
) =050a0b~1.1726...

which explains why yy) and yq) have the same leading digits. However, due to the

catastrophic cancellation in z(s> +x() and in z< >—i—xés), none of these leading

digits is correct. On the other hand when roundmg in single precision, one can
check that

¥ = —1.01111101001 1000 11110111 x 2'*
xS = 41.011 11101001 1000 1111 1000 x 2'%?
Z_E) +XES) =1x 2122 23

_ 299

Since

1 1
2% = 52100 =5 X 10240 ~ 6.3 x 10%

one can understand why

W) =29 @ x99 0050a0b~ 63 x 10%

A Remarkable Example of Catastrophic Cancellation Unraveled 317

On the Intel platform a similar situation occurs when computing in extended
precision. One can again check that
1
Zode
=—1.01111101001 1000 111101110011 1100 11100101 001000100101 101100100001 x 2!

()
Xode

=41.011 111010011000 111101110011 110011100101001000100101 101100100010 x 2'*

2o tXghe = 1%

_ 259

2122—63

Hence

W =2¥5050a0b==x10240050a0b

10%®0.50ab~5.0x 10"

~
~

N = N =

Both in single and extended precision, the rounding error in computing z and x is
such that z & x becomes the dominant term in the expression y, yielding a totally
erroneous final result for y.

3. Arithmetic Explorer

The mathematical and bit level analysis in the respective sections 2.4 and 2.5 were
performed using the tool Arithmetic Explorer developed at the University of
Antwerp (UIA). For expression (1), the exact result was computed as in Fig. 1
while the effect of catastrophic cancellation is illustrated in Fig. 2.

This tool was initially developed for didactical purposes, in the framework of the
course Computer Arithmetic and Numerical Techniques [3]. It is now being
further extended into a full-fledged, performant and powerful arithmetic envi-
ronment called Arithmos.

In the Arithmetic Explorer, it is possible to specify that computations be per-
formed, not by default in the hardware IEEE singles or doubles, but if desired in a
user-defined set of floating-point numbers. By choosing a small precision ¢ and a
limited exponent range, students can better follow the computations at the bit
level. Moreover, in a low-precision floating-point set, one can more easily zoom in
on the unmistakable effects of data and rounding error, cancellation, ill-condi-
tioning and numerical instability, and one can develop a better feeling for
computer arithmetic issues.

We have taken care to implement the tools’ floating-point arithmetic in full
compliance with the philosophy of the IEEE 754 and 854 standards for floating-
point arithmetic [1, 2]. Except that users can freely specify the precision and
exponent range, all aspects of the IEEE standards are implemented and can be

318 A. Cuyt et al.

2 Arithmetic Explorer - Untitled EEE
Fie Edit Seach Buttons Program Options Help

e 1 i % O 4 = o e 5

Parser Argument : {(z)
Rational : -79171113406683961361101134701524942850

Parser Argqument : (x)
Rational : 7917111340668961361101134701524942545

Parser Argument : {z+x)

Rational : -2
Parger |_ O]]
Parser Argument : (v}
Rational : -G4767/66192 " Pase I @ParseAHl x CIearAIIl ? Help |
a=77617
h=33096
z=33375/100%h *b b b b h+aTa® (11%a s h"h-h7v
printiz)
x=55/10"b*b*b*b*b*b*h*b
printix)
print (z4x)
y=z+x+a/ (2%D)
print(y)
Duput format =] B3

Floating-point————— [~ Integer and Rational—

¥ Decimal Float [T | Decimd Float

v Binary Float ¥ Rational

" Binary Representation " Flags 4 | j

" Hexadecimal Representation | | T Earameters

[Rational

¥ Flags

[~ Parameters Parametess ol x]

™ Werbose autput ‘(;Pﬁ\oat\qg-pownt e i? Eatin‘na\
= Base & 2 ¢ 10
— 1
v oK SYEl ool | X Caneel | fihee | Frecizion | 24 v|

Erponent | "I
Range | =126
| U=127

Rounding—— i Rounding

& Hearest (] a0 i Rational (%)
It ST STk O Eerae] 0 Dawhvard (0] & Wediant (]
Floal stack = [FtenwallF] & [Ftewal (=] s
“ Rational stack

ok | o] Xeees| 7 owep |

el

| Exponent OK. | Prec 28 EopS [Rndi¥ [Oper NONE | Rel NONE | Cony: NOME | Elem: NONE

Figure 1. Exact result

visualized, including exact rounding, denormals, signed zeroes and infinities, Not-
a-Numbers and exception flags. In this way, students can discover the intriguing
details of floating-point arithmetic. While a similar analysis can be done with
other tools, such as Mathematica or by direct programming using a traditional
compiler, the result is often a time-consuming and confusing task, obscuring more
points than one is trying to make.

A Remarkable Example of Catastrophic Cancellation Unraveled 319

%2 Arithmetic Explorer - Untitled [_ (&3] x]
File Edit Seaich Buttons Program Options Help

o efes] Sl ol>] 2| o 2| Bl zlax 4l

Parser Argument : {z})

DecFloat t —-7.9171111899001066159329E9LF0824F08212"36
BinFloat : -1.01111101001100011110111*1111010
Flags : INEXACT
Parser Argument : {x})
DecFloat : 7.9171118237254067270476598631758028"36
EinFloat : 1.01111101001100011111000*1111010
Flags : INEXACT Parser =l
Parser Argument : {z+X) " Paise I FPaise Alll X Clearal | ? Help |
DecFloat : 6.33825300114114700748351602683%29
BinFloat : 1.00000000000000000000000*1100011 a=77617
Flags : NCME h=33096
z=335.75*b*h*b*b*h*h+atar (11*ata*h*o-h*b*h
Parser Argument : (y) print(z)
DecFloat : 6.33825300114114700748351602688%29 %=5.5*h*h*h *h *h *hth th
EinFloat : 1.00000000000000000000000*1100011 print (%)
Flags : IMEXEACT print [z+x)
y=z+x+al (27h)
print (v}
Duput format _ O] =]
Floating-point——— [Integer and Rational ——
¥ Decimal Float 7| Decima Flagt
¥ Binamy Float ¥ Rational
[Binamy Represeritation " Flags 4 | ﬂ
" Hexadecimal Repiesentation | | [T Earamstens
[Rational
v Flags
[~ Parameters Parameters [=lES
™ Yerbose output ‘(_:'Pflualiqg-puinl D __(; ﬁatic:na\
= Base 7.2 €10
=]
¥ Ok Ed Apply | X LCancel | 7 Help | Brecision m
Exponent |8 v|
Range | L=-126
=127
~Roundhg———— — Rounding
@ Mearest [M] Upward [U) & il %]
— Input sting stack " Zen[Z) ((: LDiownward [D] ((: Mlediani]
: Float stack Interval [F1] bt (B T
‘- Rational stack
' 0K I 0 Apply | X Cancel | % Heh |
et
| Exponent OK | Prec:24 Exp:® | Rnd:N | Oper NOME | Rel NONE ‘ Corw: BASEZ | Elem: NONE

Figure 2. Effect of catastrophic calculation

The implementation of Arithmetic Explorer was realized via C++ classes. Full
use of operator overloading enables a user, in addition to using the environment
to evaluate simple expressions, to run C/C++ code from within the Arithmetic
Explorer, with a user-specified precision and exponent range, rather than with the
IEEE single or double precision hardware floats.

320 A. Cuyt et al.: A Remarkable Example of Catastrophic Cancellation Unraveled

Except for floating-point arithmetic, the current version of Arithmetic Explorer
also supports rational arithmetic and interval arithmetic (where the intervals
have endpoints in the user-defined set of floating-point numbers) as well as all
type conversions. In a next release, the underlying floating-point implementa-
tion (developed for didactical purposes) will be replaced by a fast IEEE
compliant multi-precision floating-point library, for use with large precisions
and exponent ranges. This implementation will be the basis for sharp multi-
precision floating-point interval arithmetic in Arithmos v1.0. In the near future,
interval arithmetic with rational endpoints will also be included. Future plans
for Arithmos v2.0 include polynomial arithmetic (with polynomial coefficients
of all basic types), complex arithmetic, reliable graphics and hybrid expression
evaluation. More information on the Arithmetic Explorer and Arithmos can be
found at http://win-www.uia.ac.be/u/cant/ or can be obtained from the
authors.

References

[1] ANSI/IEEE Std 754-1985. IEEE standard for binary floating-point arithmetic. ACM SIGPLAN
22, 9-25 (1987).

[2] ANSI/IEEE Std 854-1987. IEEE standard for radix-independent floating-point arithmetic. New
York, 1987.

[3] Cuyt, A., Verdonk, B.: Computational science and engineering at Belgian universities — Scientific
computing for the CS student. IEEE Comput. Sci. Eng. 4, 79-83 (1997).

[4] ISO/IEC. International Standard: Information Technology — Programming Languages — Fortran.
1991. Reference number ISO/IES 1539, 1991.

[5] Kahan, W.: Matlab’s loss is nobody’s gain. Technical report, UCB, 1998.

[6] Kniippel, O.: PROFIL/BIAS - a fast interval library. Computing 53, 277-287 (1994).

[7] Rump, S. M.: Algorithms for verified inclusions — theory and practice. In: Reliability in Computing
(Moore, R. E., ed.), pp. 109-126. New York: Academic Press, 1988.

Annie Cuyt
Research Director FWO-Vlaanderen
Department of Mathematics

Brigitte Verdonk
Postdoctoral Fellow FWO-Vlaanderen
Department of Mathematics

and Computer Science
Universiteit Antwerpen (UIA)
Universiteitsplein 1

B-2610 Antwerp (Wilrijk)
Belgium

e-mail: cuyt@uia.ua.ac.be

Stefan Becuwe

Research Assistant
Department of Mathematics
and Computer Science
Universiteit Antwerpen (UIA)
Universiteitsplein 1

B-2610 Antwerp (Wilrijk)
Belgium

e-mail: sbecuwe@uia.ua.ac.be

and Computer Science
Universiteit Antwerpen (UIA)
Universiteitsplein 1

B-2610 Antwerp (Wilrijk)
Belgium

e-mail: verdonk(@uia.ua.ac.be

Peter Kuterna

Research Student
Department of Mathematics
and Computer Science
Universiteit Antwerpen (UIA)
Universiteitsplein 1

B-2610 Antwerp (Wilrijk)
Belgium

e-mail: kuterna@uia.ua.ac.be

