
ANNIE CUYT1 and BRIGITTE VERDONK2

On the integration of
floating-point, interval, rational and symbolic computation

In choosing an appropriate computer representation for real numbers to perform scientific computations, two main
aspects are usually taken into account: the speed of the computation and the reliability of the output. As is well-
known, increasing one usually goes at the expense of the other and there is a trade-off to be made.
Recently several commercially available products have tried to combine the best of several worlds as far as scientific
computing is concerned. We refer for instance to communication tools between technical computing environments
such as Matlab, symbolic computing environments such as Mathematica and Maple and the traditional programming
languages Fortran and C. Two very common remarks about this type of integration are the following. First of all, one
cannot freely combine packages and sources of one’s own choice. Second but not least, speed is a serious drawback
because no executable code of a mixed floating-point and exact program can be generated.
Therefore we have initiated the development of the following two tools. NumSciLab allows for an easy integration of
code (C, Fortran, Pascal, Ada, Mathematica, . . .) into a customizable library and concentrates on the data integration
of different arithmetic representations for numeric and symbolic entities. FlPtSim was originally designed as a
didactical environment offering simulation of floating-point code in different precisions, but now comes with added
features such as multiple precision, interval, rational and rational interval arithmetic, all available directly in
C++.
We assume throughout that the reader is familiar with the notions of floating-point, rational, interval and multiple
precision arithmetic. In a first section we briefly discuss an example that motivates the need for having different ma-
chine representations of numbers at hand. The second and third section respectively summarize the new developments
mentioned above.

1. Motivation

The problem we consider, consists of finding the zeroes of the polynomial

p1(x) = (x− 1)(x− 2) . . . (x− 20)− 2−23x19 = p0(x)− 2−23x19

This problem was first discussed by Wilkinson [1] who reports that the roots of p1(x) are given by

1.000000000 10.095266145± 0.643500904i
2.000000000 11.793633881± 1.652329728i
3.000000000 13.992358137± 2.518830070i
4.000000000 16.730737466± 2.812624894i
4.999999928 19.502439400± 1.940330347i
6.000006944
6.999697234
8.007267603
8.917250249
20.846908101

Modifying the coefficient of x19 in p0(x) in the 31st bit apparently drastically influences the roots, shifting 10 of
the 20 roots to the complex plane. As explained in [1], this indicates that the problem we are dealing with is very
ill-conditioned. There are different ways to obtain reliable bounds for the roots of p1(x) = 0. We have not looked
for a specific algorithm for polynomial root finding because our aim is to discuss issues which are independent of
the chosen algorithm but related to the particular computer arithmetic representation.

In our discussion we use regula falsi to locate the real roots of p1(x) = 0, because it is a broadly-used and simple
method which provides bounds for the roots. Given (x`, p1(x`)), (xh, p1(xh)) such that p1(x`) < 0, p1(xh) > 0, the
regula falsi iteration is given by

xn = xh + p1(xh)
xh − x`

p1(x`)− p1(xh)

if p1(xn) < 0 then x` = xn else xh = xn

Let us first consider the implementation of regula falsi in floating-point arithmetic. We remark that the coefficients of
p1(x) cannot be represented exactly in IEEE double precision (at least 57 bits precision are needed). But even with
the coefficients stored exactly, we still need to evaluate p1(x) at each iteration point xn (Horner’s scheme is applied).
The accumulation of data and rounding errors implies that in floating-point arithmetic, we do not compute the
roots of p1(x) = 0, but rather of a perturbed polynomial p̃1(x) = 0. While the regula falsi method mathematically
guarantees to generate bounds for the roots, its implementation in floating-point arithmetic falls short of this goal
as can be seen from the following output. We display the bounds x̃` and x̃h generated by the double precision
implementation of the regula falsi iteration to locate the root z9 = 8.917250249. Apparently

z9 6∈ [x̃`, x̃h] = [8.9172245567595, 8.9172249342899]

because
p̃1(x̃`) > 0 , p̃1(x̃h) < 0 whereas p1(x̃`) > 0 , p1(x̃h) > 0

Hence, we need to look at other arithmetic representations in which to implement the regula falsi method, if we
want to maintain its mathematical properties.

A possible choice of representation to avoid the above problems is to perform the computations in rational arithmetic.
With rational coefficients and only the 4 basic operations {+,−,×, /} involved, all computed entities are rational
and no approximations need to be made. Instead of a problem of accuracy, here efficiency causes the method to
be non-applicable. This becomes quite evident if we take into account that the numerator and denominator of
p1(x`) and p1(xh) quickly become very large. Rational arithmetic clearly needs to be combined with polynomial
root-finding algorithms adapted to this representation. Several such algorithms are implemented in Saclib, a library
of C programs for computer algebra [2].

Yet another arithmetic representation that can be used to tackle the above problem is interval arithmetic. Using
this approach, the coefficients of p1(x) are represented by enclosing intervals and all computations are performed in
interval arithmetic. However, since the problem we consider is very ill-conditioned, the application of regula falsi
yields very large intervals which do not give any information on the location of the roots.

As in floating-point arithmetic, we could choose to increase the precision of the representation and perform the
evaluations in multiple precision interval arithmetic. This allows to push the rounding error further back to less
significant bits and hence the effect of intervals becoming too large is slowed down. Like in multiple precision
floating-point arithmetic however, the question of how to determine the precision in order to keep the intervals
reasonably bounded is not a trivial one in general.

Also note that feeding the polynomial p1(x) into a symbolic computing environment does not solve the problem
since p1(x) cannot be factored explicitly.

Conclusions that can be drawn from our analysis do, as can be expected, not favor one approach above another in
general. However, what can be concluded is that environments in which different representations are supported in a
uniform framework (in such a way that the choice of the representation can be made dependent upon the problem at
hand), are to be favoured. Moreover, in order to obtain full-proof reliable answers it is often the case that a mixture
of different arithmetic implementations is needed. All this has led us to believe that there is a need for environments
in which different arithmetic representations are supported, together with the necessary algorithms adapted to the
representations.

2. NumSciLab

Our aim in developing NumSciLab [3], a laboratory for Numeric and Scientific computation, has been to achieve
the integration of commercial as well as user–developed numeric, symbolic and graphics software, providing a plug-
and-play like desktop-tool where users can experiment with routines from several sources (C, Fortran, Mathematica,
...). In NumSciLab one can set up one’s own favourite library, where routines written in several languages can
be included. In a so-called description-file one specifies for each routine the origin of its source, the type of the
input/output parameters, possible default values etc. Each description file is interpreted by the library manager-
program of NumSciLab, which generates from it an executable software library that includes the object codes of all
described routines whose source is a traditional programming language. We include an extract of the description
file containing some routines for the solution of the above problem:

library-name: NonLinearEqs // Solution of nonlinear equations

sources: fortran Mathematica C

objects: regfalsi.o

include: nonlineareqs.h

function: regfalsi

source: C

args: {dfunc double} f - // f(x)=0

double a -

double b -

double eps -+

double root +

return-type: void

solves: F1 // refers to GAMS [4] taxonomy

function: Solve

source: Mathematica

args: expression eqns -

expression vars -

return-type: expression

solves: F1

solves: F2

...

NumSciLab provides a customizable browser which, upon selection of a particuliar routine by the user, displays
a tailor-made communication window for the chosen routine. The user can give input in any format (symbolic,
floating-point, rational, interval, hexadecimal, binary, . . .). The system converts the user input to the format needed
by the routine, and builds the call of the routine fully automatically. In this way one can easily experiment and
re-use the same input, once for a Fortran program and afterwards for a Mathematica routine. Data integration is
achieved by using a uniform data representation mechanism which is based on parse trees with annotations. This
representation makes it possible to easily tackle a problem both with numeric and symbolic routines, or with non–
standard computer arithmetic representations for real numbers. The system has full graphic capabilities and lots
of extras. It is written in Tcl (Tool Command Language), which combined with Tk, a toolkit for the X11 window
system based on Tcl, allows for a uniform development of both the functionality and the graphical user interface of
NumSciLab.

3. FlPtSim

FlPtSim, or FLoating-PoinT Simulator, was originally developed as a didactical environment (through a C++-class).
In order for the students to get thoroughly acquainted with the notions of computer arithmetic, FlPtSim lets them
experiment with the basic operations, conversions and elementary functions, while they can vary the precision and
the exponent range of the binary floating-point number set as well as the rounding mode. For every performed
operation a lot of information can be provided by FlPtSim: the internal binary representation in every rounding
mode including interval mode, the IEEE flags, the exact decimal equivalent of the internal representation as well
as its conversion to decimal. Within the simulator it is also possible to execute entire C-programs in a specified
set of floating-point numbers rather than in single or double precision and output as much information on the
program variables as in the interactive system. In this way students get a feeling for rounding errors, instability,
ill-conditioning and more.

The didactical tool FlPtSim has been extended with the aim to become a full-fledged integrating environment which
allows to compute in different arithmetic representations [5]. To this end the following C++-classes are provided:
the class Fltps(t, e) implements multiple precision floating-point arithmetic where t stands for the precision and e
is the number of bits provided for the exponent, the class Interval(t, e) for multiple-precision interval arithmetic,
Rational for exact rational arithmetic and RInterval for interval arithmetic with rational endpoints. Through these
C++-classes, different number representations can be combined in a single program. It is important to note in this
respect, that the conversion from floating-point to rational is exact, in that every floating-point number is a binary
rational number, i.e. a rational number whose denominator is a positive power of 2. Irrational numbers occurring
in exact computations are reliably represented by enclosing binary rational intervals and further computations are

carried out in rational interval arithmetic. The implementation of these different arithmetic representations as
C++-classes makes it platform independent.

Coming back to our motivating example, we remark that the mathematical properties of the regula falsi method
can be maintained in its implementation if the function evaluation is performed exactly, while still implementing the
iteration formula in floating-point arithmetic. Such a hybrid implementation is now possible using the C++-classes
described above, with only very little performance cost compared to a full rational implementation of regula falsi.
We list part of the code that realizes this mathematically correct implementation of regula falsi:

#include "flpts.h"

#include "rational.h"

....

rational coef[NR OF COEF];

flpts f(flpts xx)

{
rational result, x(xx);

result=coef[DEGREE];

for(int i=DEGREE-1;i>=0;i--) {
result=x*result+coef[i]; }

return result.to flpts(53,11);

}

void regfalsi(flpts x1,flpts x2, flpts (*f)(flpts x),flpts eps)

{
flpts xh, xl, fl, fh, xnew, fxnew;

...

for (int count=0;count<MAXIT;count++) {
xnew=xh+fh*(xh-xl)/(fl-fh);

fxnew=f(xnew);

if (fxnew<0) {
xl=xnew;

fl=fxnew; }
else {
xh=xnew;

fh=fxnew; }
... }

}

4. References

1 Wilkinson J. Rounding errors in algebraic processes, Prentice-Hall, Englewood Cliffs, 1963.
2 Collins G. et al. SACLIB user’s guide, RISC Technical Report 93-19, 1993.
3 Cuyt A. and Verdonk B. On the integration of software tools for scientific computation, in preparation.
4 Boisvert R., Howe S, and Kahaner D. The guide to available mathematical software problem classification system,
Communications in Statistics – Simulation and Computation, 20 (1991), 811–842 (http://gams.nist.gov).

5 Cuyt A. and Verdonk B. Using different number representations in a single programming environment, in preparation.

Addresses: Annie Cuyt, Brigitte Verdonk Dept Mathematics and Computer Science, Universiteit Antwerpen
(UIA), Universiteitsplein 1, B–2610 Wilrijk-Antwerpen (Belgium) , email: Annie.Cuyt@uia.ua.ac.be,
Brigitte.Verdonk@uia.ua.ac.be

