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Abstract 

Our goal is the integration of accurate scientific computation and intelligent object-oriented techniques to 
obtain powerful tools that can be used for the successful development of scientific expert systems, i.e. systems 
which provide expertise in the choice of algorithms within a particular problem domain and generate reliable, 
robust and maximally accurate results of full integrity. The need for such scientific expert systems is increasing 
significantly [ 1,4,11,12,15,20,21]. Through this study we want to identify some general principles which must 
be taken into account both concerning the computational aspects, such as automatic validation of the results (see 
Section l), and aspects of programming methodology, especially with respect to classification and inheritance 
(see Section 2). The usefulness and power of such intelligent object-oriented scientific expert systems will be 
tested on a prototype which will be developed for the problem domain of multivariate rational data fitting [ 81. 
A more detailed description of this prototype is given in Section 3. 
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1. Scientific computation 

Although computers were historically developed for scientific computation, extensive interest in the 
subject of computer arithmetic has mostly developed in the early eighties, yielding some important 
improvements in the accuracy of floating-point computations. Two IEEE floating-point standards 

were agreed upon [ 131 in order to formalize the representation of floating-point numbers and the 

implementation of the basic floating-point operations. However, many computations in numerical 

algorithms are carried out in product spaces (vectors, matrices, . . .). The arithmetic operations in 
these spaces are traditionally performed in terms of the given elementary floating-point operations. It 

is well known that the computational error due to the accumulation of rounding errors of each of the 
basic floating-point operations can become quite large. To overcome this accumulation of rounding 
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errors, a new definition of the operations in the product spaces is given in [ 191. It is proven there 
that to implement the operations in all the product spaces according to the new definition, the set of 
basic operations in the IEEE standard has to be extended with the scalar product for vectors. 

The advantages of highly accurate computations can be combined with interval arithmetic to obtain 
self-validating numerical methods. Interval arithmetic is the only computational tool so far available 
that incorporates guarantees as part of the basic computational process. Interval arithmetic which has 
been around for a long time has often been criticized since its naive use may deliver bounds which 
are unreasonably large and thus do not contain much information about the solution of the problem. 
If one combines interval computation, the process of defect correction [22] and the optimal scalar 
product this criticism is superseded. In this approach the role of the optimal scalar product is again 
crucial. 

As a consequence of the above, different programming languages have been extended and libraries 
developed to include the optimal scalar product as a basic operation and to provide tools for interval 
arithmetic, computation in product spaces, etc. We refer among others to Pascal-XSC (extension 
for Scientific Computation) [ 171, C-XSC [ 181, Acrith-XSC [2], Modula-SC [9], Fortran-SC [lo]. 

Using these extended programming languages, problem solving routines with automatic result veri- 
fication can and have been implemented [ 18,251. It is our goal when developing a scientific expert 
system to complement automatic result verification tools with the possibility to prescribe the ac- 
curacy required for the output of a selected algorithm. This means that for the selected algorithm 
the precision t used in the floating-point arithmetic has to be determined in terms of the prescribed 
accuracy of Y bits for the output. This step is called the prerun of the algorithm. Some initial ideas 
on this problem were written down in [ 141. After the prerun, the algorithm is rerun using t digits 
of precision, yielding the desired output accuracy. In order to achieve this goal it is clear that the 
existing tools for scientific computation need to be extended with tools for higher dynamic accuracy. 

2. Intelligent object-oriented techniques 

There are several concepts and principles underlying object-oriented programming: the concept of 
class or abstract data type, inheritance, overloading which is closely linked with the principle of 
dynamic binding and many others. We have mentioned these three since it is mainly these which will 
be put to good use when implementing a scientific expert system [ 26,8]. For a specific numerical 
problem domain, usually different problem types can be identified, and with each problem type 
appropriate algorithms can be associated. Consider for example the problem domain of linear systems 
of equations where different types of problems can be identified depending on the structure of the 
matrix. For general square n x n matrices different algorithms of order n3 exist while for Toeplitz 
n x n matrices more specialized algorithms of order n2 have been developed [ 24,161. Translating the 
classification of a problem domain in an object-oriented programming language can easily be done. 
Indeed, each problem type can be implemented as a class, where the algorithms to solve that type of 
problem are encapsulated within the class. As such, each class certainly defines a method to “solve”. 
The implementation of the solve-method in the class Ci is the algorithm to solve the problem of 
type C,, whereas the implementation of the solve-method in class C, will be the algorithm to solve 
problems of type CZ. This classification and the partial order between the different problem classes is 
closely related to the particular problem domain. The overloading of the method name solve can be 
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resolved through dynamic binding. However, for numerical computations the default dynamic binding 
mechanism must be carefully examined. Indeed, it may be the case that although a particular problem 
belongs to class Ci the solve-method in a superclass of Ci, instead of in Ci itself, should be applied 
for reasons of stability and reliability. In traditional object-oriented programming languages all local 
methods have a priority higher than that of methods inherited from superclasses. In a scientific expert 
system the overloading of methods should be conditional on the performance of the algorithms for 
the particular data. 

So far we have only touched upon the roundoff error which results from using floating-point 
arithmetic. However, in different problem domains, solve-methods suffer from a process error, the 
error incurred because the solve-algorithm is only an approximate solution. For such process errors 
theoretical error bounds are often known. By incorporating process error estimates in the solve- 
method when available, the principle of self-validation referred to in Section 1 is augmented to 
include not only the arithmetic roundoff error but also the process error. Whereas the former provides 
the user automatically with information about how well- or ill-conditioned his/her problem is, the 
latter provides him/her automatically with information on the power of the solve-method. Object- 
orientation can be put to good use to include process error information because of the encapsulation 
it provides. 

Last but not least, as is well known, the principles of object-orientation also allow to improve the 
programming methodology. Indeed, if more optimal algorithms or data structures can be developed 
for a particular class, only the implementation within that class needs to be modified, while the rest 
of the program remains unchanged. 

3. Prototype scientific expert system 

In order to demonstrate the power of such intelligent object-oriented scientific expert systems, a 
prototype is being developed. It consists of two main building blocks. Firstly, a generic knowledge 
based front end (KBFE), capable of assisting users in selecting and applying the most appropriate 
algorithm for the scientific problem they are trying to solve. Secondly, a numerical library for a 
particular problem domain, consisting of numerical routines that are equipped with tools for self- 
validation and automatic process error control. Information flow from the numerical library to the 
generic KBEE is provided through a proper interface which is described below. We stress that the 
front end is generic and can be used with numerical libraries for any problem domain, taking into 
account that a proper interface to the KBFE is provided. Due to time limitations, however, only one 
library is currently being implemented for the problem domain of multivariate rational data fitting 

[81. 
It is our goal to combine in the prototype tools for extended scientific computation with the 

power of object-orientation. How does this compare to existing systems like Focus [4], NAExpert 
[ 211, Nexus [ 111, etc.? Essentially, these systems have a structure as illustrated in Fig. 1 (a), where 
a collection of numerical routines is linked to a knowledge based front end serving as intelligent 
routine selector, in this way obtaining an expert system for numerical software. 

The aim of our system is to extend this technology in two essential ways. The first, as depicted 
in Fig. 1 (b), is to upgrade existing numerical libraries or develop new ones according to the XSC- 
philosophy. This implies taking the computer arithmetic a step further than the traditional IEEE 754 
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Fig. 1. 

arithmetic and including tools for dynamic precision and automatic validation. In essence, we want 
to let the user prescribe the output accuracy rather than letting the system decide on the reliability of 
the result. 

A second important issue is that we want to develop the system in such a way as to take full 
advantage of object-oriented technology, even enhancing this technology with extra features for the 
purpose of numerical reliability and stability as described above. 

The practical realization of the prototype can be pictured as follows. The expertise is presented 
to the expert system in the form of a collection of problem domain specific numerical routines (we 
chose for C++), which are structured in a class hierarchy. Starting from these routines, the front end 

( 1) deduces the class hierarchy from the source file; 
(2) constructs a knowledge base containing information about the solve routines in order to be 

able to select the most appropriate routine for a given problem. 
Note that, because of the way the expertise is presented to the front end, the knowledge base is 

constructed dynamically. The front end learns from the expertise that is presented to it and adapts its 
knowledge base whenever the expertise is upgraded. 

Once the expertise is loaded into the KBFE, the scientific expert system is ready for use. During 
a consultation, it 

(3) displays the problem domain tree and prompts for problem data; 
(4) classifies the user’s problem data by performing the necessary tests; 
(5) selects the most appropriate routine to solve the user’s problem, taking into account possible 

unstable behaviour of the suggested numerical procedure or large perturbations in the input data, and 
sometimes overrules the classical inheritance mechanism by choosing a numerical technique of a 
superclass instead of a more specific class; 

(6) builds the call to the selected numerical procedure, prompting for additional data if neces- 

sary; 
(7) provides a (sort of natural language) user interface prompting for lacking information or 

input and explaining decisions upon request. 
In the following paragraphs, we will go into more detail on each of these points, using illustrations 

from several problem domains, thereby emphasizing once more that the front end is generic. To start 
off, we explain how the front end gets information from the plugged in numerical library and where 
it stores this information for later use. 

3.1. Deduce the class hierarchy from the library source jiles 

First of all, the front end needs to store the structure of the problem domain tree, which, for the 
problem domain of multivariate rational interpolation, is given in Fig. 2 [ 5-81. 

The front end extracts this structure from the source files of the library. To store this information, 



A. Cuyt et al./Mathematics and Computers in Simulation 36 (1994) 401-411 405 

I Root I 

Fig. 2. 

a C++ template class named Tree has been implemented, possessing the standard methods a tree has, 
such as addNode, goUp, goDown, searchNode and so on. Because it is a template, the nodes of Tree 
can be objects of any other C++ class. Each time a problem domain specific library is presented to 
the KBFE, the front end creates an instance of the template class Tree, called KBDomainTree. For 
each problem type in the problem domain, a node is created in the KBDomainTree and these nodes 
are connected in such a way that the KBDomainTree and the problem domain tree have an identical 
structure. Each node of the KBDomainTree will store information on the corresponding problem type, 
as described next. 

3.2. Construct the knowledge base 

In order to be able to assist the user in selecting the most appropriate routine for his/her problem, 
the front end needs complete information on the implementation of each problem type in the library. 
This information is best mastered by the library programmer who has developed the numerical library 
and possesses expertise on the problem domain. In order to make optimal use of this expertise, the 
library programmer must make it explicitly available to the KBFE. To this end, the programmer uses 
a specially developed command language which provides the interface between the library and the 
front end. Using this command language it is also easy to insert updated libraries into the front end. 
In the following we do not aim at giving a full description of the command language but we will 
rather illustrate the philosophy behind it. A separate paper will be devoted to the description of the 
command language. 

For each problem type, the library programmer has to add a C++ comment to the library source file, 
containing the command language statements applicable to that class. Fig. 3 contains the command 
language interface for the different classes in the rational data fitting problem domain as displayed in 
Fig. 2. 

A more detailed explanation of the commands of our command language will be given hereafter. 
We remark that the overloading of the method name solve referred to in Section 2 occurs here for the 
methods coef_problem, rec-algor and qdgalgor. For simplicity one can concentrate in the sequel of 
the text on the method coef-problem from the above example, which is defined for each class in the 
problem domain. Its implementation will vary from class to class, depending on the complexity of 
the problem for that particular class. Afterwards we will briefly discuss how the expert system deals 
with the full rational interpolation numerical library, where besides coef_problem other aspects of the 
rational interpolation problem are dealt with by different solve-methods, i.e. recalgor and qdgalgor. 
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/* 
.class root 
label Root 
.input pointinputsystem 
.beginsolve 
.menu -nl 
.label 1 “numerator and denominator coefficients” 
.input -n2 1 

“numerator degree ” int n-test 
“denominator degree ” int d-test 

.solve 1 coefprobIem(int, int) 

.endsolve 
*/ 
/* 

.class newton_pade 

.label Newton-Pade 

.is_instance newtonpade-test 

.beginsolve 
menu -n3 
.label 1 “numerator and denominator coefficients” 
.input -n2 1 

“numerator degree ” int root.n_test 
“denominator degree ” int root.d_test 

.solve 1 coefproblem(int, int) 
label 2 “recursive e-like algorithm” 
input -n4 2 

“maximal numerator degree ” int rootn-test 
“maximal denominator degree ” int root.d_test 
“x-coord of point where approximation requested ” double 
“y-coord of point where approximation requested ” double 

solve 2 recalgor(int, int, double, double) 
.label 3 “continued fraction-based algorithm” 
.input -n4 3 

“numerator degree ” int root.n_test 
“denominator degree ” int rootd-test 
“x-coord of point where approximation requested ” double 
“y-coord of point where approximation requested ” double 

.solve 3 qdgalgor(int, int, double, double) 

.endsolve 
*/ 
/* 
.class rational-hetmite 
label Interpolation 
.is_instance rationalhermite_test 
.beginsolve 
.menu -n3 
label 1 “numerator and denominator coefficients” 
.input -n2 1 

Fig. 3. 
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“numerator degree ” int root.n_test 
“denominator degree ” int root.d_test 

.solve I coef_problem( int, int) 

.label 2 “recursive Bulirsch-Stoer-like algorithm” 

.input -n4 2 
“maximal numerator degree ” int root.n_test 
“maximal denominator degree ” int root.d+est 
“x-coord of point where approximation requested ” double 
“y-coord of point where approximation requested ” double 

.solve 2 recalgor(int, int, double, double) 

.label 3 “Thiele-type continued fraction algorithm” 

.input -n4 3 
“numerator degree ” int root.n_test 
“denominator degree ” int root.d_test 
“x-coord of point where approximation requested ” double 
“y-coord of point where approximation requested ” double 

.solve 3 thielealgor(int, int, double, double) 

.endsolve 
*/ 
/* 
.class pade 
.label Pade 
.is_instance pade_test 
.beginsolve 
.menu -n3 
label 1 “numerator and denominator coefficients” 
.input -n2 1 

“numerator degree ” int root.n_test 
“denominator degree ” int root.d_test 

.solve 1 coef_problem(int, int) 

.process_error 1 padeprocess-error(int, int) 

.label 2 “recursive e-like algorithm” 

.input -n4 2 
“maximal numerator degree ” int root.n_test 
“maximal denominator degree ” int root.d_test 
“x-coord of point where approximation requested ” double 
“y-coord of point where approximation requested ” double 

.solve 2 rec_algor(int, int, double, double) 
Aabel 3 “continued fraction-based algorithm” 
.input -n4 3 

“numerator degree ” int rootntest 
“denominator degree ” int root.d_test 
“x-coord of point where approximation requested ” double 
“y-coord of point where approximation requested ” double 

.solve 3 qdgalgor(int, int, double, double) 

.endsolve 
*I 

Fig. 3. (Continued.) 
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Fig. 4. 

3.3. Display the tree and prompt for the problem data 

When the expert system is run, the opening screen will display the problem domain tree and a 
menu bar. Fig. 4 shows the opening screen for the multivariate rational data fitting library. 

In the left part of the window the classes are listed in alphabetical order while in the right top part 
the problem domain tree is displayed. If the user selects a particular class in the problem domain, the 
right bottom part of the window is used to display the ancestors of that class (class Pade in Fig. 4). 
The display of ancestor information can be especially useful in case of multiple inheritance. 

Next the front end processes the user’s problem data. As the format and amount of input is problem 
domain specific, the input routines of the problem domain have to be implemented by the library 
programmer. The front end is informed of the presence of an input routine by the .input command of 
the command language (see Fig. 3). In the case of the rational data fitting problem domain, a single 
graphical input routine was written and attached to the Root problem type, which is also the root of 
the problem domain tree. However, other libraries may have multiple input routines, each attached to 
a different class, in order to supply each corresponding problem type with an input routine that takes 
full advantage of the typical input data structure inherent to the problem type. These input routines 
can drastically lower the number of actions the user has to perform to input the data. For instance, 
when inputting a linear system of equations, the user can select a special input routine for symmetric 
or band-structured matrices instead of having to use the input routine for general matrices. 

3.4. ClassiJj, the problem data 

After the data has been input, the front end determines of which classes in the problem domain the 
data is an instance. This is achieved as follows. Each class in the mathematical library is assumed to 
have a member function implementing an is-instance test. This isinstance test determines whether 
the data are an instance of a particular problem type class, based on the structure of the data. The 
test also returns to the front end additional information on the structure of the data in the form of 
keyword strings. Via these keywords, the user can obtain a more detailed explanation of decisions 
from the KBFE’s help file, to which the keywords are hyperlinked. 

As illustrated in Fig. 3, the front end retrieves the necessary information on the member functions 



A. Cuyt et al./Mathematics and Computers in Simulation 36 (1994) 401-411 409 

implementing the isinstance tests via the .is_instance command of the command language inter- 
face. Using this information, the front end traverses the KBDomainTree top down, performing the 
isinstance test of each encountered class and eventually classifies the data in the most specific class 
for which the isinstance test succeeds. We note that this class will normally have the solve routine 
with least complexity for the particular data because this solve routine is allowed to make the most 
powerful assumptions about the structure of the data. 

3.5. Select an appropriate solve routine 

Once the data are classified in a particular class C as described above, the solve routine from 
this class can be applied to solve the user’s problem. However, it may be the case that for reasons 
of stability and reliability, the solve method of a superclass of C instead of the one of the class 
C itself should be applied, as was described in Section 2. Therefore, a more intelligent dynamic 
binding mechanism than the standard object-oriented strategy, where more specific methods always 
have higher priority, needs to be implemented. The front end implements such a numerically reliable 
dynamic binding mechanism as follows. The most specific numerical routine is first prerun. The 
output of the prerun is used to check for the applicability of the method, taking into account the 
accuracy of the data. If the most specific method cannot yield the accuracy required, the front end 
will automatically check if superclass methods can be applied to meet the reliability requirements. 

So far we have only considered the case where each problem type contains a single solve routine. 
However, it may be the case that a particular problem type contains different solve routines, each 
solving a different aspect of the problem. For example, for the problem domain of multivariate 
rational interpolation one may be interested in either the numerator and denominator coefficients of 
the approximating rational function, or the values of recursively computed rational approximants in a 
particular point different from the interpolation points. In such a case the command language interface 
needs to be more elaborate. This is illustrated in Fig. 3, where the solve information for all classes 
except the Root class is much more elaborate because for all these classes different algorithms, which 
solve different aspects of the problem, exist. The .menu command specifies the number of different 
problem aspects and the user will be prompted for the aspect of the problem he wants to deal with via 
a menu displaying the strings in the Aabel command. This will enable the front end to automatically 
prerun and activate the corresponding numerical routine. 

Lastly, it may be the case that the same aspect of a particular problem type can be solved 
using different algorithms. In this case it is recommended that the library programmer uses the 
.prerunpriority slot to specify, by using a set of rules, the order in which the preruns should be 
done. 

3.6. Build the cull to the selected solve routine 

When building the call to the selected solve routine, the front end prompts the user for the necessary 
solve function arguments. Information on the name and type of these arguments was provided to the 
front end through the command language. For example in Fig. 3, the first .input command in 
class NewtonJade specifies that the user must be prompted for two integer arguments, namely the 
numerator and denominator degree of the rational function. 
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3.7. Implementation issues 

The prototype is being implemented on an IBM PC using the Borland Cf+ version 3.1 compiler 
and the Turbo Vision for DOS interface library. In the development phase of the prototype transfer 
of the system to an X-windows environment is kept in mind. The user interface makes elaborate use 
of windows, dialog boxes, keywords, a context-sensitive hyperlink helpfile, a log book and so on. 
It also features numerous functions to display and edit the ASCII files that the front end uses. We 
decided to use Cf” because of its object-oriented features and because in this way the front end can 
directly be linked to a numerical library which is either precompiled from Pascal-XSC to C code, or 
itself written in C++ and linked to the C-XSC library or provided directly through our own dynamic 
precision implementation in C++, which is currently under development. 
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