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EFFICIENT AND RELIABLE

MULTIPRECISION IMPLEMENTATION OF

ELEMENTARY AND SPECIAL FUNCTIONS

Annie CUYT, Brigitte VERDONK1 and Haakon WAADELAND2

Abstract. Special functions are pervasive in all fields of science. The most well-known ap-
plication areas are in physics, engineering, chemistry, computer science and statistics. Because of
their importance several books and a large collection of papers have been devoted to the numerical
computation of these functions.

The technique to provide a floating-point implementation of a function differs substantially
when going from a fixed finite precision context to a finite multiprecision context. In the former, the
aim is to provide an optimal mathematical model, valid on a reduced argument range and requiring
as few operations as possible. Here optimal means that, in relation to the model’s complexity, the
truncation error is as small as it can get. The total relative error should not exceed a prescribed
treshold, round-off error and possible argument reduction effect included. In the latter, the goal is to
provide a more generic technique, from which an approximant yielding the user-defined accuracy, can
be deduced at runtime. Hence best approximants are not an option since these models have to be
recomputed every time the precision is altered and a function evaluation is requested. At the same
time the generic technique should generate an approximant of as low complexity as possible.

In the current approach we point out how continued fraction representations of functions can
be helpful in the multiprecision context. The newly developed generic technique is mainly based on
the use of sharpened a priori truncation error estimates for real continued fraction representations
of a real variable, developed in Section 3. As illustrated in Section 4, the technique is very efficient
and even quite competitive when compared to the traditional fixed precision implementations. The
implementation is reliable in the sense that it allows to return a sharp interval enclosure for the

requested function evaluation, at the same cost.
The paper follows a recipe style. In Section 2 we gather the ingredients for the new results.

In Section 3 we construct or prepare, for a general function f(x), a continued fraction approximant
satisfying all requirements of a proper implementation. In Section 4 the procedure is illustrated with
results obtained for several specific functions f(x).
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1. Introduction. Virtually all present-day computer systems, from personal
computers to the largest supercomputers, implement the IEEE 64-bit floating-point
arithmetic standard, which provides 53 binary or approximately 16 decimal digits
accuracy. For most scientific applications, this is more than sufficient. However, for a
rapidly expanding body of applications, 64-bit IEEE arithmetic is no longer sufficient.
These range from some interesting new mathematical investigations to large-scale
physical simulations performed on highly parallel supercomputers. Moreover in these
applications, portions of the code typically involve numerically sensitive calculations,
which produce results of questionable accuracy using conventional arithmetic. These
inaccurate results may in turn induce other errors, such as taking the wrong path
in a conditional branch. Such blocks of code benefit enormously from a combination
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of reliable numeric techniques and the use of high-precision arithmetic. Indeed, the
aim of reliable numeric techniques is to deliver, together with the computed result, a
guaranteed upper bound on the total error or, equivalently, to compute an enclosure
for the exact result.

Up to this date, even environments such as Maple, Mathematica, MATLAB and
libraries such as IMSL, CERN and NAG offer no routines for the reliable evaluation
of special functions. The following quotes concisely express the need for new develop-
ments in the evaluation of special functions:

“Algorithms with strict bounds on truncation and rounding errors are not gen-
erally available for special functions. These obstacles provide an opportunity for
creative mathematicians and computer scientists.” D. Lozier, general director of
the Digital Library for Mathematical functions project, and F. Olver [3].
“The decisions that go into these algorithm designs — the choice of reduction
formulae and interval, the nature and derivation of the approximations — involve
skills that few have mastered. The algorithms that MATLAB uses for gamma
functions, Bessel functions, error functions, Airy functions, and the like are based
on Fortran codes written 20 or 30 years ago.” Cleve Moler, founder of MATLAB
[14].

2. Ingredients. A lot of well-known constants in mathematics, physics and
engineering, as well as elementary and special functions enjoy very nice and rapidly
converging continued fraction representations. Among those we almost always find
one or more limit-periodic continued fractions. In this paper we focus on the use of
these limit-periodic continued fractions in the reliable multiprecision implementation
of the functions they represent. We restrict ourselves to the real-valued case. This
implementation is built on top of multiprecision IEEE 754-854 compliant computer
arithmetic.

2.1. IEEE-based arithmetic. Let us assume to have at our disposal a mul-
tiprecision IEEE 754-854 compliant floating-point implementation of the basic oper-
ations, comparisons, base and type conversions. Such an implementation is charac-
terised by four parameters: the internal base β, the precision t and the exponent range
[L, U ]. In the current generic context, we are at least aiming at implementations for
β = 2 at non-standard precisions t > 64, and at implementations for use with β = 2i

where i > 1 or β = 10j where j ≥ 1. An IEEE compliant implementation offers
4 rounding modes: upward △, downward ▽, truncation ⊲⊳ and round-to-nearest ©.
We are especially interested in the first two rounding modes, because a correct imple-
mentation in these rounding modes provides a reliable enclosure of the exact function
value.

To provide an implementation of a function f(x) in a particular precision t, one
first needs to develop a mathematical model or approximation F (x) for f(x) that
enjoys a very small relative error, compared to the precision in use. This is usually a
very time-consuming effort, because the model changes whenever the precision does.
The sum of the truncation error |f(x) − F (x)|/|f(x)| and the rounding error |F (x) −
F(x)|/|f(x)|, where F(x) denotes the machine implementation of the model F (x),
should preferably not exceed a few ulp where

1 ulp = β−t+1 (1)
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A typical double precision implementation (β = 2, t = 53) of the elementary functions
achieves this in about 25 basic operations. When analyzing the efficiency of our
multiprecision implementation, we compare the number of basic operations, required
in the new approach when the precision is set to t = 53, to this reference.

Since the accumulated rounding error is included in the total error which we bound
by only a few ulp (typically 1 or 2), the actual evaluation of f(x) needs to take place in
a slightly larger working precision s > t. The optimal working precision is determined
dynamically, depending on the rounding error analysis and the required accuracy. If
applicable (not for special functions), our rounding error analysis also takes the effect
of argument reduction into account. In any case a fully reliable evaluation of f(x)
over the domain is guaranteed.

2.2. Continued fraction representations and tails. Let us consider a con-
tinued fraction representation of the form

f =
a1

1 +
a2

1 + . . .

=
a1

1
+

a2

1
+ . . . =

∞
∑

n=1

an

1
an := an(x) f := f(x) (2)

Here an is called the n-th partial numerator. We use the notation f and f(x) inter-
changeably. The latter is preferred when the dependence on x needs to be emphasized.
We respectively denote by the N -th approximant fN(w) or fN(x; w), and N -th tail
tN or tN (x) of (2), the values

fN (w) = fN(x; w) =

N−1
∑

n=1

an

1
+

aN

1 + w
(3)

tN = tN (x) =

∞
∑

n=N+1

an

1
(4)

We also need approximants of tails and therefore introduce the notation f
(k)
N (w) or

f
(k)
N (x; w) for

f
(k)
N (w) = f

(k)
N (x; w) =

k+N−1
∑

n=k+1

an

1
+

aN+k

1 + w
f

(0)
N (w) = fN(w)

Sometimes the notation f (k) is used for the tail tk. A continued fraction is said to
converge if limN→∞ fN(0) exists. Note that convergence to ∞ is allowed. In the
present paper we assume the continued fractions to converge. Moreover, we restrict
ourselves to the case where some w 6= 0 can be chosen such that limN→∞ fN (w) =
limN→∞ fN (0).

The N -th approximant of a continued fraction can also be written as

fN (w) = (s1 ◦ . . . ◦ sN )(w) sn(w) =
an

1 + w
n = N, . . . , 1

Using the linear fractional transformations sn, one can define a sequence {Vn}n∈N of
value sets for f by:

sn(Vn) =
an

1 + Vn
⊆ Vn−1 n ≥ 1 (5)
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The importance of such a sequence of sets lies in the fact that these sets keep track of

where certain values lie. For instance, if w ∈ VN then fN (w) ∈ V0 and f
(k)
N−k(w) ∈ Vk.

Also tN ∈ V N and f ∈ V 0. An equally important role is played by a sequence
of convergence sets {En}n∈N, of which the elements guarantee convergence of the
continued fraction (2) as long as each partial numerator an belongs to the respective
set En:

∀n ≥ 1 : an ∈ En ⇒
∞
∑

n=1

an

1
converges (6)

A sequence {Vn}n∈N is called a sequence of value sets for a sequence {En}n∈N of
convergence sets if (5) holds for all an ∈ En. Value sets can also be defined for
non-convergent continued fractions (then the En are called element sets), but in the
current context this form of generality does not interest us.

It is well-known that the tail or rest term of a convergent Taylor series expansion
converges to zero. It is less well-known that the tail of a convergent continued fraction
representation does not need to converge to zero; it does not even need to converge at
all. We give an example for each of the cases. Take for instance the continued fraction
expansion

√
1 + 4x − 1

2
=

∞
∑

n=1

x

1
x ≥ −1

4

Each tail tN converges to 1/2(
√

1 + 4x − 1) as well. More remarkable is that the
even-numbered tails of the convergent continued fraction

√
2 − 1 =

∞
∑

n=1

(

(3 + (−1)n)/2

1

)

=
1

1
+

2

1
+

1

1
+

2

1
+ . . .

converge to
√

2− 1 while the odd-numbered tails converge to
√

2 (hence the sequence
of tails does not converge), and that the sequence of tails {tN}N≥1 = {N + 1}N≥1 of

1 =

∞
∑

n=1

n(n + 2)

1

converges to +∞.
When carefully monitoring the behaviour of these continued fraction tails, very

accurate approximants fN (w) for f can be computed by making an appropriate choice
for w. We call a continued fraction of the form (2) limit-periodic with period k, if

lim
p→∞

apk+q = ãq q = 1, . . . , k

More can be said about tails of limit-periodic continued fractions with period one,
also called limit-periodic continued fractions. Let (2) converge and be limit-periodic
with an ≥ −1/4 and limn→∞ an = ã < ∞. If w̃ is the in modulus smaller fixpoint of
the linear fractional transformation s(w) = ã/(1 + w), then

w̃ = −1

2
+

√

ã +
1

4
= lim

N→∞
tN
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and, according to [16],

lim
N→∞

∣

∣

∣

∣

f(x) − fN (x; w̃)

f(x) − fN (x; 0)

∣

∣

∣

∣

= 0 (7)

Hence a suitable choice of w in (3) may result in more rapid convergence of the
approximants (w = 0 is usually used as a reference).

In this paper we relax the condition that (2) converges, in the case of limit-
periodic continued fractions, to the condition an ≥ −1/4 and {an}n∈N bounded [12,
pp. 150–159]. This relaxed condition automatically implies that ã ≥ −1/4 and w̃ is
real. It also simplifies the description of the results, which can however be generalized
to the particular situations where an ≤ −1/4, ã = −1/4 and (2) converges because the
convergence speed of the partial numerators can be termed safe (see [12, p. 159]).

2.3. The oval sequence theorem. Most truncation error upper bounds for
|f(x)−fN(x; w)| are given for the classical choice w = 0. For continued fractions with
partial numerators of the form an(x) = αnx with αn > 0 we refer among others to
the a priori Gragg-Warner bound

|f(x) − fN(x; 0)| ≤ 2
|a1|
cosφ

N
∏

k=2

√

1 + 4|ak|/ cos2(φ) − 1
√

1 + 4|ak|/ cos2(φ) + 1
− π < 2φ = arg(x) < π

(8)
which holds for N ≥ 2 and the a posteriori Henrici-Pfluger bound

|f(x) − fN (x; 0)| ≤







|fN (x; 0) − fN−1(x; 0)| | arg(x)| ≤ π/2

|fN(x; 0) − fN−1(x; 0)|
| sin (arg(x)) | π/2 < | arg(x)| < π

A posteriori bounds are usually slightly sharper because they exploit the information
contained in already computed approximants. But they are of no use in a variable
precision context: one does not want to scan all approximants until the truncation
error threshold is satisfied. The Gragg-Warner a priori bound does not suffer from
this disadvantage, but it is only valid when an(x) = αnx with αn > 0. In this paper
we develop a practical and sharp truncation error bound for the case w 6= 0, which
is valid for all continued fractions with real partial numerators an(x). Our point of
departure for this is the oval sequence theorem from which a priori truncation error
estimates can be obtained in case w 6= 0.

In the general formulation of the oval sequence theorem (see Theorem 1) [12,
pp. 145–147], which holds in the complex plane, the value sets Vn are disks and the
convergence sets En are cartesian ovals (the situation where the continued fraction
does not necessarily converge can also be considered but is of no interest to us). We
denote the complex conjugate of the center Cn by Cn.

In the real case both Vn and En reduce to intervals. We reformulate the more
specific real version in Theorem 2 (which allows for point intervals) and provide an
elegant short proof.

Theorem 1. Let 0 < rn < |1 + Cn| for n ≥ 0 and |Cn−1|rn < |1 + Cn|rn−1 for
n ≥ 1. Then {Vn}n∈N with

Vn = {w ∈ R : |Cn − w| < rn}
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is a sequence of value sets for the sequence {En}n∈N0
of convergence sets given by

En = {a ∈ R : |a(1 + Cn) − Cn−1(|1 + Cn|2 − r2
n)| + rn|a| ≤ rn−1(|1 + Cn|2 − r2

n)}

For w ∈ VN the truncation error |f(x) − fN (x; w)| is bounded by

|f(x) − fN (x; w)| ≤ 2rN
|C0| + r0

|1 + CN | − rN
×

N−1
∏

k=1

Mk (9)

where Mk = max{|u/(1 + u)| : u ∈ V k}.
In the real case the set En given above is actually an interval. The set V k =

[Ck − rk, Ck + rk] and the maximum Mk is given by

Mk = max

(∣

∣

∣

∣

Ck − rk

1 + Ck − rk

∣

∣

∣

∣

,

∣

∣

∣

∣

Ck + rk

1 + Ck + rk

∣

∣

∣

∣

)

since the function w/(1 + w) is a strictly increasing function. Let us simplify the
statement and proof of the oval sequence theorem for the case of real interval sequences.
At the same time, the new proof delivers a bound for the relative error instead of the
absolute error, and we have Mk ≤ 1. In the sequel we refer to this theorem as the
interval sequence theorem.

Theorem 2. Let for all n the values Ln and Rn satisfy −1/2 ≤ Ln ≤ Rn < ∞
and let

bn := (1 + sign(Ln)max(|Ln|, |Rn|)) Ln−1

cn := (1 + sign(Ln)min(|Ln|, |Rn|)) Rn−1

satisfy bn ≤ cn and 0 ≤ bncn. Then the sequence {Vn}n∈N with Vn = [Ln, Rn] is a
sequence of value sets for the sequence {En}n∈N of convergence sets given by

En = [bn, cn] =

{

[(1 + Rn)Ln−1, (1 + Ln)Rn−1] bn ≥ 0

[(1 + Ln)Ln−1, (1 + Rn)Rn−1] bn ≤ 0

For w ∈ VN the relative truncation error |f(x) − fN (x; w)|/|f(x)| is bounded by

∣

∣

∣

∣

f(x) − fN (x; w)

f(x)

∣

∣

∣

∣

≤ RN − LN

1 + LN

N−1
∏

k=1

Mk (10)

where Mk = max{|u/(1 + u)| : u ∈ Vk} = max{|Lk/(1 + Lk)|, |Rk/(1 + Rk)|}.
Proof. The relation between En and Vn is expressed in (5). For En = [bn, cn] ⊂

R
+ this translates to

Ln−1 ≤ bn

1 + Rn

Rn−1 ≥ cn

1 + Ln

while for En ⊂ R
− it translates to

Ln−1 ≤ bn

1 + Ln

Rn−1 ≥ cn

1 + Rn
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Using the notation f (j)(x) for the j-th tail of the continued fraction f(x), we obtain

f(x) − fN (x; w) =
a1

1 + f (1)(x)
− a1

1 + f
(1)
N−1(x; w)

=
−f (0)(x)

(

f (1)(x) − f
(1)
N−1(x; w)

)

1 + f
(1)
N−1(x; w)

= −f(x)
f (N)(x) − w

1 + w

N−1
∏

j=1

(

−f (j)(x)

1 + f
(j)
N−j(x; w)

)

Hence
∣

∣

∣

∣

f(x) − fN(x; w)

f(x)

∣

∣

∣

∣

≤ RN − LN

1 + w

∣

∣

∣

∣

∣

∣

N−1
∏

j=1

f (j)(x)

1 + f
(j)
N−j(x; w)

∣

∣

∣

∣

∣

∣

Now for 1 ≤ k ≤ ⌊(N − 1)/2⌋, we have

f (2k)(x)

1 + f
(2k)
N−2k(x; w)

f (2k−1)(x)

1 + f
(2k−1)
N−2k+1(x; w)

=
f (2k)(x)

1 + f
(2k)
N−2k(x; w)

a2k

1 + f (2k)(x)

1

1 + f
(2k−1)
N−2k+1(x; w)

=
f (2k)(x)

1 + f (2k)(x)

f
(2k−1)
N−2k+1(x; w)

1 + f
(2k−1)
N−2k+1(x; w)

If N − 1 is odd then the last factor can be combined with 1/(1 + w) into

f (N−1)(x)

1 + f
(N−1)
1 (x; w)

1

1 + w
=

f
(N−1)
1 (x; w)

1 + f
(N−1)
1 (x; w)

1

1 + f (N)(x)

Since maxu∈Vk
|u/(1 + u)| = Mk the theorem is proved.

An upper bound for the truncation error |f(x) − fN (x; w)| is obtained by multi-
plying the right hand side of (10) by R0 which is an upper bound for |f(x)|.

The smaller the sets Vn, in other words the smaller Rn − Ln, and the sharper
one knows the Mk, the smaller the upper bound on the truncation error |f(x) −
fN (x; w)|/|f(x)| becomes. We come back to this issue in Section 3.

In Section 3 we also combine the interval sequence theorem with the charac-
teristic monotonicity behaviour of the tails of some limit-periodic continued fraction
representations, which we derive now.

2.4. Monotonicity properties of tails. To prepare these results, we prove
some easy lemmas. Lemma 1 mainly serves to establish computable upper bounds for
tails of continued fractions, while Lemma 2 provides additional information about the
relation between continued fraction approximants and tail estimates. In the Lemmas
3 and 4 we obtain some results on the boundedness and monotonicity behaviour of
the sequence of tails. In the formulation of these lemmas the notions increasing and
decreasing for sequences of numbers are never meant in the strict sense: a constant
sequence can be considered to be decreasing as well as increasing.
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To obtain monotonicity results about the continued fraction tails, we further
distinguish between

the fractions where an → ã from one side, say {an}n∈N is a decreasing (or in-
creasing) sequence with limn→∞ an = ã,
and the fractions where an → ã in an alternating fashion, say the sequences
{a2n+1}n∈N and {a2n}n∈N respectively decrease and increase towards ã.

For continued fractions with positive an it suffices to study the latter case in
detail, while the former case is the basic building block when dealing with continued
fractions with negative an. This becomes clear in Section 4 where all different types
of behaviour for the partial numerators are illustrated and can be dealt with, starting
from the two mentioned basic types. How to deal with a continued fraction containing
both positive and negative partial numerators is explained in Section 3.4. From Section
3.4 it should be clear that the condition in most lemmas for the partial numerators
to be either all positive or all negative, is not a true restriction but reflects merely a
choice made by the authors to simplify the description of the results.

Lemma 1.

1) Let all an > 0 and let (2) converge. Then for k > 0 the sequences of even and

odd approximants {f (k)
2n (0)}n∈N and {f (k)

2n+1(0)}n∈N are increasing and decreasing
sequences respectively, satisfying

f
(k)
2n (0) ≤ tk ≤ f

(k)
2n+1(0)

2) Let all an < 0 and let the sequence {an}n∈N be decreasing with limn→∞ an = ã ≥
−1/4. Then for k > 0 the tail tk of (2) is bounded by

−1 +
√

4ã + 1

2
≤ tk ≤ −1 +

√
4ak+1 + 1

2

Proof. Part 1 is well-known from continued fraction literature [1, p. 223]. Remains
to prove part 2. We give the proof for the upper bound in part 2 because the lower

bound is proved analogously. Consider the approximant f
(k)
n of tk. Since for j =

0, . . . , n − 1 : 0 ≤ 1 + ak+n−j ≤ 1 + ak+1, we find that

ak+n−1

1 + ak+n
≤ ak+1

1 + ak+1

ak+n−2

1 +
ak+n−1

1 + ak+n

≤ ak+1

1 +
ak+1

1 + ak+1

...

f (k)
n ≤ ak+1

1
+ . . . +

ak+1

1

In the limit the inequality is preserved because of the convergence of (2), leading to

tk ≤ −1 +
√

4ak+1 + 1

2

which concludes this part of the proof.
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The condition that (2) converges is automatically satisfied in part 2 of Lemma 1
and in the Lemmas 2, 3 and 4, because of the boundedness of the partial numerators
an.

Lemma 2. Let all an ≥ −1/4 and let {an}n∈N be bounded. Then:

1) For each k : tk ≥ −1/2 and sign(tk) = sign(ak+1).
2) If all an > 0 and 0 ≤ w1,k ≤ tk ≤ w2,k, then

f2n(w1,2n) ≤ f ≤ f2n+1(w1,2n+1) (11a)

f2n(w2,2n) ≥ f ≥ f2n+1(w2,2n+1) (11b)

3) If all an < 0 and −1/2 ≤ w1,k ≤ tk ≤ w2,k, then

fn(w1,n) ≤ f ≤ fn(w2,n) (11c)

Proof. The proof is straightforward. We prove for instance the second inequality
of part 3. From 0 ≥ w2,n ≥ tn ≥ −1/2 follows

an

1 + w2,n
≥ an

1 + tn

...

fn(w2,n) ≥ fn(tn) = f

and similarly for the other equations.
Lemma 3.

1) Let (2) converge and let all an > 0. If the sequences {a2n+1}n∈N and {a2n}n∈N

are respectively decreasing and increasing, then the tail sequences {t2n}n∈N and
{t2n+1}n∈N are respectively decreasing and increasing.

2) Let in addition for all integers k and ℓ : a2k+1 > a2ℓ, then for all k and ℓ the tails
of (2) satisfy t2k ≥ t2ℓ+1.

Proof. Since a2n+3 ≤ a2n+1 and a2n+4 ≥ a2n+2, we find that

f
(2n+2)
2 (0) =

a2n+3

1 + a2n+4
≤ f

(2n)
2 (0) =

a2n+1

1 + a2n+2

...

f
(2n+2)
k (0) ≤ f

(2n)
k (0) k > 2

In the limit the last inequality remains true, yielding t2n+2 ≤ t2n. The case t2n+3 ≥
t2n+1 follows in the same way and we proceed to part 2. Let us first prove the statement
for k = ℓ. Since a2k+1 > a2k+2, a2k+2 < a2k+3 and so on, we have

f
(2k)
2 (0) > f

(2k+1)
2 (0)

...

f (2k)
s (0) > f (2k+1)

s (0) s > 2

Taking limits, the last inequality becomes t2k ≥ t2k+1. For k < ℓ, we use

t2ℓ ≥ t2ℓ+1 ≥ t2k+1
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and for k > ℓ, we use

t2ℓ ≥ t2k ≥ t2k+1

which concludes the proof.
Lemma 4. Let all an satisfy −1/4 ≤ an < 0 and let the sequence {an}n∈N be

decreasing. Then the tail sequence {tn}n∈N is decreasing.

Proof. Consider for k ≥ 1 and n ≥ 1 the approximant f
(k)
n of the tail tk. Since

0 ≤ 1 + ak+n+1 ≤ 1 + ak+n we find with ak+n < 0 and ak+n−1 < 0 that

ak+n

1 + ak+n+1
≤ ak+n−1

1 + ak+n

and analogously

f (k+1)
n ≤ f (k)

n

In the limit this inequality is preserved and becomes

tk+1 ≤ tk

which concludes the proof.

2.5. Backward recurrence algorithm. Several algorithms exist for the com-
putation of fN(w). The easiest to use, because N can be determined concurrently
with fN (w), is the forward recurrence algorithm:

A−1 = 1 A0 = 0

B−1 = 0 B0 = 1

An = An−1 + anAn−2 n = 1, . . . , N − 1

Bn = Bn−1 + anBn−2 n = 1, . . . , N − 1

fN(w) =
(1 + w)AN−1 + aNAN−2

(1 + w)BN−1 + aNBN−2

(12)

The most stable however [6] is the backward recurrence algorithm:

F
(N)
N+1 = w

F (N)
n =

an

1 + F
(N)
n+1

n = N, N − 1, . . . , 1

fN(w) = F
(N)
1

For the backward recurrence algorithm to be useful in a variable precision context, it
must be possible to determine rather easily a priori which approximant to compute, in
other words to decide which N guarantees a prescribed total error upper bound. For
the determination of N in function of the truncation error upper bound, we refer to
Section 3.1 and 3.2. The results follow from combining the interval sequence theorem
with the Lemmas 1 to 4. Choosing a suitable estimate for the tail tN is discussed in
Section 3.3. The rounding error is subsequently controlled by determining a suitable
working precision in which to execute the backward recurrence algorithm. The latter
is dealt with in detail in Section 3.5.
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3. Preparation. The realization of a machine implementation of f(x) is a
three-step process:

1) When given an argument x for a function f , the evaluation f(x) is often reduced
to the evaluation of f for another argument x̃ lying within specified bounds and
for which there exists an easy relationship between f(x) and f(x̃). For instance,
for the exponential function in a base β implementation,

exp(x) = βk exp(x̃) x̃ = mod(x, ln β) |x̃| ≤ lnβ

2

Although the given argument x is known exactly, because it is a given floating-
point number, usually the reduced argument x̃ cannot be computed exactly, but
is subject to a rounding error.

2) After the reduced argument is determined, the mathematical model F for f is
constructed and a truncation error comes into play.

3) When implemented, in other words evaluated, this mathematical model F is also
subject to a rounding error.

Finally the effect of switching from the argument x to the reduced argument x̃
must be taken into account. This introduces a final additional error. Let us now have
a look at how all these errors can be controlled.

The issue of argument reduction is a topic in itself and is not the subject of this
paper. We mention it here because we want to emphasize that in our implementation
this effect is taken into account, by which we mean that the error upper bound we
guarantee holds for the entire argument range and not only for the reduced range.
Detailed information on argument reduction can be found in [15, 4] and [13]. For
each of the functions discussed in detail in Section 4, we briefly outline the argument
reduction technique used.

For the use of continued fraction approximants in step 2 and step 3 we still need
to address the following issues:

how to determine N such that the upper bound for the relative error on fN (x; w)
does not exceed a threshold ǫT ?
how to obtain an easily computable tail estimate w ∈ VN (or wN ∈ VN ) for the
evaluation of fN(x; w)?

A rounding error analysis of the backward recurrence algorithm is given in Section
3.5.

3.1. Determination of N . The a priori Gragg-Warner bound is expressed
entirely in terms of the partial numerators an and the function’s argument x. Except
for the result given in [12, p. 151], this cannot be said of the oval sequence or interval
sequence bounds. Theorem 1 as well as Theorem 2 assume that the value sets are
given and that convergence sets can be associated with them.

The aim of this section is slightly different from what we have obtained in Theorem
2, where the sets En are deduced from the intervals Vn = [Ln, Rn] and the bounds of
En are formulated in terms of Ln and Rn. Here we want to formulate Ln and Rn in
terms of the bounds on an in En and hence associate intervals Vn with given intervals
En, instead of the other way around. In Lemma 5 we further specify the bounds Ln

and Rn introduced in Theorem 2, for some appropriately chosen convergence sets En.
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We show that the bounds Ln and Rn are in fact tails.
Let En = [bn, cn] with −1/4 ≤ bn ≤ cn and bncn ≥ 0. The smallest useful En

equals [▽(an),△(an)] where ▽(an) and △(an) denote the machine representations of
the partial numerator an obtained using the downward and upward rounding modes
respectively. The usual machine representation of an, namely ©(an) which results
from round-to-nearest, is contained in such En. In case an is itself the result of a
computation, then the interval En can be taken slightly larger. The condition that
bn and cn have the same sign means nothing more than that at least sign(an) is kept
fixed in En.

Lemma 5. If the sequence of convergence sets {En}n∈N is given by En = [bn, cn]
with bn ≥ −1/4 and 0 ≤ bncn, then the corresponding sequence of value sets {Vn}n∈N is
given by Vn = [Ln, Rn] where Ln and Rn are particular tails of the continued fractions

D̂ =
b1

1
+

c2

1
+

b3

1
+

c4

1
+ . . .

Û =
c1

1
+

b2

1
+

c3

1
+

b4

1
+ . . .

(13)

Ď =
b1

1
+

b2

1
+

b3

1
+

b4

1
+ . . .

Ǔ =
c1

1
+

c2

1
+

c3

1
+

c4

1
+ . . .

(14)

More precisely, denoting the tails of D̂, Ď and Û , Ǔ respectively by D̂(n), Ď(n) and
Û (n), Ǔ (n) we have when all bn ≥ 0:

L2j = D̂(2j)

R2j = Û (2j)

L2j−1 = Û (2j−1)

R2j−1 = D̂(2j−1)
(15)

and when all bn ≤ 0:
Ln = Ď(n) Rn = Ǔ (n) (16)

Proof. A sequence of value sets {Vn}n∈N associated with the sequence of conver-
gence sets {En}n∈N satisfies

an

1 + Vn
⊆ Vn−1 an ∈ En

Hence, if Vn ⊂ R
+, expressions for the left and right endpoints Ln and Rn of the

intervals Vn need to satisfy the condition

(1 + Ln)Rn−1 ≥ (1 + Rn)Ln−1 (17)

and if Vn ⊂ R
−, they need to satisfy

Rn−1(1 + Rn) ≥ Ln−1(1 + Ln) (18)

Let us first write down explicit formulas for suitable bounds Ln and Rn in case we are
dealing with a sequence of convergence sets that only allow positive an.

Each Vn contains the tail tn of (2) since Vn = V n. The smallest possible value
for the tail tn of (2) is obtained when the partial numerators an+j ∈ En+j with
j ≥ 1 alternatively take the smallest and largest values bn+1 ∈ En+1, cn+2 ∈ En+2, . . .
A similar result holds for the largest value of the tail which is attained when the
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an+j alternatively take the largest and smallest values cn+1, bn+2, . . . Hence, for the
convergence sets En = [bn, cn], the corresponding value sets Vn are given by Vn =
[Ln, Rn] with

Ln =
bn+1

1
+

cn+2

1
+

bn+3

1
+

cn+4

1
+ . . .

Rn =
cn+1

1
+

bn+2

1
+

cn+3

1
+

bn+4

1
+ . . .

It is now easy to check that (17) holds.
When the convergence sets only allow negative an, then the proof goes as follows.

Consider f
(k)
n . Since 0 ≤ 1 + bk+n ≤ 1 + ak+n ≤ 1 + ck+n we find that

bk+n−1

1 + bk+n
≤ ak+n−1

1 + ak+n
≤ ck+n−1

1 + ck+n

and analogously

Ď(k)
n ≤ f (k)

n ≤ U (k)
n

In the limit this inequality is preserved and becomes

Ď(k) ≤ tk ≤ Ǔ (k)

Again, (18) is easy to check.
Given the accuracy with which the partial numerators can be obtained, in other

words the width of the convergence sets En, we can now determine the bounds Ln

and Rn in function of the bounds on En and use these in (10). This way, the right
hand side of (10) can be evaluated for consecutive values of N until the relative error
is sufficiently small. Note however that Ln and Rn are infinite expressions and hence
not computable. The practical computation of Mk = max{|Lk/(1+Lk)|, Rk/(1+Rk)}
in the right hand side of (10) is further detailed in Section 3.3.

We also prefer a bound that requires the computation of as few expressions as
possible, for instance either the sequence {Rn}n∈N or the sequence {Ln}n∈N but not
both. This can easily be guaranteed when the value sets Vn are small enough to ensure
that LnRn ≥ 0. Then in case Ln ≤ 0, the bound Mn = |Ln/(1 + Ln)|, and in case
Ln ≥ 0, we have Mn = Rn/(1 + Rn) since Ln ≤ Rn in all cases. According to Lemma
2, LnRn ≥ 0 is guaranteed by bncn ≥ 0 because the sign of Rn and Ln is determined
by the sign of either bn or cn.

In addition, when 0 ≤ b = limn→∞ bn and 0 ≤ c = limn→∞ cn, the tails Ln and
Rn respectively converge to

lim
n→∞

Ln = L =
b − c − 1 +

√

(c − b)2 + 2(c + b) + 1

2

lim
n→∞

Rn = R =
c − b − 1 +

√

(c − b)2 + 2(c + b) + 1

2

(19)

with L ≤ R. In case b ≤ 0 and c ≤ 0, we have

lim
n→∞

Ln = L =
−1 +

√
4b + 1

2

lim
n→∞

Rn = R =
−1 +

√
4c + 1

2

(20)
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In Section 4 we illustrate that the bound given by (10) combined with the formulas
(15) and (16) is as sharp with respect to the true truncation error for the modified ap-
proximant fN(x; w), as the Gragg-Warner bound is when compared to the unmodified
approximant fN(x; 0). Both are also of the same a priori form.

3.2. Explicit formula for N . In this section we want to use formula (10) to
deduce an explicit formula for N from the truncation error bound, rather than the
bound from the knowledge of N . To this end we need to be able to bound the Rn

from above by a value R, from a certain nR ≤ N on, and bound the Ln from below
by L from a possibly different nL ≤ N on. The continued fractions and convergence
sets that satisfy such conditions are discussed in detail in Section 4. Sometimes we
want to make use of Lemma 6.

Lemma 6. Let {xn}n∈N be an increasing sequence and {yn}n∈N be decreasing,
with for all n: xn ≥ −d and yn ≥ −d where d ∈ R, then the sequence

{

yn − xn

d + xn

}

n∈N

is also decreasing.

Proof. For fixed ℓ we define the sequence {z(ℓ)
n }n∈N with

z(ℓ)
n =

yℓ − xn

d + xn

Because for every ℓ it holds that yℓ ≥ −d, the function (yℓ−x)/(d+x) is an increasing

function on ]−d, +∞[. Hence the sequence {z(ℓ)
n }n∈N is a decreasing sequence and

consequently

yn − xn

d + xn
≥ yn+1 − xn

d + xn
= z(n+1)

n ≥ z
(n+1)
n+1 =

yn+1 − xn+1

d + xn+1

When the Rn and Ln satisfy the required monotonicity properties, we can bound
the factor (RN −LN)/(1+LN ) for N ≥ max(nR, nL) by (R−L)/(1+L). In case the
sequence {Rn}n∈N is decreasing and the sequence {Ln}n∈N is increasing, we can take
R = RK and L = LK for K ≤ N . In addition the product of the factors Mk can then
be bounded above by

N−1
∏

k=1

Mk ≤
(

K−1
∏

k=1

Mk

)

× MN−K
K K ≤ N (21)

Although cruder, (21) allows to determine N explicitly in function of a given threshold
ǫT . Taking the logarithm of the new bound (21) for the product M1 . . . MN−1 in (10)
and an imposed threshold ǫT results in

(N − K)(− log MK) ≥ log

(

RK − LK

1 + LK

)

+

K−1
∑

k=1

log Mk − log ǫT (22)

How w ∈ [LN , RN ] is obtained cheaply (in terms of numerical operations), is discussed
together with some practical ways to obtain a computational upper bound for Mk.

3.3. Obtaining Mk and w. Lemmas 1 and 2 show the way to compute an
upper bound for Mk. We discuss two cases in somewhat more detail.
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When all partial numerators an > 0, then Lk ≥ 0 and Mk = Rk/(1 + Rk). Let
us denote the j-th approximants of Rk and Lk by Rk,j and Lk,j respectively and use
part 1 of Lemma 1 (the correct notation for these approximants is actually Rk,j(0)
and Lk,j(0) but we drop the suffix (0) to further simplify the notation). Because
the tails Rk and Lk themselves cannot be computed, odd-numbered approximants
Rk,2j+1 ≥ Rk and an even-numbered approximant LN,2j ≤ LN are computed. In
practice, for instance, formula (10) becomes

|f(x) − fN (x; w)|
|f(x)| ≤ RN,2j+1 − LN,2j

1 + LN,2j

N−1
∏

k=1

Rk,2j+1

1 + Rk,2j+1
w ∈ [LN , RN ] (23)

Here Rk,2j+1 equals in turn Û
(2ℓ)
2j+1 or D̂

(2ℓ+1)
2j+1 depending on whether k is even (k = 2ℓ)

or odd (k = 2ℓ+1). When replacing the odd-numbered approximants Rk,2j+1 in (23)

by approximate values R̆k,2j+1 computed in rounded arithmetic, one should be careful

not to violate the condition R̆k,2j+1 ≥ Rk.
When all an < 0 then Mk = |Lk/(1 + Lk)|. If in addition, the sequences

{an}n∈N, {bn}n∈N and {cn}n∈N from Lemma 5 decrease, then the lower bound for
Lk given in part 2 of Lemma 1 can be used to obtain an upper bound for Mk, while
the factor (RN −LN)/(1+LN) can be bounded by (here we keep the suffix (w) because
it varies between RN and LN )

RN − LN

1 + LN
≤

RN,j

(

−1+
√

4aN+1+1

2

)

− LN,j(−1/2)

1 + LN,j(−1/2)

This results for (10) in

|f(x) − fN (x; w)|
|f(x)| ≤

RN,j

(

−1+
√

4aN+1+1

2

)

− LN,j(−1/2)

1 + LN,j(−1/2)

N−1
∏

k=1

∣

∣

∣

∣

Lk,j(−1/2)

1 + Lk,j(−1/2)

∣

∣

∣

∣

w ∈ [LN , RN ] (24)

Similar bounds can be given when the sequences {an}n∈N, {bn}n∈N and {cn}n∈N are
increasing.

The simplest choice for w, in case of a limit-periodic continued fraction with
limn→∞ an = ã < ∞, is given by

w =
−1 +

√
4ã + 1

2
(25)

Question is of course whether this w belongs to VN = [LN , RN ]. For the continued
fractions discussed in Section 4, we indicate how this can be assured. It comes down to
choosing the convergence sets En appropriately, by which we mean that the sequence
of value sets {Vn}n∈N has a nonempty intersection. When choosing the En too small,
such that the sequence of value sets {Vn}n∈N has an empty intersection, it may take
some additional computations to obtain a suitable w = wN ∈ VN .

So in the ideal situation the sets Vn are small enough to bring the truncation
error bound (10) down as much as possible, while at the same time the sets Vn are
large enough to allow a nonempty intersection.
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3.4. Fractions with positive and negative partial numerators. The con-
dition that (2) has either only positive or only negative partial numerators an can be
relaxed for n < N , as long as it is satisfied from N on. In that case Lemma 2, which
gives us a tail estimate, still remains valid, while Lemma 5 is adapted as follows.

Lemma 7. If the sequence of convergence sets {En}n∈N is given by En = [bn, cn]
with bn ≥ −1/4 and 0 ≤ bncn, then the corresponding sequence of value sets {Vn}n∈N

is given by Vn = [Ln, Rn] with

Ln =

∞
∑

k=1

βn+k

1
Rn =

∞
∑

k=1

γn+k

1

where βn+k and γn+k are determined by the following rule. If for k odd the product
an+1 · · · an+k−1 > 0 or if for k even the product an+1 · · · an+k−1 < 0, then βn+k = bn+k

and γn+k = cn+k. Else βn+k = cn+k and γn+k = bn+k.
Proof. The rule dictating whether βn+k and γn+k equal either bn+k or cn+k,

where an+k ∈ [bn+k, cn+k], comes from the following considerations:

Irrespective of the sign of an+k we find that the inequalities bn+k ≤ an+k ≤ cn+k

are flipped around by the division and result in

1

1 + cn+k
≤ 1

1 + an+k
≤ 1

1 + bn+k

For every negative an+k−1 we know that |cn+k−1| ≤ |an+k−1| ≤ |bn+k−1| and
hence the inequalities are flipped around once more to

cn+k−1

1 + cn+k
≥ an+k−1

1 + an+k
≥ bn+k−1

1 + bn+k

Hence the number of divisions plus the number of negative partial numerators
encountered before one reaches an+k, determines whether the largest and smallest
fraction value are attained with an+k replaced by either bn+k or cn+k.

When the restriction that (2) has either only positive or only negative partial
numerators an, holds from a certain n ≥ M on, one can also proceed as follows. A
truncation error bound for |f −fN(w)| can be obtained from a truncation error bound

for
∣

∣

∣
f (M) − f

(M)
N−M (w)

∣

∣

∣
by means of the relation [11, p. 420]

f − fN(w) =
(−1)Ma1 · · · aM

B2
M−1

(

hM + f (M)
)

(

hM + f
(M)
N−M (w)

)

(

f (M) − f
(M)
N−M (w)

)

(26)

Here the sequence {hk}k∈N is the so-called critical tail sequence given by

h1 = 1

hk = 1 +
ak

1
+ . . . +

a2

1
k ≥ 2

and Bk is the k-th denominator of (2) which can be computed by means of (12). From
(26) we obtain the estimate

|f − fN (w)| ≤ |a1 · · · aM |
|BM−1|2 min2 (|LM + hM |, |RM + hM |)

∣

∣

∣
f (M) − f

(M)
N−M (w)

∣

∣

∣
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3.5. Rounding error. When implementing fN (w), we need to take into account
that each basic operation ∗ ∈ {+,−,×,÷} is being replaced by a machine operation
⊛ ∈ {⊕,⊖,⊗,⊘} and hence subject to a relative error of at most 1/2 ulp [5]. Also each
partial numerator an needs to be converted to a machine number ăn, hence entailing
a relative rounding error ǫn given by

ăn = an(1 + ǫn)

Here |ǫn| is mostly bounded by 1/2 ulp if an = an(x) is not a compound expression.
Otherwise |ǫn| may be somewhat larger.

Without loss of generality, we assume that w ∈ VN is a machine number estimat-
ing tN . So we only need to take into account the distance of w to tN , which is present
in the truncation error via the parameters CN and RN determining VN . We do not
have to take into account an additional rounding error on w representing tN .

When executing the backward recurrence, each computed F̆
(N)
n differs from the

true F
(N)
n by a rounding error ǫ

(N)
n , and this for n = N, . . . , 1:

F̆
(N)
N+1 = w ǫ

(N)
N+1 = 0

F̆(N)
n = ăn ⊘

(

1 ⊕ F̆
(N)
n+1

)

n = N, . . . , 1

=
ăn

1 + F̆
(N)
n+1

(1 + δn)

= F (N)
n (1 + ǫ(N)

n )

F̆
(N)
1 = F

(N)
1 (1 + ǫ

(N)
1 )

Here δn is the relative rounding error introduced in step n of the algorithm. The main

question is: how large is |ǫ(N)
1 |? This question is answered in Lemma 8 and Theorem

3, the latter being a slight generalization of a result proved in [10] of which we omit
the simple proof. Let us introduce the notation

γ(N)
n = F

(N)
n+1/(1 + F

(N)
n+1) n = 1, . . . , N

Lemma 8. Let {Vn}∞n=1 be a sequence of value sets for (2). If F
(N)
N+1 = w ∈ VN ,

then for 1 ≤ n ≤ N :

|γ(N)
n | =

∣

∣

∣

∣

∣

F
(N)
n+1

1 + F
(N)
n+1

∣

∣

∣

∣

∣

≤ M = max
n=1,... ,N

Mn

Theorem 3. Let F
(N)
N+1 = w be a machine number and let for n = 1, . . . , N

|ǫn| ≤ ǫ ulp

|δn| ≤ δ ulp

|γ(N)
n | ≤ M

Let the base β and precision t of the IEEE arithmetic in use satisfy

β−t+1

(

1 + M(1 + 2ǫ + 2δ)
MN−1 − 1

M − 1

)

< 1
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Then |ǫ(N)
1 | is bounded by

|ǫ(N)
1 | ≤ ǫR :=

1

2
(1 + 2ǫ + 2δ)

MN − 1

M − 1
ulp (27)

If the partial numerators an of the continued fraction (2) satisfy an ≥ −1/4, then
we know that:

in case all an > 0 and w ≤ tn, the even approximants satisfy f2k(x; w) ≤ f(x),
in case all an < 0 and w ≤ tn, all approximants satisfy fn(x; w) ≤ f .

From Theorem 3 we then obtain for even N = 2n with F
(N)
1 = f2n(x; w) and

w ≤ tN , or for general N with F
(N)
1 = fN (x; w) and w ≤ tN :

|fN (x; w) − F̆
(N)
1 |

|f(x)| =
∣

∣

∣
ǫ
(N)
1

∣

∣

∣

|F (N)
1 |

|f(x)| ≤ ǫR

Clearly, ǫR is a function of the precision because of its dependence on the ulp. When
targeting a threshold for ǫR, a suitable precision in which to evaluate the continued
fraction by means of the backward recurrence algorithm can be computed from this
condition. In the sequel this precision is called the working precision s, to distinguish
it from the user-defined precision t from which the targeted threshold ǫ is usually
obtained.

4. Savouring. In the following we distinguish a number of special cases for the
partial numerators an:

{a2n}n∈N increasing and {a2n+1}n∈N decreasing with

0 < an 0 < lim
n→∞

a2n = ã = lim
n→∞

a2n+1

{an}n∈N decreasing with limn→∞ an = ã ≥ 0;

{an}n∈N decreasing with

an < 0 lim
n→∞

an = ã ≥ −1/4

{an}n∈N increasing with limn→∞ an = ã ≤ 0;

These cases cover almost all known limit-periodic continued fractions of the ele-
mentary functions and a large number of special functions.

4.1. The case a2n ր ã, a2n+1 ց ã, ã > 0. Let the sequences of positive real
numbers {a2n+1}n∈N and {a2n}n∈N be decreasing and increasing respectively. Let for
any p, q ∈ N,

a2p+1 > a2q

If the an can be obtained from a single rounding then we can choose the convergence
sets En = [bn, cn] = [▽(an),△(an)]. If the an are more complicated, then we choose
[bn, cn] somewhat larger. In both cases the intervals Vn = [Ln, Rn] with Ln and Rn

given by (15) are the corresponding value sets, and the bounds (10) and (23) hold.
In addition, we now investigate the monotonicity properties of the sequences

{Ln}n∈N and {Rn}n∈N. To this end we reconsider the continued fractions D̂ and Û

defined in (13) with tails D̂(n) and Û (n).
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Since the sequences {▽(a2n)}n∈N and {△(a2n+1)}n∈N are respectively increas-
ing and decreasing as a consequence of the monotonicity of the rounding functions
▽ and △, Lemma 3 guarantees that the even-numbered tails Û (2n) = R2n and the
odd-numbered tails Û (2n+1) = L2n+1 form a decreasing and increasing sequence re-

spectively, and that for any p, q ∈ N, Û (2q+1) ≤ Û (2p). The same conclusion holds
for the tails D̂(2n) = L2n and D̂(2n+1) = R2n+1. If the interval [bn, cn] is somewhat
larger, the same conclusion holds if we can ensure that the sequences {b2n}n∈N and
{c2n+1}n∈N are respectively increasing and decreasing.

Following the line of proof of Lemma 3, we can show in addition that

R2n+1 ≤ R2k k, n ∈ N

L2n+1 ≤ L2k k, n ∈ N

Hence
∞
⋂

k=1

V2k−1 = L
∞
⋂

k=1

V2k = R

with L and R given by (19). When choosing En = [bn, cn] equal to

[b2k, c2k] = [a2k, ã] [b2k−1, c2k−1] = [ã, a2k−1] k ≥ 1 (28)

inequalities (10) and (23) remain valid, while moreover

L = L2n = R2n−1 = R =
1

2

(

−1 +
√

4ã + 1
)

Then, mathematically, a suitable w ∈ VN is easy to determine since for all N now
w = −1/2 +

√

ã + 1/4 ∈ VN . In practice, the above is applied with ã and a2k−1 in
E2k−1 replaced by ▽(ã) and △(a2k−1) respectively, and ã and a2k in E2k by △(ã)
and ▽(a2k) or similar lower and upper bounds. Then L and R differ slightly, because
in an implementation they are given by (19) with b = ▽(ã) and c = △(ã) or similarly.
Choosing w alternately equal to L and R depending on whether N is odd or even,
is a valid choice (care must be taken during the actual computation of w that it is
rounded in the appropriate direction, appropriate meaning inside VN ).

Examples of elementary functions illustrating this case include the hyperbolic
arcsine,

asinh(x)

x
√

1 + x2
=

1

1
+

∞
∑

n=1

2⌊n+1
2 ⌋(2⌊n+1

2 ⌋ − 1)x2/(4n2 − 1)

1
lim

n→∞
an(x) =

x2

4

the hyperbolic arctangent,

x atanh(x) =
x2/(1 − x2)

1
+

∞
∑

n=1

2⌊n+1
2 ⌋(2⌊n+1

2 ⌋ − 1)x2/
(

(4n2 − 1)(1 − x2)
)

1

lim
n→∞

an(x) =
x2

4(1 − x2)

and the natural logarithm,

x

ln(x + 1)
− 1 =

∞
∑

n=1

nx/(4n− 2)

1
+

nx/(4n + 2)

1
lim

n→∞
an(x) = x/4
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We discuss the natural logarithm in more detail in Section 4.2.
Examples of special functions to which the technique applies are the hypergeo-

metric functions

2F1(a, 1; c; x) a 6= 3/2 x < 0 ã = −x/4

For a = 3/2, the technique described in Section 4.3 applies.

4.2. Natural logarithm. A useful continued fraction for which the results of
Section 4.1 hold, is

f(x) =
x

ln(x + 1)
− 1 =

∞
∑

n=1

nx/(4n − 2)

1
+

nx/(4n + 2)

1
x + 1 ≥ 0

Since ln(0) = −∞, ln(1) = 0 and for 0 < x < 1 the relation ln(x) = − ln(1/x) holds,
we only have to consider the case x > 1. For a given floating-point number

x = +d0 . d1 . . . dt−1 × βex = +mx × βex d0 6= 0, 0 ≤ di ≤ β − 1, i = 0, . . . , t − 1

as operand, and a choosen integer ℓ > 0, we construct the reduced operand x̃,

jx = ⌊logβ1/ℓ mx⌋
x̃ = +d0 . d1 . . . dt−1 × β−jx/ℓ − 1

which satisfies

ln(x) =
x̃

1 + ln(x̃)
+

(

ex +
jx

ℓ

)

ln(β) (29)

For β = 2 and ℓ = 8, the range of the reduced argument x̃ is then [1, 21/8].
With t = 53 in (1) and ǫT = 2−52 = 1ulp ≈ 2.22 × 10−16, we obtain from (23)

that fN (w) with N = 9, w = 1/2
(

−1 +
√

x + 1
)

and 2j + 1 = 3 satisfies

|f( 8
√

2 − 1) − f9(w)|
|f( 8

√
2 − 1)|

= 7.98 × 10−17 ≤ R9,3 − L9,2

1 + L9,2

8
∏

k=1

Rk,3

1 + Rk,3
≤ 1.98 × 10−16 < ǫT

Already for double precision this compares nicely to the targeted complexity of 25
operations. The backward algorithm uses 2N = 18 operations for the computation
of f9(w), and the functional relationship (29) employs another 6. In the next section
the comparison with the state of the art double precision algorithms is even more
favourable. For the luxury of having a multiprecision version we have to pay the price
of obtaining N from (10) or (22) though, while in a fixed precision implementation N
is fixed a priori. Of course we do not have to add this additional work to the com-
plexity count, when comparing the algorithm’s complexity to that of a fixed precision
algorithm.

Because of the specific behaviour of the sequences {Rn}n∈N and {Ln}n∈N when
En is given by (28), we have with K even in (22) that R = RK and L = L. With
K = 4 formula (22) also predicts N = 9. With K = 2 we obtain a slight overestimate
of N , namely N = 10 instead of N = 9:

|f( 8
√

2 − 1) − f10(w)|
|f( 8

√
2 − 1)|

≤
(

R2,3 − L

1 + L

)

M1

(

R2,3

1 + R2,3

)4

M4
2 ≤ 1.06 × 10−17 < ǫT
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When comparing these results to the classical results obtained for w = 0 using (8)

(where we approximate f( 8
√

2−1) in the denominator of the relative error by fK(x; 0)
with K even), we see that

|f( 8
√

2 − 1) − f11(0)|
|f( 8

√
2 − 1)|

= 1.89×10−17 ≤ 2a1

fK(x; 0)

11
∏

k=2

√
1 + 4ak − 1√
1 + 4ak + 1

= 3.77×10−17 < ǫT

This implies a gain of about 20% in complexity: N = 9 is predicted by (22) and
(23) while N = 11 is predicted by the Gragg-Warner bound (8). From the multitude
of experiments we have conducted we can confirm that this gain is typical when
comparing the new technique for hardware precisions. In addition, the precision with
which w needs to be computed, is determined by the width of VN which is at least as
wide as RN,2j − LN,2j+1. When t is increased while maintaining the rather wide sets
En specified in (28), often w need not be computed to full precision.

Now let us consider ǫT = 2−511 ≈ 1.50 × 10−154 and slightly refine the sets En.
Restricting the variation in the partial numerators to that of the double precision
rounding of an(x), amounts to choosing En like En = [an(1 − δ), an(1 + δ)] with
|δ| ≤ 2−52. We find that for the same argument x and with N = 84 and 2j + 1 = 11:

|f( 8
√

2 − 1) − f84(w)|
|f( 8

√
2 − 1)|

≤ 5.82 × 10−156 < ǫT w ∈ V84

Here all factors in the upper bound (23) are only computed in double precision. At the
same time, the Gragg-Warner bound predicts N = 94. Hence the newly developed
technique offers a gain of 20 high precision computations (∆N = 94 − 84). The
practical problem here is to find wN ∈ VN . A possible choice is w84 = L84,11 costing
22 double precision basic operations (2j + 1 = 11). This choice for w is only valid if
LN ≤ LN,2j+1 belongs to VN , meaning that LN,2j+1 ≤ RN .

4.3. The case an ց ã ≥ 0. Let each partial numerator an satisfy ã ≤ an

where the sequence {an}n∈N is a decreasing sequence of positive numbers and 0 ≤ ã =
limn→∞ an. So all an are strictly positive. For En = [▽(an),△(an)] the corresponding
value sets are Vn = [Ln, Rn] with Ln and Rn given by (15). For these Vn the bounds
(10) and (23) hold. To guarantee that (25) is in [LN , RN ], we consider slightly larger
convergence sets En.

For the convergence sets En = [ã, an] the value sets Vn = [Ln, Rn] are bounded
by

Ln =
ã

1
+

an+2

1
+

ã

1
+

an+4

1
+ . . .

Rn =
an+1

1
+

ã

1
+

an+3

1
+

ã

1
+ . . .

Following the line of proof of Lemma 3 we find that the sequence {Rn}n∈N is decreasing
and that {Ln}n∈N is increasing. Now

⋂

k∈N

Vk = [L, R]

with L = R =
(

−1 +
√

4ã + 1
)

/2. Hence we can choose for all N the tail estimate

w =
(

−1 +
√

4ã + 1
)

/2. In practice this is applied to En = [▽(ã),△(an)], replacing
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in Ln, Rn and (22) every occurrence of ã by ▽(ã) and every occurrence of an by △(an).
Use of these roundings makes L < R and consequently all w ∈ [L, R] a valid choice.

With ã = 0, we have Ek = [0, ak], Rk = ak+1 and Lk = 0. The truncation error
bound simplifies to

|f(x) − fN (x; w)|
|f(x)| ≤ aN+1

N−1
∏

k=1

ak+1

1 + ak+1
(30)

Here w = 0 can be used which is a more classical choice.
Examples taken from the class of functions satisfying the conditions imposed in

this section involve the arccosine function

x acos(x)√
1 − x2

=
1

1
+

∞
∑

n=1

n2(1 − x2)/
(

(2n − 1)(2n + 1)x2
)

1
lim

n→∞
an(x) =

(1 − x2)

4x2

the arctangent function

x arctan(x) =
x2

1
+

∞
∑

n=1

n2x2/(4n2 − 1)

1
lim

n→∞
an(x) =

x2

4

and the arccotangent function,

acot(x)

x
=

x−2

1
+

∞
∑

n=1

n2x−2/(4n2 − 1)

1
lim

n→∞
an(x) =

x−2

4

The arctangent is discussed in detail in Section 4.4. Examples where (30) applies
include the hyperbolic tangent function,

x tanh(x) =
x2

1
+

∞
∑

n=1

x2/(4n2 − 1)

1

and the exponential function,

2x

exp(x) − 1
= 2 − x +

x2/6

1
+

∞
∑

n=2

x2/
(

4(4n2 − 1)
)

1

Also several special functions belong to this class, among which the confluent hyper-
geometric functions 1F1(1; c; x).

4.4. Arctangent function. The conditions imposed in Section 4.3 hold for the
following continued fraction representation of the arctangent function:

arctan(x) =
x

1
+

∞
∑

n=1

n2x2/(4n2 − 1)

1
lim

n→∞
an(x) =

x2

4

Since arctan(−x) = − arctan(x), we only need to focus on positive arguments. More-
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over, by using the fact that

2 −
√

3 < x ≤ 1 ⇒
∣

∣

∣

∣

∣

x
√

3 − 1

x +
√

3

∣

∣

∣

∣

∣

≤ 2 −
√

3

1 < x ≤ 2 +
√

3 ⇒
∣

∣

∣

∣

∣

√
3 − x

x
√

3 + 1

∣

∣

∣

∣

∣

≤ 2 −
√

3

2 +
√

3 < x ⇒ 1/x < 2 −
√

3

arctan(x) = arctan

(

x
√

3 − 1

x +
√

3

)

+
π

6

arctan(x) = − arctan

( √
3 − x

x
√

3 + 1

)

+
π

3

arctan(x) = − arctan(1/x) +
π

2

one can reduce the argument of arctan(x) to the interval [0, 2−
√

3]. For x ∈ [0, 2−
√

3]
the value arctan(x) ∈ [0, π/12]. The sequence of partial numerators is a decreasing
positive sequence from the very first partial numerator on.

With t = 53 in (1) and ǫT = 2−52 = 1ulp, we obtain from (23) that fN(w) with

N = 8, w = 1/2
(

−1 +
√

x2 + 1
)

and 2j + 1 = 3 satisfies

|f(2 −
√

3) − f8(w)|
|f(2 −

√
3)|

= 4.74 × 10−17 ≤ R8,3 − L8,2

1 + L8,2

7
∏

k=1

Rk,3

1 + Rk,3
≤ 5.26 × 10−17 < ǫT

(31)
When using (22) with K = 3 we find N = 9. With K = 4 we obtain again N = 8.
The upper bound for the truncation error is then estimated by

|f(2 −
√

3) − f8(w)|
|f(2 −

√
3)|

≤
(

R8,3 − L8,2

1 + L8,2

)

M1 M2 M3 M4
4 < ǫT

Compared to the classical approximant fN(0) for use with the Gragg-Warner bound,
we find

|f(2 −
√

3) − f9(0)|
|f(2 −

√
3)|

= 2.18 × 10−16 ≤ ǫT (32)

|f(2 −
√

3) − f11(0)|
|f(2 −

√
3)|

≤ 2a1

fK(0)

11
∏

k=2

√
1 + 4ak − 1√
1 + 4ak + 1

= 7.56 × 10−18 < ǫT

Hence the new technique delivers N = 8 while the traditional Gragg-Warner bound
estimates N = 11, which is an overestimate of N in (32) by 2. Again the use of a
nonzero tail estimator in (31) together with the newly developed bounds offer a clear
advantage.

Choosing t = 113 (as in the quadruple precision supported by Sun) and ǫT =

2−112 ≈ 1.93 × 10−34 we find with N = 18, w = 1/2
(

−1 +
√

x2 + 1
)

and 2j + 1 = 3:

|f(2 −
√

3) − f18(w)|
|f(2 −

√
3)|

= 5.65 × 10−39 ≤ R18,3 − L18,2

1 + L18,2

17
∏

k=1

Rk,3

1 + Rk,3

≤ 3.35 × 10−35 < ǫT

The traditional Gragg-Warner bound for use with w = 0 delivers N = 21 while

|f(2 −
√

3) − f20(0)|
|f(2 −

√
3)|

= 9.35 × 10−36

Again a clear advantage of a nonzero choice for w over the standard w = 0.
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4.5. The case an ց ã ≥ − 1/4. For simplicity we take all an < 0. When this is
only the case from an index n = M on, then the technique described in Section 3.4
can be used to estimate the truncation error from the beginning of the fraction, given
the truncation error from aM on. Since all Ln ≥ −1/2, the error bound (10) remains
valid.

We choose En = [an+1, an] and compute Vn = [Ln, Rn] with Ln and Rn given by
(16). Apparently Ln = tn+1 and Rn = tn. The sequences {Rn}n∈N and {Ln}n∈N are
decreasing with

lim
n→∞

Rn =
−1 +

√
4ã + 1

2
= lim

n→∞
Ln

Combining part 2 of Lemma 1 and part 3 of Lemma 2 provides the computable bounds

Ln,j

(−1 +
√

4ã + 1

2

)

≤ Ln ≤ Rn ≤ Rn,j

(−1 +
√

4an+1 + 1

2

)

j ≥ 1

Under the condition that LN ≤ RN,j(1/2(−1 +
√

4ã + 1)), a valid choice for wN ∈ VN

is given by wN = RN,j(1/2(−1 +
√

4ã + 1)). Similar computational remarks as in
Section 3.3 and 4.1 apply, concerning the effect of rounding errors on the computed
Ln,j, Rn,j and wN .

Special functions enjoying a limit-periodic continued fraction with an ≥ −1/4 and
ã = −1/4 are:

Em(x) =
exp(−x)/(x + m)

1
+

∞
∑

n=2

−n(m+n−2)
(x+m+2(n−1))(x+m+2(n−2))

1

m 6= 1, x 6= 0

erfc(x) =

exp(−x2)
2
√

πx(2x2+1)

1
+

∞
∑

n=2

−2n(2n−1)
(2x2+1+4n)(2x2+1+4(n−1))

1

x 6= 0
(33)

As an illustration of the technique we compute the function f(x), defined by the first
tail of (33), up to 80 bits accuracy, in other words with ǫT = 2−79 ≈ 1.65 × 10−24.
This function has only negative partial numerators. With En and Vn as given above
and x = 2, the bound (10) is less than ǫT for N ≥ 59. For j = 12 we obtain in addition
that

tN+1 = LN < LN,j

(−1 +
√

4aN+2 + 1

2

)

< RN,j(−1/2) < RN = tN

and hence that all w satisfying

LN,j

(−1 +
√

4aN+2 + 1

2

)

< −3.7626× 10−1 ≤ w ≤ −3.7527× 10−1 < RN,j(−1/2)

are valid choices for the approximation of f(x) by fN (x; w), since they belong to VN

guaranteed.

4.6. The case an ր ã ≤ 0. When the partial numerators an are negative and
increasing with limn→N an = ã, we can choose En = [an, ã]. The value sets Vn are

then given by Vn = [Ln, Rn] =
[

tn, −1+
√

4ã+1
2

]

where it can be proved as in Lemma
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4, that the sequence {tn}n∈N is increasing. Following the line of proof of part 2 of
Lemma 1, we find that

−1 +
√

4an+1 + 1

2
≤ Ln

Hence the truncation error can be bounded by

|f(x) − fN(x; w)| ≤ 1 −√
4aN+1 + 1

1 +
√

4aN+1 + 1

N−1
∏

k=1

1 −√
4ak+1 + 1

1 +
√

4ak+1 + 1
w ∈ VN

When ã = 0 this is very similar to the Gragg-Warner bound on the real line (φ =
arg(x) = 0). Note that w = 0 is a valid choice if ã = 0. This truncation error bound
applies for instance to the function f(x) given by

f(x) =
x

tan(x)
− 1 =

∞
∑

n=1

−x2/(4n2 − 1)

1

4.7. Conclusion. The truncation error bounds obtained here for fN(x; w), are
more general than the ones given in [9] or [2] which contain more stringent conditions
on the an that are not as easily satisfied for all n, and the ones found in [11] where
CN = w̃ with w̃ given by (7) is recommended for (9). Other truncation error bounds
that can be found in the literature [8, 7] mainly hold for w = 0.

When classifying all these bounds with respect to sharpness, we have to distin-
guish between bounds for the unmodified approximant fN(x; 0) and bounds for the
modified approximant fN(x; w). As can be expected, the a posteriori error bounds,
which take advantage of the information contained in continued fraction approximants
computed for smaller values of N , are the most accurate truncation error bounds for
fN (x; 0). The newly developed a priori error bound is to the modified approximant
fN (x; w) what the Gragg-Warner bound is to the unmodified approximant fN (x; 0).
Both are of comparable quality, which is precisely our goal.

An analysis of the complexity of the proposed implementation (counting addi-
tions/subtractions and multiplications/divisions) illustrates that the multiprecision
continued fraction method presented here even compares well to the state-of-the-art
fixed precision techniques which are in use. When choosing the radix β = 2 and
the precision t = 53 (standard IEEE 754 double precision) then the proposed con-
tinued fraction model allows to evaluate the elementary functions in about 20 to 25
operations, including the computation of the square root modification w = w̃, which
compares favourably to the current double precision implementations. Moreover, the
proposed technique is generic in the sense that it can be used for any user-definable
precision.
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