
• CSE EDUCATION •

Editor: Thomas L. Marchioro II, tlm@u.washington.edu

CSE AT BELGIAN UNIVERSITIES

C
omputational science and engi­
neering education in Belgium is

evolving favorably. Even though no
Belgian university has a complete in­
terdisciplinary eSE educational pro­
gram, universities are including more
eSE in their engineering, mathemat­
ics, and computer science curricula.

Earning a degree
To better understand Belgian eSE

education, you should know something
about our university system. To obtain
a degree, students must complete two
cycles of courses in a discipline. The
first, candidature, provides a broad back­
ground in the discipline and includes
basic courses in closely related subjects.
Depending on the discipline, it is a
two- or three-year program. T he sec­
ond, usually called license, is a two-,
three-, or four-year program. It is more
specialized than candidature, with dif­
ferent options to choose from. In the
last year of the second cycle, most dis­
ciplines require students to write a the­
sis showing that they can independendy
understand new material.

After successfully completing two
cycles, students can enter the job mar­
ket, take a third cycle in a related disci­
pline, or enter the doctoral program.
T he Belgian university system has a
good reputation worldwide.

Crossing the borders
eSE is a methodology rather than a

discipline. 1 More important, it is a
methodology that requires crossing the
borders between diSciplines. Three A's
characterize the different aspects of
eSE: applications, algorithms, and
(computer) architectures.2,3 To meet
current demands for eSE education,

OCTOBER-DECEMBER 1997

Annie Cuyt and Brigitte Verdonk

cross-fertilization occurs among the
existing engineering, computer sci­
ence, and mathematics curricula, in
line with the cross-fertilization of ap­
plications, architectures, and algo­
rithms. (The boxed text, "Belgian Uni­
versities with eSE-Related Programs"
on page 80 gives more details.) A re­
cent evaluation of the mathematics
curricula of the Dutch-speaking uni­
versities confirms the need for this evo­
lution: more emphasis should be given
to actual computing in the mathemat­
ics and applied mathematics curricula.

All exact-science curricula have in the
first cycle at least one extensive mathe­
matics or applied-mathematics course
and one introductory computer science
course. Traditionally, however, little in­
teraction occurs between the math/
computer science and the respective sci­
ence departments. Opportunities to de­
velop these courses in an interdiscipli­
nary fashion according to the eSE
problem-solving methodology are not
exploited. 1 The third cycle is, in the
current context, the only framework for
interdisciplinary programs such as com­
puter science and industrial mathemat­
ics, biomedical and clinical engineering,
biostatistics, and so on.

T hat Belgium has no true eSE pro­
gram is due partly to the fact that it is
a small country. Even if the need for
such a program is acknowledged, the
expense would be too great for several
universities to offer a eSE curriculum.
Yet promoting one university over all
others for the organization of a eSE
program would be politically delicate,
without nationwide reform of the
higher-education policy. A proposal to
introduce university gravitation points
is the subject of an ongoing political

debate and might shed new light on
the eSE situation. Rather than nearly
all universities offering nearly all disci­
plines (as is the case now), each univer­
sity would attract all students in spe­
cific disciplines.

------- +-------
Scientific computing evolved
because of the rapid changes
in hardware and the advent

of symbolic computing.

+

CSE research
Several scientific research commu­

nities group researchers from engi­
neering, applied mathematics, and
computer science. Yet until recently,
funding agencies tended to underesti­
mate the opportunities provided by a
computational approach to science.
eSE projects-for instance, in compu­
tational chemistry-seemed to suffer
an image problem, being regarded as
neither chemistry nor computer sci­
ence research projects. Moreover, with
the advent of computer science as a
full-fledged discipline, interest in and
funding for numerical analysis and sci­
entific computing dwindled. In recent
years, there has been a reversal of that
trend. Scientific computing, having
greatly evolved because of the rapid
changes in computer hardware, to­
gether with the advent of symbolic
computation, has taken up a forefront
position again.

79

Belgian Universities with CSE,..Related Programs

These universities offer a degree in one or more of the dis- .
ciplines of engineering, mathematics, and computer science:

algorithmic and numerical problems and their implementa­

t ion on different computer architectures. As for the French­

speak ing schools, the UCL offers applied-mathematics and
computer science specializations, and the ULB offers a

computer science specialization. These specializations, in
turn, have several options covering different CSE aspects.

Dutch-speaking
• Katholieke Universiteit Leuven (KUL), http://www.

kuleuven.ac.be/kuleuven

• Universiteit Gent (UG), http://www.rug.ac.be

• Universiteit Antwerpen (UA), http://www.ua.ac.be computer science
• Vrije Universiteit Brussel (VUB), httpj/www.vub.ac.be The UG offers a numerical computer science option, and

the KUL offers a numerical-analysis option. On the French­

speaking side, the ULg offers a mathematics option.
• Limburgs Universitair Cent rum (LUC), http://www.luc.ac.be

French-speaking
• Un iversite Catholique de Louvain (UCL), http://www. Mathematics

ucl.ac.be

• Un iversite Libre de Bruxelles (ULB), http;//WWW.ulb.ac.be

All Dutch-speaking un ivers ities offer an applied-mathe­

matics specialization, but only the VUB and the UA have

• Universite de Liege (ULg), http://www.ulg.ac.be a computer science specialization. Evaluating the contri­

bution to CSE ofthe applied-mathematics specialization

is very difficult, because its content var ies greatly be­
tween universities. Regarding the French-speaking uni­

versities, they are very diverse with respect to the differ­
ent specializations offered. The UCL, the UMH, and the
FUNDP offer a computer science spec ialization . The latter

university offers this specialization in the first cycle of the
mathematics curriculum only, while in the second cycle

applied-mathematics spec ializations such as numerical

analysis, optimization , and mechanics and differential

equations are offered.

• Facultes Universitaires Notre-Dame de la Paix in Namur

(FUNDP), http://www.fundp.ac.be

• Un iversite de Mons-Hainaut (UMH), http://www.umh.ac.be
• Faculte Poly technique de Mons (FPMs), http://www.

fpms.ac.be

Engineering
Regarding the Dutch-speaking universities, the programs

at the UG and at the KUL offer a spec ialization in computer

science. This specialization is further split into opt ions. In

particular, Leuven's applied-mathematics option centers on

The growth of CS studies
The most striking feature of the evo­

lution of the student population at
Dutch-speaking universities is the
rapidly increasing number of computer
science students. This phenomenon is
not only typical of Flanders or of Bel­
gium as a whole, but is also evident in
many European countries. At some
universities in neighboring countries,
the decrease in the proportion of math­
ematics students to computer science
students has already led to the merging
of mathematics and computer science
departments.

The University of Antwerp, which
does not have an engineering school,
offers computer science and mathe­
matics. Although only one-eighth of
the Flemish student population studies
at our university, our computer science
program accounts for almost a fourth of
all Flemish computer science degrees.
Thus, we have the opportunity to ad-

80

dress a large audience potentially inter­
ested in CSE. This was reason enough
to develop a scientific-computing
course with special attention to the
computer science background of the
students. As the boxed text "Scientific
Computing for the CS Student" on the
nest page illustrates, getting computer
science majors interested in CSE takes
more than classical numerical analysis
courses! •

Acknowledgments

We thank our academic authorities for
their support in extending CSE in the
computer science curriculum at the
University of Antwerp. We also thank
Gene H. Golub for his hospitality and
encouragement; the course material
described in the boxed text benefited
greatly from a fruitful summer term at
Stanford's Department of Computer
Science.

References

1. T.L. Marchioro II, D.M. Martin,
and WD. Payne, "UCES: An Un­
dergraduate CSE Initiative," IEEE
Computational Science & Eng., Vol. 2,
No. 3, Fall 1995, pp. 69-73.

2. J.R. Rice, "Academic Programs in
Computational Science and Engi­
neering," IEEE CS&E, Vol. 1, No.
1, Spring 1994, pp. 13-21.

3. RobertM. Panoff, "The Four 1-:.s of
CSE Education: Application, Algo­
rithm, Architecture, and Active
Learning," IEEE CS&E, Vol. 2, No.
4, Winter 1995, pp. 6-9.

Annie Cuyt is research director and
Brigitte Verdonk is a senior researcher at
the FWO- Vlaanderen (Fund for Scientific
Research-Flanders); e-mail, {verdonk,
cuyt}@ uia.ua.ac.be.

IEEE COMPUTATIONAL SCIENCE & ENGINEERING

Scientific Computing for the CS Student

The University of Antwerp's Computer Arithmetic and

Numerical Techniques course is an introduction to scientific

computing for students with a major in computer science

or a combined major of mathematics and computer sci­

ence. It is also appropriate for any exact-science or applied­

science student with a reasonable high school background

in math and an interest in computers. It is this growing
group of science students interested in computer science
that we are trying to encourage into scientific computing.

Unlike engineering students, CS students rarely confront

real-life scientific-computing problems in other courses. Yet

we believe that the best approach to a scientific-computing
course is to follow the complete journey from physical
problem to computational solution: 1

1. Introduction of a motivating problem
2. Identification of the computational problem behind the

given real-life problem
3. Selection of an appropriate numerical technique to solve

the problem

4. Implementation of a numerical routine

5. Evaluation or quality control of the numerical output

Each topic in the course covers all these steps, with spe­
cial attention to the computer science background of the
students. We use reasonably realistic examples that are not
too technical. Moreover, we treat all aspects of Step 4 in
detail. This approach differs from other scientific-comput­
ing courses in that we emphasize the distinction between
the properties of a mathematical algorithm and the proper­
ties of the algorithm's implementation in finite preciSion

arithmetic. Computer science students are interested in

computer arithmetic as part of scientific computing, in the

same way they are interested in learning about compilers
to obtain a full understanding of programming languages.

The course consists of two parts: computer arithmetic (a
15-hour course load) and numerical techniques (a 30-hour
course load).

Computer arithmetic
This part of the course discusses how to represent the

number sets 7L (integer arithmetic), OJ (exact rational arith­

metic), and IR (exactly rounded arithmetic) on a computer

and how using these representations instead of the num­
bers themselves influences computation. The level of com­
plexity evolves as we go from 7L to II) to IR, and increases as
we perform more complex operations on each set.

Section 1 covers computer representations of 7L, 11), and
IR and I/O from and to these sets:

• the 5et of machine integer5 fl." where t indicate5 the num­
ber of bits that represent the integer (including its sign),

• the set il)M of rationals that can be represented in finite ma-

OCTOBER-DECEMBER 1997

chine memory, and

• the set of floating-point numbers IF(�, t, L, U), with base �,
precision t, and exponent range [L, U], often denoted by 1Ft•

In the next three sections of the course, we discuss oper­
ations on the computer number set 1Ft; that is, the basic
operations +, -, *, and I, the relational operators, and the
implementation of some elementary functions.

Section 5 deals with compound statements, which in­
volve such problems as the accumulation of rounding er­
rors, benign and catastrophic cancellation, and the choice
of an evaluation strategy (the widest format available; the
widest-needed precision, and so on), especially when
operands of different precisions are mixed. We illustrate the

effect of the evaluation strategy by running the same nu­
meric code on different hardware platforms, for example
Sun Sparcs versus Intel PCs.

At this point, the students have all the ingredients to im­
plement complete numerical algorithms in 1Ft• The buildup

of rounding and data errors in the implementation of algo­

rithms leads to the essential concepts of forward and back­

ward error analysis, numerical instability, and iii-condition­

ing. Section 6 covers these in detail.
Section 7 discusses the IEEE standard.2,3 This standard em­

bodies all the details encountered when effectively imple­
menting floating-point arithmetic on a binary machine: de­
normals, special representations, exception flags, and so on.

The next sections of the class present alternatives to IEEE
floating-point arithmetic. Section 8 discusses multi precision
floating-point arithmetic, while Section 9 discusses interval

arithmetic. Section 10 concludes with rational arithmetic

and is a good starting point for extra material on polyno­
mial and symbolic computation.

Hands-on experience. Although the above material is
simple and clear-cut, students have difficulty grasping its
intricacies and understanding the interaction of the differ­
ent errors that can occur. To help them overcome this diffi­
culty, we have developed the software tool Arithmetic Ex­
plorer, shown in Figure A.

In the Arithmetic Explorer, students can define their own

set of floating-point numbers. By choosing a small preci­

sion t and a limited exponent range, they can easily follow

the computations at the bit level. Moreover, in a low-preCi­
sion floating-point set, they can easily zoom in on the un­
mistakable effects of data and rounding error, cancellation,
ill-conditioning, and numerical instability, and can develop
a better feeling for computer arithmetic issues.

We have taken care to implement the tool's floating­
point arithmetic in full compliance with the philosophy of

Continued on page 82

81

Continued from page 81

82

1'It'!J:UMnt 11::
I)Qcflo"b O�(llO�.Hlil!:,;"'-2
einRepr , .0011(1.)10 M1D
Rational: 1/10
Fl,ag", : IHf>:Ar.T

t'lt'guflIent U2:
DecFloat: 5 •• "-1
ainRepr : +0110(1.)08 0000
Rational; 1/2-
Flags : HOHE

Result (Rdd):
D:ecFloat: 6�lIt15{P2�;"'-1
BinRepr : +0110(1.)30 11111
Rational:. 3/5
Flags : INEXACT

Figure A Computing 0.1 + 0�5 in 1F(2, 7, -6, 7) and in ifJiM•

1.5 r--,.---,--,--,---,---,..----,--,---,

0.5

-0.5

-1

.2000 4000 8000 BODO. 10000 12000 14000 16000 18C 2"{·141.

Figure B. Scatterplot for the polynomial approximation

of degree 13 for sin (x) used in fdlibm.

the IEEE standard. Except that users can freely specify the
precision and exponentrange, all aspects ofthe IEEE stan:"
dard are supported and .can be visualized,. including exact

rounding, denormals, signed zero, infinities, not-a-num­

bers, and exception flags. In this way, students can discover

the details of floating�point arithmetic. While a similar

analysis can be done with other tools, such as Mathematica,
or by direct programming using a traditional compiler, the
result is often a time-consuming and confusing task, ob­
scuring more points than one is trying to make.

For a specified set of floating-point

numbers, the Explorer provides the
whole functionality described in Sec­
tions 2 through 6; from basic opera­
tions to complete algorithms. More­
over, it supports interval arithmetic

and rational arithmetic. In the future,

the program will include rational in­
terval arithmetic and rational round­

ing for irrational numbers.
We developed Arithmetic Explorer

in Borland C++. Several students who

were fascinated by the computer

arithmetic issues we d iscussed coop­

erated in the tool's development. Be­
cause it is a teach ing program, we

paid no attention to the implementa­

tion's efficiency. It is in its last debug­

ging phase and will be available in

the coming winter term.

Numerical techniques

In the four modules-linear alge­

bra, root finding, approximation theory, and random­

number generators-we follow the same journey from
real-life problem to computational solution.

Linear algebra is extremely important because many

real-life problems involve solving a system of linear equa­

tions. This module covers problems from such areas as

computer graphics and robotics.
We d iscuss exact numerical methods such as Gaussian

elimination (without and with partial pivoting) and QR­

factorization. Having a proper understanding of computer
arithmetic, students easily see that implementing an exact

method yields an exact solution only if exact arithmeticis

carried out with exact data. Because this is clearly not the
case in floating-point arithmetic, concepts such as round­

ing error, ill-conditioning, and numerical stability pop up

naturally and are discussed thoroughly.
I

The module on root finding treats real-life problems such
as the implementation on a chip of a routine to compute

the square root and the difficult problem of polynomial

root solving.41s

Unlike the linear algebra module, we introduce iterative

and hencenonexact methods: bisection, Newton's method,

a�egula .falsL To determine starting points for an itera­

tive method, the students estimate the root-solving prob­

lem graphically, thereby confronting the problem of reli­

able graphical output.

The approximation theory module is the most compre­
hensive; it starts off with motivating problems from CAD­

CAM and the implementation of elementary functions bn a

I E E E COMPUTATIONAL SCIENCE &: ENGINEERING

chip. Figure B shows the scatterplot for the approximation

used in the mathematical function library-fdlibm for

sin(x).6 Here we cover several mathematical techniques, in­

cluding interpolation, Chebyshev approximation, splines,

least squares, and rational approximation. All these tech­
niques except the last use polynomials as approximating
functions. After a brief theoretical discussion, we emphasize
how the problem's nature influences the choice of the ap­
proximation method.

The last module covers random-number generators.

They are at the basis of simulation techniques, which are

essential in the study of complex problems, such as traffic

engineering and the computation of irregular tank vol­
umes. Students learn that not all random-number genera­
tors are equally good and study criteria for evaluating their
quality.

Projects. The students work on several small-scale prob­

lems and on individual projects. After choosing a suitable

algorithm, students can usually find correct implementa­
tions in well-known software environments such as Matlab,

Maple, or Mathematica. They can also download software

from well-known software sites such as Netlib (http://www.

netlib.orgJ) or GAMS (the Guide to Available Mathematical
Software, http://gams.nist.gov).

Further enlightenment
Our course recently won an Undergraduate Computa­

tional Science Education Award for its innovative approach.

For information on the award program, access http://www.

krellinst.org/UCES/awards/ugcsa97/. For more information
on the course, access http://win-www.uia.ac.be/u/cuyt/
cant.html.

References

1. T.L. Marchioro II, D.M. Martin, and W.D. Payne, "UCES: An Under­

graduate CSE Initiative," IEEE Computational Science & Engineering,
Vol. 2, No. 3, Fall 1995, pp. 69-73.

2. "IEEE Standard for Binary Floating-Point Arithmetic," ANSI/IEEE Std

754-1985. Reprinted in ACM S/GPLAN, Vol. 22, No. 2, 1987, pp. 9-25.

3. "IEEE Standard for Radix·lndependent Floating-Point Arithmetic,"

ANSI/IEEE Std 854-1987, New York, 1987.

4. "PoSSo Home Page" (Polynomial System Solving), ESPRIT Basic

Research Contract with the Commission of the European Commu­

nity, BRA 6846, 1996, http://janet.dm.unipi.it/.

5. "Frisco (A Framework for Integrated Symbolic/Numeric Computa­

tion)," Commission of the European Community under ESPRIT Re­

active LTR Scheme, Project No. 21.024, 1996, http://www.nag.co.

uk/projects/FRISCO.html.

6. SunSoft, "fdlibm, A Freely Distributable C Math Library," version 5,

http://www.netlib.org/fdlibm.

Computational Science Education Opportunity

Since 1987 the EPCC Summer Scholarship Programme has trained over 150 senior undergraduates to use state-of-the­

art high-performance computers. The 1 O-week program gives students a mixture of training and project work, as well as

the opportunity to meet students from different cultures and backgrounds.
The program will begin in Edinburgh, UK, on 6 July 1998. It is open to senior undergraduates of any nationality from any

discipline with a strong computing emphasis.

The closing date for 1998 applications is 13 February. Forms are available at http://www.epcc.ed.ac.uk/ssp/.

OCTOBER-DECEMBER 1997 83

