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Abstract—Let F: R?~R* and let x* be a simple root of the system of nonlinear equations F(x) = 0.

We will construct several iterative methods, based on the (n, m)-APA (abstract Padé-approximant) or
the (n, m)-ARA (abstract rational approximant){4] for either F (direct one-point interpolation) or its inverse
operator G (inverse one-point interpolation).

The following methods are special cases: n =1, m =0: Newton-iteration (via direct and via inverse
interpolation); inverse interpolation with n =2, m = 0: improvement of the Newton-iteration as indicated by
Ehrmann([7]; direct interpolation with n=1,m =1: method of tangent hyperbolas[10], under certain
conditions for the ARA.

Among other new methods an interesting third-order iterative procedure is constructed via inverse
interpolation with n=1,m =1:

Xis1 =X+ af
R
N T 3F 'Fla;

with F} the 1st Fréchet-derivative of F at x;, a; = —F| 'F; the Newton-correction, F' the 2nd Fréchet-
derivative of F at x; and component-wise multiplication and division in R%

This method is to be preferred to the method of tangent hyperbolas, which is also of third order, since it
requires less numerical calculations. In general, the methods derived from the use of the (n, m)-APA or
(n, m)-ARA with m =1 are preferable when F or G have singularities in the neighbourhood of x* or 0
respectively.

1. INTRODUCTION
Let F: RY>R? and let x* €R? be such that F(x*)=0. In this paper we will construct two
classes of iterative methods to find x*, i.e. starting from an approximation x, for x* a sequence
of further approximations {x;} is constructed in such a way that x;,, is computed by means of x;.

The first class of methods considered in this paper is obtained from approximating F in a
neighborhood of x; by a ratio P;/Q; of abstract polynomials. Then x;., is such that P;(x;,,) = 0.
This process is called direct (one-point) interpolation.

In the second class the inverse function G of F is approximated in a neighborhood of
¥i=F(x;), by a ratio of abstract polynomials P,/Q, as well. Now x;,;=(P;/Q,)}0). This
technique is called inverse (one-point) interpolation.

In both cases P,/Q; is an abstract Padé approximant (APA) or an abstract rational
approximant (ARA) for F or G. In Section 2 the notions APA and ARA are introduced,
together with some properties. For different degrees of P; or Q,, different methods are obtained.
Section 3 contains several examples of iteration functions obtained by inverse interpolation.
Direct interpolation is treated in Section 4. Finally, in Section 5, numerical aspects are
discussed and numerical examples considered.

2. ABSTRACT RATIONAL APPROXIMANTS (ARA) AND
ABSTRACT PADE APPROXIMANTS (APA)

Let X be a Banach-space and Y a Banach-algebra. For X =R% =Y the multiplication is
componentwise and 0=(0..... 0)7 is the unit for the addition and 1=(,...,)7 for the
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multiplication. We define

#(X* Y)={L| L is a bounded k-linear operator L: X - £(X*"', Y)}
and £(X% YV)=Y.

Thus Lx,...x =(Lx)x...x with (x;,...,x) € X* and Lx,€ £(X*"',Y). An operator
Le £(X* Y) is called symmetric if the arguments in Lx,...x, may be permuted without
effect. An example of a symmetric bounded k-linear operator is F*)(xo), the kth Fréchet
derivate of F at x, ([13], pp. 100-110). The tensor-product L, @ L, of L EZX'Y) and
L, £(X' Y) is a bounded and (i + j)-linear operator defined by ([9], pp. 318)

(Li@L)(x; ... xie) =(Lixy... %)  (LaXisy . . . Xi4) (product in Y).

An abstract polynomial is a non-linear opsrator P: X - Y such that P(x) = A x" +-- -+ A,
where A; € (X', Y) are symmetric operators. We also introduce the following notations:

3oP is the smallest index i for which Ax'# 0,
P is the largest index i for which Ax'# 0.

3P is called the (exact) degree and d,P the order of P.

We suppose that the operator F of Section 1is analytic ([13], p. 113)ina nelghborhood U of
x* and that x* is a simple zero of F, i.e. F'(x*) is a non-singular matrix. Then the inverse
operator G exists and is analytic in a neighborhood V of 0. ([2], p. 381).

We will introduce the following definitions for F; the same reasoning may be applied to G.
Let x, € U. Since F is analytic at x,,

F(x)= 2 %F ®xe)(x = xo)* for x € R? close to x,.

We say that F(x) = O((x — x,)') if there exists a 0<Jy<o such that |F(x)|<Jox — xoff for
small lx ~ x| j €N).
In the abstract Padé approximation problem we try to find a couple of abstract polynomials

(P(x), Qx)),

P(x) = Apman(X = X" " 4+ + Apm(x = X0)"™"
Q(X) = Bnm+m(x - xo)nm+m +oet Bnm(x - xo)nm’

such that

(F - Q= P)x) = O((x = x)""™™*™*"). @.n

The choice of the order and degree of P and Q is justified in [4]. For all non-negative integers n
and m a solution of this problem exists.
We define for Y =R%:

D(Q) = {x €R?| Q(x) is a vector with non-zero components}
the operator bl-: D(Q)-=R? by é(x) =(Q(x))™" (the inverse element for the component-

wise multiplication in RY).

We call the abstract rational operator (1/Q) - P, the quotient of two abstract polynomials, reducible
if there exist polynomials T, Pyand Qysuchthat P =T - P, Q = T - Qo, where 8T = 1and T is not
a unit in the ring of abstract polynomials (i.e. 1/T is not an abstract polynomial). For X =R =Y
the uniqueness of the irreducible form of an abstract rational operator is guaranteed [5]. It can also
be shown that all the solutions of (2.1) have the same irreducible form.

We can now give the definition of APA and ARA. Let (P, Q) be a couple of abstract
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polynomials satisfying (2.1) and suppose that D(Q)# ¢ or D(P)# ¢. Let (1/Q,) - P, be the
irreducible form of (1/Q) - P such that x, is contained in D(Q,) and Qy(xy)= I. If this form
exists, we call it the abstract Padé approximant (APA) of order (n, m) for F. If for all solutions
(P, Q) of (2.1) with D(P) # ¢ or D(Q) # ¢, the irreducible form (1/Q,) - P, is such that x, is not
contained in D(Q,), then we call (1/Q,) - P, the abstract rational approximant (ARA) of order
(n,m) for F.

Let P=T: Pyand Q=T - Q, where T(x) =3, Ti(x ~ xo)* is the greatest common divisor of
P and Q. Write t,= d,T.

We mention the following important property[5}]: If (1/Qy) - P, is the (n, m)-ARA or
(n, m)-APA for F at x, and if D(T,) # ¢, then

(F - Qo= Po)(x) = O((x — xp)""*"*™*17h), 2.2)

To construct iterative methods for finding x*, we calculate the (n, m)-APA or (n, m)-ARA
(1/Q;) - P; for F at x; in each iteration-step, i.e. we compute a solution (which we denote again
by (P, Q)) of the abstract Padé approximation problem for F at x; and reduce the abstract
rational operator (1/Q) - P. Let ¢; be the order of the greatest common divisor of P and Q. If
D(T,) # ¢, then for each i there exists a 0 <J; < such that

"(F . Qi _ P,)(x)|| s],-"x - xi|‘nm+n+m+l—l,v (23)

for small ||x — x;|.

The condition that J, must be finite for all i is comparable with conditions mentioned in
([11], p. 148) and ({13], pp. 135-139) to ensure quadratic convergence of the Newton-iteration
for operator equations.

If we suppose that, instead of analytic, the operator F is only (n +m + 1) times differenti-
able in a neighbbourhood V of x*, then, under the condition that F"*™*" is integrable from
X, € V to any x close to x,, we can write ([13], p. 124):

+m

Fo=3 & FOUox - xo + f L gy 4 (1 - B)xgx — xgmmet A0
k=0 k! 0 0 0 U 0, (n+m)!

de
instead of the infinite Taylor series for F.

Since x* is a simple root, an analogous expression is valid for the inverse operator G ({2], p.
381):

+

wim | neme1 (1= 6)™"
6= 3 76 000 -y’ + f Gy + (1= Oy = )"

3

deé.

The abstract Padé approximation problem can be formulated for these operators F and G in
the same way as we did before for analytic operators and the next sections also remain valid,
but for the sake of simplicity we shall deal with the infinite series from now on.

3. APA AND ARA FOR THE INVERSE FUNCTION G

Let G be the inverse function of F, x; the ith approximant of the root x* in an iterative
process, and y;, = F(x;). By F¥ and G we mean the jth Fréchet-derivative of F and G at x;
and v; respectively. Note that F” and GY’ are both symmetric j-linear operators. If j=1o0r 2, a
single or double prime is used instead of the superscript (j). Now, since G is analytic in a

neighbourhood of ¢,
x*=G((0)= 2 Gy}, 3.1

If we denote the Newton-correction (- F|"'F;) by a;, then

(- 1)jGi(j), ij = GIO)(F,iai)j
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which can be understood as a j-linear operator E; evaluated at a; Hence

=> Ea/
=0

Using the Inversion Theorem ([2], p. 381), we can see that

Eual=x
p.n. =10
Rl Sad “wi
1y—
EZal _‘_EF’i lF’l’ i

so that

). (3.2)

First we observe that the Newton-iteration is the result of approximating the series in (3.2) by
its first two terms (i.e. the (1, 0)-APA):

Xis1 = X + a;
The (0, 1)-APA gives the following iterative method
Y.gz

Xip1 = .

! Xi—a;

The multiplication and division in R are component by component as indicated in Section 2.
The first three terms in the expansion (3.2), which form in fact the (2, 0)-APA, could also be
used to approximate x*. This leads to the method

"11
B
—
SJJ
U
A

improvement of the Newton-

1terat10n)
Another way to approximate x* is to use the (1, 1)-ARA for the power series (3.2), i.e.

a,'2
Xivi = X + T, 2
a; +EF,' F,'a,'

—
[FS)
ey

N’

which is a generalization of a formula of Frame{8] and a rediscovery of the Halley-correction
(now for systems of equatnons).
If F'Fa=(IQL)a’=gq; - for a

ALY )i u, uul J V1S

unit matrix, then (3.4) can be reduced to the (1, 1)-APA:

i1 = i 1+ 5La
For g =1 this reduction can lway performed and results in the Halley-correction
The iterative procedure (3.4) is closel'y related to the method of tangent hyperbolas ({10}, p.
188):
cr  lry—lene  1—1 Vo4
Xit1 Xi +11 +§I"" r la!} a; (3.2)
or, equivalently (with one matrix-inversion less)
1 -
X1 =x; —{Fi+:F}a}"'F. (3.6)

Formula (3.5) shows the interrelation with (3.4): instead of solving the system of linear



equations in (3.6), both the matrix I +3F!"
y b M svrida rl v {2 AY Thie +
UCAL R (D). lllla u

void the mversnon of matrices[1].
3.2) we get

..... Tt 41z
FOOUILd lll ww

0
introduced by Altman to
et

3
Xi

x,-z - x;a; + a,'2 + %x,‘F;_IF’;a,’Z'

Xis1 =

4. APA AND ARA FOR F
Since F is analytic in a neighbourhood of x* containing the approximants x;, we have:

F(x)= 2 F(”(x x). 4.1

j\JJ

To illustrate our technique, we will now calculate the (n, m)-ARA for n +m <2,
The (1, 0)-APA consists of the first two terms of (4.1):

F + Fi(x - x;).

If x;., is the zero of this expression, then

which is precisely Newton’s method.
The (2, 0)-APA consists of the first three terms of (4.1):

F,+ Fi(x - x) +1Fi(x - x)’, 4.2)

remn

so that x;,, can be obtained by soiving a quadratic operator equation. As indicated in {12],
solving such an equation is a quite complicated matter. Moreover, the choice of x;,, among

Adictinst ecahitiane af tha 1
distinct solutions of the quadratic equation is also a problem.

However, an approximate solution X;., can be obtained in the following manner([7]: the root
X;+, of (4.2) satisfies

-1 L=t 2
X =x—FF—3F Filxixy— %)

If in the r.h.s. x;.; — x; is approximated by the Newton-correction a;, we have an approximation
for x;., which is precisely (3.3):

Another way to express x;., is
Xir1 = X; = {F}+3F(xis, — x)} 'F.
If again in the r.h.s. x;.; — x; is approximated by a;[6], we get
%= x-{F;+1F}a}"'F,

which is the method of tangent hyperbolas (3.6).
The (1, 1)-ARA for (4.1) at x; is

FFix = x)+ (Fix = x)’ = 3FFix - x,)’
Fi(x = x) = 3F{x - x,)° '
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solve the problem

B+ Fifx - ) =} BE =0,

If we approximate in the r.h.s. x;., — x; by a; we get the approximate solution
fa=x+a-31F'Fla}

which coincides with (3.3) again.

If Filx-x)*=(F.Q LXx-x)*=F{(x-x)- L(x —x;) for a certain matrix L (ie. L in
Z(R% RY), then (4.3) can be reduced to the (1, 1)-APA

T Ly — v YA AT (v — ) /1 \
LT RA T A 24 LA A'}=(L’P‘)(X)
1-3L(x - x) Q )
For g =1 this reduction can always be performed.
Let us calculate x;,, such that P;(x;1,)=0.
Hence
f 3= 1l e 75— s an
X =X~ —3FQQL) b 4.4)
The iterands x;., from (4.4) and (3.6) now coincide since

In conclusion we can say that the methods derived by direct interpolation are either too
complicated (when we calculate the exact solution x;.,), or similar to methods from Section 3
(when we calculate an approximate solution %;.,). This justifies the fact that only techniques
from Section 3 will be treated in the sequel of the text.

5. NUMERICAL ASPECTS

One of the main drawbacks to the use of (n, m)-APA or (n, m)-ARA is the computational
cost of evaluating higher derivatives of F. However, in some cases these derivatives can be
computed quite easily, e. g if F satisfies a certain differential equation (so that the derivatives
can be computed from this equation rather than from F itself) or if F is a composition of
polynomials, trigonometric or exponential functions.

Let us now consider a convergent iterative procedure for the calculation of a simple root x*

of F:lim x; = x*. ) -

> Cyj(x*—x;) satisfying

3 €Ll =x)) (@ xe)= S Oy -x)

i=p2

In classical definitions of order of an iterative process, the abstract power series on the left
hand side of the equality is missing. Its presence here is due to the order 4,P and 4,Q of P(x)
and Q(x) in the abstract Padé approximation problem. Nevertheless this definition is an
extension of the well-known definition because for C, , containing nonzero components and
p,=0 we can prove that there exists 0<J, <% such that |x*—x,. || J|x*-xl? This
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definition coincides with that given by ([11], p. 148). For the method of tangent hyperbolas (3.5)
we have p, =0, C, =1 and p, =3, so that the order p = 3.

THEOREM
Let (1/Q;) - P; be the (n, m)-ARA or (n, m)-APA for G in y; (inverse interpolation), deduced
from a solution (P, Q) of (2.1). The order of the iterative procedure x;,, = ((1/Q;) - P;)(0) is at
least nm+n+m+1-3,Q (0 € D(Q))).
Proof. From (2.2) we get
(G- Qi—P)=0((y—y)rm=nm=i=h),
Since G(0) = x* and x;,, = P;(0)/Q:(0) for y = 0, we have

Qi(0) - (x* = x;.) = (G - Q: — Pi)(0).

Hence
3Q; ' .
(_ 2 Du(’yi)}) . (x*“xi+|)=_ 2 Dz,,‘(")’i)’
i=3Q; j=nm+ntm+i-t;

for certain j-linear operators D, ; and D, ;. Note that there exists a linear operator L such that
—vy; = L(x* — x;). Indeed

-y, =F(x*) - F(x;)
= U] F(6x* +(1 - O)xi)d()}(x*—x,-)
1)
= L(x*-x;)

Therefore

o

(A § 'Cl,j(x*"Xi)j> (x*—xi)= E C2.i(x*—xi)j’

=30 j=nm+n+m+1-t;

where C, ;(x* - x;) = D, j(L(x* - x;)) € L(RY,R) (k=1,2) (3], p. 289). Since D(T,)# ¢
(which we assumed in Section 2), t; + 3,Q; = 3,Q and this proves the theorem.

For the iterative scheme (3.4) p, = 1 and p, = 4; consequently the use of the (1, 1)ARA for G
provides a method of order 3.

Since the classical method of tangent hyperbolas is also of order 3, it would be interesting to
compare the numerical effort per iteration for (3.4) and (3.6). They both have to solve two
systems of linear equations. However, in (3.4) these two systems have the same coefficient-
matrix Fj, so that for the second system the elimination-part of the Gauss-method does not
have to be repeated, while (3.6) requires the solution of two linear systems with matrices F’ and
F;+3F"a;, so that the entire Gauss-method has to be performed twice. So we can conclude that
(3.4) is to be preferred over (3.6).

Moreover, numerical experiments have confirmed the fact that both methods are of the
same order, in the sense that the number of iterations to achieve x* is comparable. As an
example, the results obtained by (3.4) and (3.6) for the function

F:R*->R%:(u, v)=(exp(—u +v)—0.1, exp(—u — v) - 0.1),

which has a zero in (—1In(0.1), 0), are listed.

A last remark concerns the numerical behaviour of the entire class of methods that we have
considered in Section 3. The methods derived from the (n, m)-ARA with m# 0 are more
suitable for functions for which the inverse function G has singularities in the neighbourhood of



624 A. CuyT and P. vaN DER CRUYSSEN

0. Our example also illustrates this fact:
G:{z,w)=>({(=In(z+0.)—In(w +0.1))/2,. (In(z + 0.1) = In(w = 0.1))/2)

has singularities for w=—0.1 or z =-0.1. If (3.3) is used. starting from the same initial point
(u, vo), then the sequence of iterands diverges, while (3.4) and (3.6) converge rapidly.

Table A.
! ResuTts obtained ; o Results obtained
by (3.4) ! by (3.6)

(ujsvy) 1=0,...,5 i (ujvy) 1=0,...,5 ‘
.4300000000000000 (01) | .2000000000000000 {01) i.4300000000000000 (01) f ,2000000000000000 (Ol);
.3336165282457216 (01) | .1035972419924183 (01) | .3337356399057231 (01) | .1034771307502802 (C1)
.2560818009367738 (01) | .2596797949731372 (00) | .2561541506081360 (01) ; .2589564130873139% (00)2
.2308175634684460 (C1) | .5683785304496196(-02) | .2308222334300647 (01) .5637241306601315(-02)i
.2302585151186788 (C1) | .6120489087942105(-07) | .2302585152707625 (01) ; .5971357897526734(-07)i
.2302585092994046 (01) 1.3759322471455472(-17) [.2302585092994046 (ol) ! .1443269364993953(-16)]
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