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a b s t r a c t 

An important hurdle in multi-exponential analysis is the correct detection of the number 

of components in a multi-exponential signal and their subsequent identification. This is 

especially difficult if one or more of these terms are faint and/or covered by noise. We 

present an approach to tackle this problem and illustrate its usefulness in motor current 

signature analysis (MCSA), relaxometry (in FLIM and MRI) and magnetic resonance spec- 

troscopy (MRS). 

The approach is based on viewing the exponential analysis as a Padé approximation 

problem and makes use of some well-known theorems from Padé approximation theory. 

We show how to achieve a clear separation of signal and noise by computing sufficiently 

high order Padé approximants, thus modeling both the signal and the noise, rather than 

filtering out the noise at an earlier stage and return a low order approximant. 

We illustrate the usefulness of the approach in different practical situations, where 

some exponential components are difficult to detect and retrieve because they are either 

faint compared to the other signal elements or contained in a cluster of similar exponen- 

tial components. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Many real-time experiments involve the measurement of signals which fall exponentially with time. The problem is then

to determine, from such measurements, the number of components n and the value of all the parameters in the exponential

model 

φ(t) = 

n ∑ 

i =1 

αi exp (φi t) , 

αi = βi exp (i γi ) , φi = ψ i + i ω i , i 2 = −1 . (1)

Here ψ i , ω i , β i and γ i are respectively called the damping, frequency, amplitude and phase of each exponential term. The

technique of multi-exponential analysis is closely related to what is commonly known in the applied sciences as the Padé–

Laplace method [2] and the technique of sparse interpolation in the field of symbolic computation [14] . 

The basic method to estimate the parameters in a sum of complex exponentials is due to Prony [29] . It was later refined

by Pisarenko [27] . Modern computer implementations include the MUltiple SIgnal Classification algorithm MUSIC [31] , the
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Estimation of Signal Parameters via Rotational Invariance Techniques ESPRIT [30] , the Toeplitz Approximation Method TAM

[23] and the Matrix Pencil method MP [19] . 

The major hurdles in multi-exponential modelling are the correct detection of the number of components in the model,

the noise sensitivity of problem statement and computational method, the limitation to distinguish closely spaced frequen-

cies ω i [8] , and the difficulty in resolving different exponential decays ψ i if the damping factors are too much alike [4] . 

Before we proceed, some words on Fourier methods are appropriate. Fourier analysis is not very well suited for the

decomposition of aperiodic signals, such as exponentially decaying ones. The damping causes a broadening of the spectral

peaks, which in its turn leads to the peaks overlapping and masking the smaller amplitude peaks. The latter are important

for the fine level signal classification. Moreover, Fourier analysis completely ignores any actual physical multi-exponential

structure of the encoded time signal. 

Here we show how to make use of the connections between signal processing, Padé approximation and sparse interpo-

lation to: 

• retrieve the correct number of components in a signal. 

• and the characteristics of faint components buried in noise. 

How to regularize the exponential analysis problem statement and improve the ω i - and ψ i -resolution is dealt with in

[10–12] . 

2. Exponential analysis and sparse interpolation 

Let us assume that in φ( t ) given by (1) , the frequency content is limited by the bandwidth �, 

|� (φi ) | = | ω i | < �/ 2 , i = 1 , . . . , n, 

where � ( ·) denotes the imaginary part of a complex number. Also, let φ( t ) be sampled at the equidistant points t j = j	 for

j = 0 , 1 , . . . , 2 n − 1 , . . . , with 	< 2 π / � [25,32] in order to avoid aliasing effects in the analysis and reconstruction of φ( t ).

In the sequel we denote 

f j := φ(t j ) , j = 0 , 1 , . . . , 2 n − 1 , . . . 

We now summarize the exponential analysis method that underlies all modern implementations to extract 

n, φ1 , . . . , φn , α1 , . . . , αn from the uniformly taken measurements f 0 , . . . , f 2 n −1 , . . . and the specific form (1) of the model

for φ( t ). 

2.1. Foundations of Prony’s method 

If we further denote 

λi := exp (φi 	) = ( exp (	) ) 
φi , 

then it is apparent that the data f j are structured, namely 

f j = 

n ∑ 

i =1 

αi λ
j 
i 
, j = 0 , . . . , 2 n − 1 , . . . (2) 

The system of equations (2) is called a sparse interpolation problem: the data f j taken at the equidistant points t j = j	 are

interpolated by the expression 

n ∑ 

i =1 

αi ( exp (t) ) 
φi , 

where the αi , φi , i = 1 , . . . , n are unknown. 

Let us define the Hankel matrices 

H 

(r) 
n := 

⎛ 

⎝ 

f r . . . f r+ n −1 

. . . . . 
. . . . 

f r+ n −1 . . . f r+2 n −2 

⎞ 

⎠ , r ≥ 0 . 

It is known from [18, p. 603] that for the multi-exponential samples f j given by (2) , 

det H 

(r) 
ν = 0 , ν > n, r ≥ 0 (3) 

det H 

(r) 
n � = 0 , r ≥ 0 (4) 

and it is proved in [21] that 

det H 

(r) = 0 only accidentally , ν < n. (5) 
ν
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Fig. 1. Log-plot of singular values of H (0) 
7 

and H (0) 
100 

for φ( t ) with added noise as described. 

 

 

 

 

 

 

 

 

 

 

 

From these statements the number of components n can be obtained as the rank of H 

(r) 
ν for ν > n . However, this method

proves to be numerically unreliable in the presence of noise, as we illustrate with the computed example further down. 

The λi can be retrieved [19] as the generalized eigenvalues of the problem 

H 

(1) 
n v i = λi H 

(0) 
n v i , i = 1 , . . . , n, (6)

where v i are the generalized right eigenvectors. Then from the values λi , the φi can uniquely be retrieved because of the

restriction |� (φi 	) | = | ω i | 	 < (�/ 2)(2 π/ �) = π . 

To conclude, one finds the αi from the interpolation conditions 

n ∑ 

i =1 

αi exp (φi t j ) = f j , j = 0 , . . . , 2 n − 1 , (7)

either by solving the system in the least squares sense (in the presence of noise) or by solving a subset of n consecutive

interpolation conditions in case of a (mostly synthesized) noisefree φ( t ). Note that 

exp (φi t j ) = exp (φi j	) = λ j 
i 
, 

and that the coefficient matrix of (7) is therefore a Vandermonde matrix. 

2.2. Challenge when components are faint or clustered 

To give the reader some feeling about the numerical behaviour of (4) –(5) , we consider the following example: 

φ1 = i 3 π, α1 = 10 

−3 , 

φ2 = i 31 . 4 π, α2 = 2 , 

φ3 = −0 . 1 + i 80 π, α3 = 4 , 

φ4 = −0 . 3 + i 50 . 4 π α4 = 8 . 

We take the sampling interval 	 = 0 . 01 , which is in accordance with the Shannon–Nyquist requirement since 0 . 01 <

2 π/ � = 0 . 0125 π . 

In addition we add some realistic white circular Gaussian noise to each signal sample (mean 0, variance 1) and normalize

the noise to have infinity-norm equal to 2 × 10 −3 . The example is a challenge because most of the component α1 exp ( φ1 t ) is

now buried in the noise. In Fig. 1 (left) we display the singular values of H 

(0) 
ν for ν = 7 > n = 4 . The log-scale plot indicates

a numerical rank of 3 instead of the correct 4. This coincides with the result found when using the Padé algorithms in

[17] and [20] : choosing the threshold parameter in [17] larger than or equal to 5 × 10 −5 results in a numerical rank for H 

(0)
7 

of 3, while choosing it less than or equal to 1 × 10 −5 returns a numerical rank of 7 while the correct value is 4. 
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Fig. 2. Log-plot of singular values of H (0) 
6 

and H (0) 
50 

for φ( t ) with added noise as described. 

 

 

 

 

 

 

 

Another example illustrates the numerical behaviour of (4) –(5) in the case of clustered frequencies: 

φ1 = 0 , α1 = 1 , 

φ2 = −0 . 2 + i 39 . 5 π, α2 = 2 , 

φ3 = −0 . 5 + i 40 π, α3 = 4 , 

φ4 = −1 α4 = 8 . 

We take the sampling interval 	 = 0 . 02 , which is in accordance with the Shannon–Nyquist requirement since 0 . 02 <

2 π/ � = 0 . 025 π . 

We then add some white circular Gaussian noise (mean 0, variance 1) which we normalize to have infinity-norm equal

to 10 −2 . Note that the frequencies appear in two clusters, one consisting of φ1 and φ4 with distinct damping but identical

frequency, and one consisting of φ2 and φ3 with nearby frequencies. In Fig. 2 (left) we display the singular values of H 

(0) 
ν

for ν = 6 > n = 4 . The log-scale plot indicates a numerical rank of 2 instead of the correct 4, revealing only the two clusters.

However, when we rewrite the exponential analysis problem in terms of Padé approximation using the reformulation

presented below, the numerical rank will show up correctly. Besides finding the number of terms n , we also reconstruct

[10,11] all the parameters in the representation (1) of φ( t ) in some of the applications. 

3. Exponential analysis viewed as Padé approximation 

With f j = φ(t j ) we now define the noisefree 

f (t) := 

∞ ∑ 

j=0 

f j t 
j , f ( j) (0) = f j . (8) 

The Padé approximant r m , n ( t ) of degree m in the numerator and n in the denominator to f ( t ) is defined as the irreducible

form of the rational function p ( t )/ q ( t ) satisfying 

d j ( f q − p)(t) 

dt j 
(0) = 0 , j = 0 , . . . , m + n. 

With 

p(t) := 

m ∑ 

j=0 

π j t 
j , (9) 

q (t) := 

n ∑ 

j=0 

ρ j t 
j , (10) 

this translates to 

j ∑ 

k =0 

f k ρ j−k − π j = 0 , j = 0 , . . . , m + n, 



A. Cuyt et al. / Applied Mathematics and Computation 327 (2018) 93–103 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ρ j = 0 for j < 0 and π j = 0 for j > m . The condition essentially guarantees a high degree of contact between f ( t ) and

p ( t )/ q ( t ). Since 

f j = 

n ∑ 

i =1 

αi exp (φi j	) = 

n ∑ 

i =1 

αi λ
j 
i 
, 

we can rewrite 

f (t) = 

n ∑ 

i =1 

αi 

1 − tλi 

. (11)

So we see that, because of (2) , f ( t ) is itself a rational function of degree n − 1 in the numerator and n in the denominator,

with poles 1/ λi . From Padé approximation theory we hence know that r n −1 ,n (t) computed for (8) reconstructs f ( t ), in other

words 

r n −1 ,n (t) = f (t) . 

The partial fraction decomposition (11) is related to the Laplace transform of the exponential model (1) , which explains why

this approach is known as the Padé–Laplace method. 

3.1. Convergence of Padé approximants 

Now we add a white circular Gaussian noise term ε j to each sample f j . In the sequel we denote the noisy series by 

f (t) + ε(t) = 

∞ ∑ 

j=0 

( f j + ε j ) t 
j . 

A number of very nice approximation and convergence results exist for sequences of Padé approximants to f (t) + ε(t) . They

express what one would expect intuitively from such approximants: they are especially useful if the approximated function

is meromorphic (i.e. has poles) in some substantial region of the complex plane, as is the case here. 

Padé approximants are usually arranged in a table with the numerator degree m indicating the row number and the

denominator degree n indicating the column number (or vice versa depending on the author). An important sequence of

Padé approximants is the so-called diagonal sequence { r ν,ν (t) } ν∈ N in the table. Here we are interested in the adjacent para-

diagonal sequence { r ν−1 ,ν (t) } ν∈ N . 
The theorem of Nuttall, later generalized by Pommerenke, states that if f (t) + ε(t) is analytic throughout the com-

plex plane except for a countable number of poles [24] and essential singularities [28] , then the paradiagonal sequence

{ r ν−1 ,ν (t) } ν∈ N converges to f (t) + ε(t) in measure on compact sets. So no assertion is made about pointwise or uniform

convergence. Instead, the result states that for sufficiently large ν , the measure of the set where the convergence is dis-

rupted, so where | f (t) + ε(t) − r ν−1 ,ν (t) | ≥ τ for some given threshold τ , tends to zero as ν tends to infinity. The pointwise

convergence is disrupted by ν − n unwanted pole-zero combinations of the Padé approximants r ν−1 ,ν (t) : near each spurious

pole introduced by increasing the denominator degree beyond the true n , one finds an associated zero, the pole and zero

effectively cancelling each other locally. These pole-zero doublets are referred to as Froissart doublets [13,15,16] . 

Because of the Padé convergence theorem, the n true (physical) poles can be identified as stable poles in successive

r ν−1 ,ν (t) , while the ν − n spurious (noisy) poles are distinguished by their instability [3,26] . While the stable poles model

the λi , i = 1 , . . . , n in the signal (1) , the unstable poles model the additive noise. The physical poles reflect the structure

present in the samples (2) , the noisy poles the lack of it. So these Froissart doublets offer a way to separate or filter the

noise ε( t ) from the underlying f ( t ) [5] . Note that we do not want to filter the samples f j + ε j before applying an exponential

analysis method because this operation may at the same time destroy some of the structure in the data f j . 

Although in [17] and [20] the authors avoid the computation of Froissart doublets in a Padé approximation algorithm,

another option is to make good use of their ability to model noise and only remove them at a later stage in the analysis, an

approach we follow in this paper. 

3.2. Illustration of the principle 

To illustrate how to apply this idea we use our toy examples again. When computing the singular value decomposition

of H 

(0) 
ν in the first example, containing a weak component, for ν = 100 � n = 4 , we see in Fig. 1 (right) that a numerical

rank of 4 is now correctly indicated. Subsequently (6) and (7) of size ν can be solved to accurately obtain the parameters

characterizing the n true components in (1) . At this point it is again useful to compare our result to that of the algorithms

in [17] and [20] : choosing the threshold parameter in [17] larger than or equal to 5 × 10 −5 still returns a numerical rank for

H 

(0) 
100 

of 3, while putting it less than or equal to 1 × 10 −6 returns the maximum value of 100 (for threshold values between

10 −5 and 10 −6 at least a numerical rank of 7 was returned). 

When applying our approach to the second example, containing clustered frequencies, and computing the singular value

decomposition of H 

(0) 
ν for ν = 50 � n = 4 , we see in Fig. 2 (right) that the correct numerical rank of 4 is again clearly

revealed. And this rank does not change when ν is further increased. 
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Fig. 3. MCSA at low load (10%) and high noise (16 dB). (For interpretation of the references to color in this figure, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A practical application of our approach is presented in Section 4 , where we are looking for faint components, and in

Section 6 , to correctly obtain the number of clustered components. The technique can also be applied when a component is

strongly dominated by some other components, as in Section 5 . Then again one needs to wait for the Padé approximation

process to converge before the exact number of terms becomes clear and they can be identified. The parameters φi that

we are looking for in the Sections 4, 5 and 6 are respectively purely imaginary numbers, purely real numbers and complex

numbers. 

The convergence can significantly be accelerated by combining it with an aliasing free uniform subsampling technique

[10–12] , if necessary in combination with some divide and conquer approach to keep the size of the Hankel matrices under

control [7] . 

4. Scenario I: MCSA (imaginary φi ) 

We now present a situation in which the above is of particular interest. In diagnostics, the appearance of one or more

additional, often undesirable, faint components in a spectrum may indicate that a fault is present or developing. We refer for

instance to motor current signature analysis (MCSA) which inspects the frequency spectrum of a 3-phase induction motor’s

stator current signal to detect broken rotor bars. The frequency components of the stator current due to broken rotor bars

in the induction motor are very close to the electrical supply frequency f e (50/60 Hz) but much more faint. They are given

by (1 ± 2 ks ) f e where the harmonic frequency index k = 1 , 2 , . . . and the slip s [9] is given by 

s = 

n s − n m 

(b) 

n s 
100% . 

Here n s is the speed of the rotating magnetic field and n m 

( b ) is the mechanical shaft speed of the motor that varies slightly

with the number b of broken rotor bars. Broken rotor bars are difficult to diagnose under low load and high noise [33] . At

the same time, detection of the faint sideband frequency components at low slip is identified as a major issue and should be

addressed urgently [33] . Under low load, a high resolution Fourier analysis may not even reveal any additional frequencies

besides the fundamental frequency, despite the presence of several broken rotor bars. Under full load, the fault is revealed

easily. Alternatives such as wavelet based techniques are also reported to be unsatisfactory in the low slip case [22] . 

In Fig. 3 we present a typical stator current signal (the experiment was repeated a significant number of times) from

a Simulink simulation (load 10%, noise 16 dB) [1] . The parameters used for the simulation are given in Table 1 . The lower

and higher sideband frequencies f e (1 − s ) and f e (1 + s ) are computed using a state-of-the-art implementation of the ESPRIT
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Table 1 

Induction motor simulation parameters. 

Rated power 2200 W 

Rated phase voltage 380 V 

Rated frequency 50 Hz 

Number of pole pairs 2 

Stator winding resistance 2.33 Ohm 

Stator winding inductance 13 . 78 × 10 −3 H 

Rotor winding resistance 2.18 Ohm 

Rotor winding inductance 14 . 55 × 10 −3 H 

Mutual inductance 260 . 57 × 10 −3 H 

Moment of inertia 0.089kg · m 

2 

Fraction factor 0.005 Nms 

Number of rotor bars 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method (dark red) and compared to our new technique (light green). For ESPRIT (signal space dimension 40) as well as for

the proposed approach ( ν = 400 � 2 k + 1 ) 800 samples are collected at 256 Hz. The results are displayed together with a

very high resolution Fourier analysis (100 s sampled at 2560 Hz) in order to obtain the ground truth. We merely show the

frequency f e of the electrical supply and the non-Froissart frequencies nearest to it, the first lower and higher sideband. 

The new method on average picks up the two faint sidebands correctly, under low load and irrespective of the number

of broken rotor bars, while the ESPRIT method is unable to pick up any of the faint components. 

5. Scenario II: FLIM and MRI (real φi ) 

The next illustration concerns the relaxation model 

B + A 1 exp (−t/τ1 ) + A 2 exp (−t/τ2 ) (12)

which is often called a bi-exponential model (although n = 3 due to the constant term B ). The term relaxation describes

how signals change with time, meaning in general, how signals deteriorate with time. The model occurs in fluorescence

lifetime imaging (FLIM) with B = 0 , in magnetic resonance imaging (MRI) with B � = 0 and several other applications. The

time scale of the former may be as small as nanoseconds while that of the latter is milliseconds. 

Fluorescence microscopy senses the fluorescence intensity of fluorescent molecules and can measure its decay rate or

lifetime. Since this decay rate is sensitive to the cellular microenvironment, FLIM can be used to detect certain physiological

or electrochemical parameters such as pH, oxygen level or temperature. The excited states of the fluorophores have lifetimes

ranging from a few picoseconds to some tens of nanoseconds, which corresponds to the time scale of many important

cellular interactions. 

In MRI the term relaxation describes how signals decrease over time, more particularly, during the process in which

spins dephase after a radiofrequency pulse because of spin-spin relaxation. MRI image contrast is influenced by several

characteristics of tissues and other materials and this spin-spin relaxation. Often only a mono-exponential decay is assumed,

although in tissue characterisation (myelin in the brain, breast tissue, cartilage, skeletal muscle, . . . ), typically two to four

significant terms are present, indicating the multi-compartmental characteristics of the tissue. 

The estimation of the relaxation parameters τ 1 and τ 2 and the corresponding amplitudes A 1 and A 2 is known to be

difficult [6] . Moreover, when 0 < τ 1 	 τ 2 , the term A 2 exp (−t/τ2 ) may be strongly dominated by the term A 1 exp (−t/τ1 ) ,

almost until both disappear into the noise, as in Fig. 4 . 

We show that the presented technique is able to dig it up, when looking at approximants r ν−1 ,ν (t) of sufficiently high

degree ν . In other words, when taking the dimension ν − n of the noise space large enough, so that the n physical poles

in the z -transform of the exponential model have converged to sufficiently accurate values. To this end we perform the

following experiments. 

Consider (12) with B = 0 , A 1 = 174 . 13 , A 2 = 19 . 348 , τ1 = 22 , τ2 = 80 . First, collect 256 samples at t = j, j = 0 , . . . , 255 and

add 34 dB white Gaussian noise (in an MRI setting). The exponential terms and the noise are shown separately in Fig. 4 .

Second, with the same parameters and sampling, simulate photon count and apply Poisson noise of approximately 34 dB (in

the FLIM setting). In Fig. 5 we show the log-plots of the singular values of H 

(0) 
8 

(left) and H 

(0) 
36 

(right) for the MRI setting.

Similarly in Fig. 6 , we show H 

(0) 
8 

and H 

(0) 
42 

for the FLIM setting. While in H 

(0) 
8 

, where ν is only slightly larger than n = 2 ,

only one singular value clearly distantiates itself from the noise, in H 

(0) 
36 

and H 

(0) 
42 

on the other hand, where ν is significantly

larger than n = 2 , it becomes two singular values. 

In the above relaxometry experiment, the new technique is able to detect and identify the faint component in which one

is interested, while in a classical approach one is unaware of its existence. 

6. Scenario III: MRS (complex φi ) 

The data measured from magnetic resonance spectroscopy (MRS) are damped time signals, called free induction de-

cay (FID). MRS is a powerful tool for the non-invasive analysis of the biochemical composition of tissues in vivo and to
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Fig. 4. Individual components in (12) including the discrete noise. 

Fig. 5. Log-plot of singular values of H (0) 
8 

and H (0) 
36 

with 34 dB white Gaussian noise added to (12) . 

Fig. 6. Log-plot of singular values of H (0) 
8 

and H (0) 
42 

for photon count simulation following (12) with approximately 34 dB noise. 
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Table 2 

Example signal contains 25 components occurring in 6 clusters. 

Cluster damping/frequency amplitude/phase 

I φ1 = −0 . 07 − i 707 . 8 π α1 = 0 . 77 exp (i 0 . 15) 

φ2 = −0 . 132 − i 704 . 04 π α2 = 6 . 2 

φ3 = −0 . 1 − i 698 . 84 π α3 = 0 . 98 exp (i 0 . 3) 

φ4 = −0 . 11 − i 696 . 02 π α4 = 5 . 4 exp (i 0 . 9) 

φ5 = −0 . 12 − i 694 . 02 π α5 = 6 . 1 exp (i 0 . 7) 

φ6 = −0 . 081 − i 690 π α6 = 0 . 95 exp (i 0 . 2) 

II φ7 = −0 . 106 − i 265 π α7 = 4 . 71 exp (i 0 . 12) 

φ8 = −0 . 129 − i 262 . 8 π α8 = 3 . 9 exp (i 0 . 1) 

φ9 = −0 . 203 − i 260 . 02 π α9 = 7 . 0 exp (−i 0 . 234) 

φ10 = −0 . 16 − i 258 . 34 π α10 = 5 . 43 exp (i 0 . 2) 

φ11 = −0 . 19 − i 256 . 18 π α11 = 4 . 4 exp (−i 0 . 52) 

III φ12 = −0 . 102 + i 28 . 2 π α12 = 3 exp (i 0 . 21) 

φ13 = −0 . 127 + i 31 . 62 π α13 = 3 exp (−i 0 . 8) 

IV φ14 = −0 . 076 + i 215 . 4 π α14 = 0 . 39 exp (−i 0 . 3) 

φ15 = −0 . 091 + i 220 . 48 π α15 = 0 . 37 exp (−i 0 . 8) 

φ16 = −0 . 1 + i 225 π α16 = 0 . 36 exp (i 0 . 1) 

φ17 = −0 . 08 + i 228 π α17 = 0 . 3 exp (i 0 . 9) 

V φ18 = −0 . 21 + i 248 . 02 π α18 = 3 . 2 exp (−i 0 . 106) 

φ19 = −0 . 15 + i 251 . 24 π α19 = 5 . 53 exp (i 0 . 2) 

φ20 = −0 . 173 + i 253 . 96 π α20 = 4 . 7 exp (−i 0 . 3) 

VI φ21 = −0 . 11 + i 868 π α21 = exp (−i 0 . 15) 

φ22 = −0 . 12 + i 870 . 76 π α22 = 5 exp (i 0 . 26) 

φ23 = −0 . 157 + i 872 . 38 π α23 = 6 . 1 exp (−i 0 . 2) 

φ24 = −0 . 12 + i 875 . 94 π α24 = 5 . 1 

φ25 = −0 . 18 + i 879 . 02 π α25 = 6 exp (−i 0 . 1) 

0 2 4 6 8 10
-100

-50
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100

0 2 4 6 8 10
-50
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Fig. 7. Real and imaginary part of synthesized FID signal. 

 

 

 

 

 

 

 

 

 

characterize functional metabolic processes in different parts of the body (brain, muscles, organs, . . . ). Using Fourier based

methods, the detection of some metabolites in the spectrum is however hampered by spectral overlap with other metabo-

lites (such as, for instance, glutamate and glutamine). This limitation makes the data hard to interpret. So researchers have

to turn their attention to other methods, as it may be crucial to separate metabolites in the spectrum (it was found, for in-

stance, that reduced glutamate in the human motor cortex is, among other things, consistent with neuronal loss or shrinkage

with age). So the importance of these analyses cannot be overstated. 

When turning to the parametric method of exponential analysis, usually prior knowledge of the model order is required

[30] . Our method precisely provides the latter. We illustrate, on synthesized MRS data, the correct model order detection

in the case of a signal containing several closeby frequencies. For the details about the frequencies, damping factors, phases

and amplitudes in the different clusters, we refer to Table 2 . Our example signal contains 25 components occurring in 6

clusters with, in addition, several of them containing weak elements (so the correct model order is really hard to get): 

• There are 3 weak components in the first cluster. 

• The fourth cluster consists entirely of weak components. 
• There is 1 weaker component in the sixth cluster. 
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Fig. 8. Real and imaginary part of FFT of synthesized FID signal. 

Fig. 9. Log-plot of singular values of H (0) 
200 

and H (0) 
500 

with normalized noise added to synthesized FID. 

 

 

 

 

 

 

 

 

 

 

 

 

We take the sampling interval 	 = 0 . 001 , which is in accordance with the Shannon–Nyquist requirement since 0 . 001 <

2 π/ � = 0 . 001138 . To each signal sample white circular Gaussian noise (mean 0, variance 1) is added, normalized to have

infinity-norm equal to ε = 1 × 10 0 (35 dB). Fig. 7 shows the real and imaginary part of the resulting synthesized signal. A

Fourier analysis based on 10 0 0 samples, shown in Fig. 8 , reveals only 5 clusters as the cluster of weak elements is entirely

overtaken by the noise. Besides that, the exact number of components is not at all clear from the analysis. Also, in the

singular value decomposition of H 

(0) 
200 

( Fig. 9 , left) the correct model order is not visible. However, from the singular value

decomposition of H 

(0) 
500 

( Fig. 9 , right) requiring 999 signal samples, it is obvious. 

7. Conclusion 

In these experiments we combine the Padé view on exponential analysis with some well-known convergence theorems

for Padé approximants in order to achieve a better separation of signal and noise. We let the Froissart doublets, which

appear in addition to the true physical poles of the rational function f ( t ) as a consequence of the noise ε( t ), model the noise,

rather than that we avoid their computation. This leads to more accuracy in higher degree approximants. Faint components

that are discarded in lower degree approximations where the computation of the Froissart doublets is avoided, can now be

picked up very reliably. 

We illustrated the usefulness of the technique in three applications: motor current signature analysis (MCSA), magnetic

resonance imaging (MRI) or fluorescence lifetime imaging (FLIM), and magnetic resonance spectroscopy (MRS). 
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