
MATHEMATICS OF COMPUTATION
Volume 75, Number 254, Pages 727–741
S 0025-5718(06)01789-3
Article electronically published on February 1, 2006

GENERAL ORDER MULTIVARIATE PADÉ APPROXIMANTS
FOR PSEUDO-MULTIVARIATE FUNCTIONS

ANNIE CUYT, JIEQING TAN, AND PING ZHOU

Abstract. Although general order multivariate Padé approximants were in-
troduced some decades ago, very few explicit formulas for special functions
have been given. We explicitly construct some general order multivariate Padé
approximants to the class of so-called pseudo-multivariate functions, using the
Padé approximants to their univariate versions. We also prove that the con-
structed approximants inherit the normality and consistency properties of their
univariate relatives, which do not hold in general for multivariate Padé approx-
imants. Examples include the multivariate forms of the exponential and the
q-exponential functions

E (x, y) =
∞∑

i,j=0

xiyj

(i + j)!

and

Eq (x, y) =
∞∑

i,j=0

xiyj

[i + j]q!
,

as well as the Appell function

F1 (a, 1, 1; c; x, y) =
∞∑

i,j=0

(a)i+j xiyj

(c)i+j

and the multivariate form of the partial theta function

F (x, y) =
∞∑

i,j=0

q−(i+j)2/2xiyj .

1. Introduction

Multivariate Padé approximants have been extensively investigated in the past
few decades. The existence, uniqueness and nonuniqueness for homogeneous and
general order multivariate Padé approximants and some convergence theorems have
been established ([1], [5], [6], [7]). Despite all these activities, there are very few ex-
plicit constructions of multivariate Padé approximants. It is noteworthy that much
of the difficulty in finding explicit formulae for multivariate Padé approximants lies
in the determination of appropriate index sets for the numerator and denominator
polynomials. By using the residue theorem and the functional equation method,
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several researchers have successfully constructed multivariate Padé approximants
to some functions which satisfy functional equations ([4], [15], [16], [17]). Unfor-
tunately, not many functions satisfy those functional equations. Besides, because
the index sets for the numerator and denominator polynomials cannot be chosen
freely, most numerators of the approximants look complicated. In this paper, we ex-
plicitly construct multivariate Padé approximants to so-called pseudo-multivariate
functions, by using the Padé approximants of particular univariate functions which,
in most of the cases, are the univariate projections of the pseudo-multivariate func-
tions obtained by letting all but one variable be zero.

In order to avoid notational difficulties, we restrict ourselves to the case of bivari-
ate functions. The generalization of the definitions to more than two variables is
straightforward. We first recall the definition of the multivariate Padé approximant
and introduce the concept of the pseudo-multivariate function in this section. The
main results are proved in Sections 2 and 3. Several examples are given in Section
4.

Definition 1.1. Let

F (x, y) :=
∑

(i,j)∈N2

cijx
iyj , cij ∈ C,

be a formal power series, and let M, N, E be index sets in N × N = N2. The (M, N)
general order multivariate Padé approximant to F (x, y) on the lattice E is a rational
function

[M/N ]E(x, y) :=
P (x, y)
Q(x, y)

,

where the polynomials

P (x, y) :=
∑

(i,j)∈M

aijx
iyj , aij ∈ C,

Q(x, y) :=
∑

(i,j)∈N

bijx
iyj , bij ∈ C,

are such that

(1.1) (FQ − P )(x, y) =
∑

(i,j)∈N2\E

dijx
iyj , dij ∈ C,

with E satisfying the inclusion property

(1.2) (i, j) ∈ E, 0 ≤ k ≤ i, 0 ≤ l ≤ j =⇒ (k, l) ∈ E.

Equation (1.1) translates to the linear system of equations

(1.3) dij =
i∑

µ=0

j∑
ν=0

cµνbi−µ,j−ν − aij = 0, (i, j) ∈ E,

where bkl = 0 for (k, l) /∈ N and akl = 0 for (k, l) /∈ M . Condition (1.2) takes care
of the Padé approximation property, provided Q(0, 0) �= 0, namely

(F − P

Q
)(x, y) =

∑
(i,j)∈N2\E

eijx
iyj , eij ∈ C.
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The linear system (1.3) can be split in two parts: some of the equations serve to
compute the numerator and denominator coefficients aij and bij , while the remain-
ing equations are automatically satisfied by FQ − P for the computed P and Q.
We refer to the former set of indices (i, j) as C and to the latter as E \C. For the
class of pseudo-multivariate functions introduced in Definition 1.2, we shall see that
very few equations of (1.3) are actually used for the computation of the coefficients.
However, in general this is not the case.

It is clear (see [5], [10]) that a nontrivial general order multivariate Padé approxi-
mant always exists if #C is at least as large as the number of independent numerator
and denominator coefficients (usually this translates to #E ≥ #N +#M−1, which
if M ⊂ E simplifies to #(E \M) ≥ #N −1). It is unique up to a constant factor in
the numerator and denominator if the coefficient matrix of the linear system (1.3)
has maximal rank. If the rank of the coefficient matrix of (1.3) is less than the
maximal rank, then multiple solutions of Q(x, y) and P (x, y) exist, and we refer to
Allouche and Cuyt [1] for a detailed discussion of this situation. For all definitions
covered by the general definition given here, one cannot guarantee the existence of
a unique irreducible form if multiple solutions of (1.3) exist. One may find more
properties of general order multivariate Padé approximants in [5], [6], [7].

Definition 1.2. A multivariate function F (x, y) is said to be pseudo-multivariate
if the coefficients of its formal power series

F (x, y) =
∞∑

i,j=0

cijx
iyj

satisfy
cij = g (i + j) , i, j = 0, 1, · · · ,

where g (k) is a certain function of the index k.

For a pseudo-multivariate function F (x, y) , if x �= y,

F (x, y) =
∞∑

k=0

g (k)
∑

i+j=k

xiyj

=
1

x − y

( ∞∑
k=0

g (k) xk+1 −
∞∑

k=0

g (k) yk+1

)
,

and if x = y,

F (x, x) =
∞∑

k=0

g (k)
∑

i+j=k

xi+j =
∞∑

k=0

(k + 1) g (k) xk.

If

lim
k→∞

∣∣∣∣ g (k)
g (k + 1)

∣∣∣∣ = R < ∞,

then the series
∑∞

k=0 g (k) zk has R as its radius of convergence. So if we let

h (z) :=
∞∑

k=0

g (k) zk,
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then for |x| , |y| < R, if x �= y,

F (x, y) =
xh (x) − yh (y)

x − y
,

and if x = y,

F (x, x) =
d

dx
(xh (x)) =

d

dy
(yh (y)) = F (y, y) .

We refer to Section 4 for examples of pseudo-multivariate functions.

2. Padé approximants for pseudo-multivariate functions

In this section, we explicitly construct multivariate Padé approximants to pseudo-
multivariate functions using the univariate Padé approximants of their projections.
Throughout this paper we let, for integer k ≥ 0,

Xk :=
∑

i+j=k

xiyj =: Y k.

Theorem 2.1. Let

F (x, y) :=
∞∑

k=0

g (k) Xk

be a pseudo-multivariate function. For m, n ∈ N, let

(2.1)
pm,n

qm,n
(z) :=

∑m
j=0 αjz

j∑n
j=0 βjzj

, β0 = 1,

be the (m, n) Padé approximant of the function

h (z) :=
∞∑

k=0

g (k) zk,

let s = max{m, n}, and let

N : = {(i, j) : 0 ≤ i, j ≤ n},(2.2)
M : = {(i, j) : 0 ≤ i, j ≤ s} ∩ {(i, j) : 0 ≤ i + j ≤ m + n},(2.3)
E : = {(i, j) : 0 ≤ i + j ≤ m + n, i, j ≥ 0}(2.4)

be index sets in N2. Then the (M, N) general order multivariate Padé approximant
to F (x, y) on the index set E is

[M/N ]E(x, y) =
P (x, y)
Q(x, y)

,

where

(2.5) Q(x, y) := qm,n (x) qm,n (y)

and

P (x, y) :=
m∑

i=0

⎛
⎝min{i,n}∑

j=0

αiβj

(
xiyj + xi−1yj+1 + · · · + xjyi

)

−
n∑

j=min{i,n}+1

αiβj

(
xi+1yj−1 + xi+2yj−2 + · · · + xj−1yi+1

)⎞⎠ .(2.6)
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Proof. From (2.5),

(2.7) Q(x, y) = qm,n(x)qm,n(y) =
∑

(i,j)∈N

bijx
iyj , bij ∈ C,

where N is defined by (2.2). Now let, for x �= y,

(2.8) P (x, y) :=
xpm,n(x)qm,n(y) − yqm,n(x)pm,n(y)

x − y
.

If j < i + 1,

xi+1yj − yi+1xj = xjyj
(
xi+1−j − yi+1−j

)
= xjyj (x − y)

(
xi−j + xi−j−1y + · · · + xyi−j−1 + yi−j

)
= (x − y)

(
xiyj + xi−1yj+1 + · · · + xj+1yi−1 + xjyi

)
,

and if j ≥ i + 1,

xi+1yj − yi+1xj = xi+1yi+1
(
yj−i−1 − xj−i−1

)
= xi+1yi+1 (y − x)

(
yj−i−2 + xyj−i−3 + · · · + xj−i−3y + xj−i−2

)
= (y − x)

(
xi+1yj−1 + xi+2yj−2 + · · · + xj−2yi+2 + xj−1yi+1

)
.

Then

P (x, y) =

∑m
i=0

∑n
j=0 αiβj

(
xi+1yj − yi+1xj

)
x − y

=
m∑

i=0

n∑
j=0

αiβj
xi+1yj − yi+1xj

x − y

=
m∑

i=0

⎛
⎝min{i,n}∑

j=0

αiβj
xi+1yj−yi+1xj

x − y
+

n∑
j=min{i,n}+1

αiβj
xi+1yj−yi+1xj

x − y

⎞
⎠

=
m∑

i=0

⎛
⎝min{i,n}∑

j=0

αiβj

(
xiyj + xi−1yj+1 + · · · + xjyi

)

−
n∑

j=min{i,n}+1

αiβj

(
xi+1yj−1 + xi+2yj−2 + · · · + xj−1yi+1

)⎞⎠
=

∑
(i,j)∈M

aijx
iyj , aij ∈ C,

where M is defined by (2.3). We remark that if min{i, n} = n, the second sum in
P (x, y) is empty.
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For x �= y,

F (x, y) =
xh (x) − yh (y)

x − y
,

we have

(FQ − P ) (x, y) =
1

x − y
{xh (x) qm,n (x) qm,n (y) − yh (y) qm,n (x) qm,n (y)

−xpm,n (x) qm,n (y) + yqm,n (x) pm,n (y)}

=
1

x − y
{xqm,n (y) (h (x) qm,n (x) − pm,n (x))

−yqm,n (x) (h (y) qm,n (y) − pm,n (y))} .(2.9)

Recall that pm,n (z) /qm,n (z) is the (m, n) Padé approximant to h (z) , i.e.,

h (x) qm,n (x) − pm,n (x) =
∑

j≥m+n+1

γjx
j , γj ∈ C,

h (y) qm,n (y) − pm,n (y) =
∑

j≥m+n+1

γjy
j , γj ∈ C.

Then

(FQ − P ) (x, y) =

∑
j≥m+n+1 γj

(
xj+1qm,n (y) − yj+1qm,n (x)

)
x − y

=
∑

j≥m+n+1

n∑
i=0

βiγj
xj+1yi − xiyj+1

x − y

=
∑

j≥m+n+1

n∑
i=0

βiγj

(
xjyi + xj−1yi+1 + · · · + xiyj

)
(as i < j)

=
∑

(i,j)∈N2\E

dijx
iyj , dij ∈ C,(2.10)

where E is defined by (2.4). It is easy to see that

C = {(i, 0) | 0 ≤ i ≤ n + m} ∪ {(0, j) | 0 ≤ j ≤ n + m} ⊆ E.

This proves that P (x, y) /Q (x, y) is the (M, N) general order multivariate Padé
approximant to F (x, y) for x �= y on the set E.
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Now for the case x = y. Since

lim
y→x

(
F − P

Q

)
(x, y)

= lim
y→x

xqm,n (y) (hqm,n − pm,n) (x) − yqm,n (x) (hqm,n − pm,n) (y)
(x − y) qm,n (x) qm,n (y)

= lim
y→x

x (h − pm,n/qm,n) (x) − y (h − pm,n/qm,n) (y)
x − y

= lim
y→x

∑
j≥m+n+1

dj
xj+1 − yj+1

x − y

=
∑

j≥m+n+1

(j + 1) djX
j ,

lim
y→x

P (x, y)
Q (x, y)

= lim
y→x

xpm,n(x)qm,n(y) − yqm,n(x)pm,n(y)
(x − y) qm,n (x) qm,n (y)

= lim
y→x

xpm,n (x) /qm,n (x) − ypm,n (y) /qm,n (y)
x − y

(2.11)

=
d

dx

(
xpm,n (x)
qm,n (x)

)
,

and
d

dx

(
xpm,n (x)
qm,n (x)

)
=

(
pm,n (x) + xp′m,n (x)

)
qm,n (x) − xpm,n (x) q′m,n (x)

q2
m,n (x)

,

we have
Q (x, x) = q2

m,n (x) ,

which is (2.5) when x = y. Since

P (x, x) =
(
pm,n (x) + xp′m,n (x)

)
qm,n (x) − xpm,n (x) q′m,n (x)

=

(
m∑

i=0

αix
i + x

m∑
i=0

iαix
i−1

)
n∑

j=0

βjx
j − x

(
m∑

i=0

αix
i

)⎛
⎝ n∑

j=0

jβjx
j−1

⎞
⎠

=

(
m∑

i=0

(i + 1) αix
i

)⎛
⎝ n∑

j=0

βjx
j

⎞
⎠ −

m∑
i=0

n∑
j=0

jαiβjx
ixj

=
m∑

i=0

n∑
j=0

(i + 1 − j)αiβjx
ixj

=
m∑

i=0

⎛
⎝min{i,n}∑

j=0

+
n∑

j=min{i,n}+1

⎞
⎠ (i + 1 − j) αiβjx

i+j

=
m∑

i=0

min{i,n}∑
j=0

(i + 1 − j)αiβjx
i+j −

m∑
i=0

n∑
j=min{i,n}+1

(j − i − 1) αiβjx
i+j ,

we obtain (2.6) when x = y. This proves Theorem 2.1. �
Remark. It is easy to see that P (x, y) /Q (x, y) is irreducible, as pm,n (z) /qm,n (z)
is irreducible.
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3. Properties of the approximants

The univariate Padé approximant satisfies a consistency property, meaning that
when the given function h is itself rational, then it is reconstructed by pm,n/qm,n

when m and n are chosen large enough. This consistency property holds mainly
because of the unicity of the irreducible form of pm,n/qm,n. For a general or-
der multivariate Padé approximant this is not necessarily the case, because of the
possible nonunicity of the irreducible form of the approximant (see [5] for more
details). However, the general order multivariate Padé approximants constructed
here in Theorem 2.1 have many nice properties. We prove the consistency and
normality properties of these approximants, the latter meaning that if the univari-
ate (m, n) Padé approximant pm,n/qm,n to the function h appears only once in
the Padé table, then so does its general multivariate counterpart constructed here.
In both the univariate and multivariate case the Padé table of the approximants
rm,n(z) = pm,n(z)/qm,n(z) and [M/N ]E(x, y) = P (x, y)/Q(x, y) respectively, is de-
fined as a matrix-like structure with row index m and column index n containing
all approximants for increasing m and n. A projection property, such as

P (x, 0)
Q(x, 0)

=
pm,n(x)
qm,n(x)

,

P (0, y)
Q(0, y)

=
pm,n(y)
qm,n(y)

is automatically satisfied because of (2.8), (2.7) and (2.1). At the end of this section
we also present a truncation error upperbound.

Theorem 3.1. Let M, N, E be defined as in Theorem 2.1. If the pseudo-multivari-
ate function F (x, y) is a rational function, i.e., if F (x, y) has the irreducible form

F (x, y) :=
u (x, y)
v (x, y)

=

∑
(i,j)∈M uijx

iyj∑
(i,j)∈N vijxiyj

, uij , vij ∈ C,

with v (0, 0) �= 0, then the (M, N) general order multivariate Padé approximant to
F (x, y) on the index set E given in Theorem 2.1, satisfies

P (x, y)
Q(x, y)

= F (x, y) .

Proof. As F is a pseudo-multivariate function, we can write

F (x, y) =
∑
k≥0

g (k) Xk

for some univeriate function g(k), and if we let

h (z) :=
∑
k≥0

g (k) zk,

then h (z) = F (z, 0) = F (0, z) , and for x �= y,

F (x, y) =
u (x, y)
v (x, y)

=
xh (x) − yh (y)

x − y
.
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Because v00 �= 0, F (z, 0) = F (0, z) implies that u(z, 0) = u(0, z) and v(z, 0) =
v(0, z). From the projection property, the (m, n) Padé approximant to h (z) is

h (z) =
u (z, 0)
v (z, 0)

=
u (0, z)
v (0, z)

,

and from the consistency property of the univariate Padé aproximant, we have
pm,n(z) = u(z, 0) = u(0, z) and qm,n(z) = v(z, 0) = v(0, z). So

P (x, y)
Q(x, y)

=
xu (x, 0) v (0, y) − yu (0, y) v (x, 0)

(x − y) v (x, 0) v (0, y)

=
xh (x) − yh (y)

x − y

= F (x, y) .

For x = y,

F (x, x) =
d

dx
(xh(x)) =

d

dx

(
xu (x, 0)
v (x, 0)

)
,

while (2.11) gives

P (x, x)
Q(x, x)

= lim
y→x

P (x, y)
Q(x, y)

=
d

dx

(
xu (x, 0)
v (x, 0)

)
= F (x, x) .

This completes the proof of Theorem 3.1. �

Theorem 3.2. For m, n ∈ N, let M, N, E, F (x, y) and h(z) be defined as in
Theorem 2.1. If the (m, n) Padé approximant pm,n (z) /qm,n (z) to h(z) is normal,
then the (M, N) Padé approximant P (x, y) /Q (x, y) to F (x, y) on the index set E
given in Theorem 2.1, is also normal.

Proof. If the (m, n) Padé approximant to h (z) ,

pm,n

qm,n
(z) =

∑m
j=0 αjz

j∑n
j=0 βjzj

, β0 = 1,

is normal for m, n ∈ N, then

αm �= 0, βn �= 0,

and

(hqm,n − pm,n) (z) =
∑

j≥m+n+1

γjz
j ,

with

γm+n+1 �= 0.

The (M, N) Padé approximant to F (x, y) on the set E is P (x, y) /Q (x, y) , where

Q(x, y) = qm,n (x) qm,n (y) =
∑

(i,j)∈N

bijx
iyj , bij ∈ C,
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and

P (x, y) :=
m∑

i=0

⎛
⎝min{i,n}∑

j=0

αiβj

(
xiyj + xi−1yj+1 + · · · + xjyi

)

−
n∑

j=min{i,n}+1

αiβj

(
xi+1yj−1 + xi+2yj−2 + · · · + xj−1yi+1

)⎞⎠
=

∑
(i,j)∈M

aijx
iyj , aij ∈ C,

with

b00 = (β0)
2 = 1, b0n = bn0 = βnβ0 �= 0, bnn = (βn)2 �= 0,

amn = anm = αmβn �= 0, am0 = a0m = αmβ0 �= 0.

If

(fQ − P ) (x, y) =
∑

(i,j)∈E

dijx
iyj ,

then from (2.10), for i + j = m + n + 1,

dij = β0γm+n+1 = γm+n+1 �= 0.

Now assume that for either m′ �= m or n′ �= n, s′ = max{m′, n′} with

N ′ : = {(i, j) : 0 ≤ i, j ≤ n′},
M ′ : = {(i, j) : 0 ≤ i, j ≤ s′} ∩ {(i, j) : 0 ≤ i + j ≤ m′ + n′},
E′ : = {(i, j) : 0 ≤ i + j ≤ m′ + n′, i, j ≥ 0},

the general order multivariate Padé approximant [M ′/N ′]E′ for F (x, y) on the set
E′ equals the same rational function P/Q. Since αm = am,0 �= 0 and βn = bn0 �= 0,
this is only possible for m′ ≥ m and n′ ≥ n. Hence m′+n′+1 ≥ m+n+1. The fact
that γm+n+1 �= 0 reduces the occurrence of nonnormality to m′+n′+1 ≤ m+n+1.
Hence m′ + n′ + 1 = m + n + 1. In combination with m′ ≥ m and n′ ≥ n this leads
to m′ = m and n′ = n. Since the latter is a contradiction with our assumption that
either m′ �= m or n′ �= n, normality must hold. �

Theorem 3.3. Let M, N, E, F (x, y) and h(z) be defined as in Theorem 2.1. Let
pm,n(z)/qm,n(z) be the (m, n) Padé approximant to h(z) and let P (x, y)/Q(x, y) be
the (M, N) Padé approximant, constructed in Theorem 2.1, to F (x, y) on E. Then
for x �= y,∣∣∣∣

(
F − P

Q

)
(x, y)

∣∣∣∣
≤

supξ∈[0,max(x,y)]

∣∣(hqm,n)(m+n+1)(ξ)
∣∣

|x − y| (m + n + 1)!

(
|x|m+n+2

|qm,n(x)| +
|y|m+n+2

|qm,n(y)|

)
,

(3.1)
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and for x = y,

∣∣∣∣F (x, x) − P (x, x)
Q (x, x)

∣∣∣∣
≤ sup

ξ∈[0,x]

∣∣∣(hqm,n)(m+n+1)(ξ)
∣∣∣ (m + n + 2) |qm,n (x)| + |x|

∣∣q′m,n (x)
∣∣

|qm,n (x)|2 (m + n + 1)!
|x|m+n+1.

(3.2)

Proof. For the univariate function h(z) and its (m, n) Padé approximant pm,n/qm,n,
we know that

(3.3) |(hqm,n − pm,n)(z)| ≤ sup
w∈[0,z]

∣∣∣(hqm,n)(m+n+1)(w)
∣∣∣ |z|m+n+1

(m + n + 1)!
.

A simple computation using (2.9) gives (3.1), the formula for x �= y. Now if

(hqm,n − pm,n)(z) =
∞∑

j=m+n+1

djz
j , dj ∈ C,

then

(hqm,n − pm,n)′(z) =
d

dz
(hqm,n − pm,n)(z)

=
∞∑

j=m+n+1

jdjz
j−1 =

∞∑
j=m+n

(j + 1) dj+1z
j ,

and the leading term has degree m + n. Therefore

|(hqm,n − pm,n)′(z)| =
∣∣(hqm,n)′ (z) − p′m,n (z)

∣∣
≤ sup

w∈[0,z]

∣∣∣(hqm,n)(m+n+1)(w)
∣∣∣ |z|m+n

(m + n)!
.

(3.4)

Now for x = y,

F (x, x) − P (x, x)
Q (x, x)

=
d

dx
(xh (x)) − d

dx

(
xpm,n (x)
qm,n (x)

)

=

[
(h (x) qm,n (x) − pm,n (x)) + x

(
(h (x) qm,n (x))′ − p′m,n (x)

)]
qm,n (x)

q2
m,n (x)

−
[x (h (x) qm,n (x) − pm,n (x))] q′m,n (x)

q2
m,n (x)

.
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Recall that Q (x, x) = q2
m,n (x) , and by using (3.3) and (3.4), we have

|Q (x, x)|
∣∣∣∣F (x, x) − P (x, x)

Q (x, x)

∣∣∣∣
≤ |h (x) qm,n (x) − pm,n (x)| |qm,n (x)|

+ |x|
∣∣((h (x) qm,n (x))′ − p′m,n (x)

)∣∣ |qm,n (x)|
+ |x| |(h (x) qm,n (x) − pm,n (x))|

∣∣q′m,n (x)
∣∣

≤ sup
ξ∈[0,x]

∣∣∣(hqm,n)(m+n+1)(ξ)
∣∣∣ |x|m+n+1 |qm,n (x)|

(m + n + 1)!

+ sup
ξ∈[0,x]

∣∣∣(hqm,n)(m+n+1)(ξ)
∣∣∣ |x|m+n+1 |qm,n (x)|

(m + n)!

+ sup
ξ∈[0,x]

∣∣∣(hqm,n)(m+n+1)(ξ)
∣∣∣ |x|m+n+2

∣∣q′m,n (x)
∣∣

(m + n + 1)!

= sup
ξ∈[0,x]

∣∣∣(hqm,n)(m+n+1)(ξ)
∣∣∣ (m+n+2) |qm,n (x)|+|x|

∣∣q′m,n (x)
∣∣

(m + n + 1)!
|x|m+n+1.

Dividing by |Q (x, x)| , we have (3.2). �

4. Examples

For the sequel we need the standard q-analogues of factorials and binomial co-
efficients. The q-factorial is defined by

[n]q! := [n]! :=
(1 − qn)(1 − qn−1) · · · (1 − q)

(1 − q)n
,

where [0]q! := 1. The q-binomial coefficient is given by[
n
k

]
q

:=
[
n
k

]
:=

[n]!
[k]! · [n − k]!

.

For any positive integer i,

(a)i :=

{
a (a + 1) (a + 2) · · · (a + i − 1) i ≥ 1,

1, i = 0.

Throughout the section, we let M, N and E be defined as in Theorem 2.1. The
following examples result as applications of Theorem 2.1.

Example 4.1. A multivariate form of the exponential function is

E (x, y) =
∞∑

i,j=0

xiyj

(i + j)!
.

It is a pseudo-multivariate function with

h (z) = exp(z) =
∞∑

k=0

zk

k!
.

From [2], we have that the (m, n) Padé approximant to h (z) is

pm,n

qm,n
(z) = 1F1 (−m;−m − n; z)

1F1 (−n;−m − n;−z)
,
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and then the (M, N) general order multivariate Padé approximant to E(x, y) is
P (x, y) /Q (x, y) , where

Q (x, y) = 1F1 (−n;−m − n;−x) 1F1 (−n;−m − n;−y)

=
n∑

i,j=0

(−1)i+j (−n)i (−n)j

(−m − n)i (−m − n)j

xiyj

and

P (x, y) =
1

x − y
(x1F1 (−m;−m − n; x) 1F1 (−n;−m − n;−y)

−y1F1 (−n;−m − n;−x) 1F1 (−m;−m − n; y))

=
1

x − y

⎛
⎝ m∑

i=0

n∑
j=0

(−1)j (−m)i (−n)j

(−m − n)i (−m − n)j

(
xi+1yj − xjyi+1

)⎞⎠

=
m∑

i=0

⎛
⎝min{i,n}∑

j=0

(−1)j (−m)i (−n)j

(−m − n)i (−m − n)j

xi+1yj − yi+1xj

x − y

+
n∑

j=min{i,n}+1

(−1)j (−m)i (−n)j

(−m − n)i (−m − n)j

xi+1yj − yi+1xj

x − y

⎞
⎠

=
m∑

i=0

⎛
⎝min{i,n}∑

j=0

(−1)j (−m)i (−n)j

(−m − n)i (−m − n)j

(
xiyj + xi−1yj+1 + · · · + xjyi

)

−
n∑

j=min{i,n}+1

(−1)j (−m)i (−n)j

(−m − n)i (−m − n)j

·
(
xi+1yj−1 + xi+2yj−2 + · · · + xj−1yi+1

)⎞⎠ .

Example 4.2. A multivariate form of the q-exponential function is

Eq (x, y) =
∞∑

i,j=0

xiyj

[i + j]q!
, |q| > 1.

It is a pseudo-multivariate function with

h(z) = Eq (z) =
∞∑

k=0

zk

[k]!
, |q| > 1.

From [3] combined with [16], we find that the (m, n) Padé approximant to Eq (z)
is pm,n/qm,n, with

qm,n (z) :=
1

(1 − q)n [n]!

n∑
k=0

(−1)k

[
n
k

]
qk(k−1)/2−2nk

k∏
j=1

(
1 + (q − 1)qj−1z

)
,

pm,n (z) :=
(−1)n+1 q−n(n+1)/2

[n]!

∑
k+l=n,k,l≥0

q−nl[n − k]
[
n + l

l

]
zk,
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and hence the (M, N) general order multivariate Padé approximant can be con-
structed.

Example 4.3. The natural generalizations of the Gauss hypergeometric function
to two variables are called Appell functions (see [8], [13] for more details). The
Appell function

F1 (a, 1, 1; c; x, y) =
∞∑

i,j=0

(a)i+j xiyj

(c)i+j

is a pseudo-multivariate function with

h (z) = 2F1 (a, 1; c; z) =
∞∑

i=0

(a)i zi

(c)i

.

We introduce the notation Πk(f) to denote the partial sum of degree k of the Mac
Laurin series development of the function f(z). From [14, 12] we know that for n ≤
m+1 and c �∈ Z

− the (m, n) Padé approximant to 2F1 (a, 1; c; z) is pm,n (z) /qm,n (z),
where

pm,n (z) = Πm ( 2F1(a, 1; c; z) 2F1(−a − m,−n;−c − m − n + 1; z))

qm,n (z) = 2F1 (−a − m,−n;−c − m − n + 1; z) ,

and then the (M, N) general order multivariate Padé approximant can be obtained.

Example 4.4. The multivariate form of the partial theta function (also see [16],
[11], [3]) is

Tq (x, y) =
∞∑

i,j=0

q(i+j)(i+j+1)/2xiyj , |q| < 1.

It is a pseudo-multivariate function with

h(z) = T (z) =
∞∑

k=0

qk(k+1)/2zk.

The (m, n) Padé approximant to T (z), constructed in [3], equals pm,n (z) /qm,n (z) ,
with

qm,n (z) =
n∑

k=0

(−1)k

[
n
k

]
qmkzk.

Using the technique developed in [3] and [16], we have that

pm,n (z) =
n∑

k=0

(−1)k

[
n
k

]
qm(n−k)

k−1∑
i=0

qi(i−1)/2zn+i−k

+ (−1)n+1 qn(n+1)/2
∑

k+l=m−n,k,l≥0

qk(k+1)/2−nl

[
n + l

l

]
zn+k.

From this information again the (M, N) general order multivariate Padé approxi-
mant can be given.
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