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Abstract
We show how a recently developed multivariate data fitting technique enables to solve
a variety of scientific computing problems in filtering, queueing, networks, metamod-
elling, computational finance, graphics, and more. We can capture linear as well as
nonlinear phenomena because the method uses a generalized multivariate rational
model. The technique is a refinement of the basic ideas developed in Salazar et al.
(Numer Algorithms 45:375–388, 2007. https://doi.org/10.1007/s11075-007-9077-3)
and interpolates interval data. Intervals allow to take the inherent data error inmeasure-
ments and simulation into consideration, whilst guaranteeing an upper bound on the
tolerated range of uncertainty. The latter is the main difference with a best approxima-
tion or least squares technique which does as well as it can, but without respecting an
a priori imposed threshold on the approximation error. Compared to the best approx-
imations, the interval interpolant is relatively easy to compute. In applications where
industry standards need to be guaranteed, the interval interpolation technique may be
a valuable alternative.
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1 Multivariate interval interpolation

We work in the d-dimensional space Rd and denote the d-tuple of variables by v =
(x1, . . . , xd). Let α = (α1, . . . , αd) denote a multi-index in N

d . Using multi-index
notation, a generalized polynomial is expressed as

p(v) =
∑

α∈N
aαgα(v), N ⊂ N

d

where N is a finite set. Easy choices for gα(v) are the monomials gα(v) = xα1
1 · · · xαd

d
or a family of multivariate orthogonal polynomials, but also trigonometic polynomials
and more general functions are possible. We decide upon an ordering ≺ of the multi-
indices that respects the rule

∀α ∈ [0, β1] × . . . × [0, βd ]\{β} : α ≺ β, β = (β1, . . . , βd).

The problem statement now is the following. Given are real-valued intervals Fi =
[ fi1, fi2] at s + 1 datapoints vi , i = 0 . . . , s. We want to find a generalized rational
function

rN ,D(v) = pN ,D(v)

qN ,D(v)
=

∑
α∈N aαgα(v)∑
α∈D bαgα(v)

, N , D ⊂ N
d

that satisfies
rN ,D(vi ) ∈ Fi , i = 0, . . . , s, (1.1)

where the sum of the cardinalities of N and D is at most s + 2. One of the coefficients
aα or bα is determined by a normalization of rN ,D(v) and hence the s + 1 given
datapoints are sufficient to determine the remaining coefficients aα and bα , even in
the case of point intervals Fi where fi1 = fi2. When fi1 �= fi2, as is mostly the case
when working with measured or simulated data, then often

#N + #D � s + 2.

Rational functions are not only adequate in the neighbourhood of singularities or to
model asymptotic behaviour. They offer the advantage that they can better model steep
gradients and large curvature.

In practice, N and D, and consequently #N and #D, are determined iteratively.
Of the given s + 1 data intervals, a small number s0 + 1 of intervals is selected and
r (0)
N0,D0

(v) is computed that satisfies (1.1) for these s0 + 1 data. These s0 + 1 intervals
are called the training data. Then it is checked how many of the original s + 1 interval
interpolation conditions are unintentionally satisfied by r (0)

N0,D0
(v) besides the s0 + 1

imposed ones. Usually this is quite a lot more. For illustrations of this we refer to the
case studies in the subsequent sections. These s−s0 intervals are called the verification
data. Among the interval interpolation bounds violated by r (0)

N0,D0
(v), we select s1 − s0

additional data points for the computation of r (1)
N1,D1

(v) satifying (1.1) for these s1 + 1
data, with N0 ⊂ N1, D0 ⊂ D1. In other words, we update the set of training data
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and the rational interval interpolant. These s1 − s0 additional training data are placed
where r (0)

N0,D0
(vi ) deviates most from the given intervals Fi . With r (1)

N1,D1
(v) we then

check the remaining s − s1 verification data again. And so on till the rational model
satisfies all verification data.

This procedure keeps the computational complexity as low as possible: the solution
is not computed from imposing all s+1 interval data but rather froma carefully selected
subset which in the end entails interval interpolation at all given points. Using this
approach we easily achieve in some of the case studies, a reduction of s+1 by a factor
of several thousands when large datasets were modeled.

Let N and D satisfy the inclusion property, by which we mean that

α ∈ N ⇒ [0, α1] × · · · × [0, αd ] ∩ N
d ⊂ N

and likewise for D. We are actually interested in the smallest #N +#D for which (1.1)
holds. Therefore, let α(i) denote the i-th element in the ordering of the multi-indices,
where α(0) = (0, . . . , 0) and let #N = n + 1 and #D = m + 1. Then our notation for
gα(v), aα, bα, pN ,D(v), qN ,D(v) and rN ,D(v) can be simplified to

rn,m(v) = pn,m(v)

qn,m(v)
=

∑n
i=0 ai gi (v)∑m
i=0 bi gi (v)

where gi (v) = gα(i) (v). So, given the basis functions gi (v), i ≥ 0 and the intervals
Fi , i = 0, . . . , s we want to find the smallest n+m for which (1.1) holds. In addition,
we assume that qn,m(vi ) > 0 and we linearize the interpolation conditions (1.1) to

fi1 qn,m(vi ) ≤ pn,m(vi ) ≤ fi2 qn,m(vi ). (1.2)

Whether for specific n andm a solution of (1.2) exists, depends on the relation between
the width of the intervals Fi and the values for n,m and s. As mentioned before
n+m ≤ s for anywidth of the given Fi . Let us denote the set of all (possibly) reducible
representations rn,m(v) of solutions pn,m(v) and qn,m(v) of (1.2), by Rn,m(v). In Sect.
3 we find out when Rn,m(v) is empty and which element to select when it contains
multiple solutions that do not represent equivalent rational functions.

Making use of the chosen multi-index ordering ≺, we find the smallest n + m by
starting with n+m = 0 and increasing n+m by 1 at every step. This way we build up
a table of generalized rational interval interpolation problems diagonal by diagonal:

R0,0(v) R0,1(v) R0,2(v) . . .

R1,0(v) R1,1(v) R1,2(v) . . .

R2,0(v) R2,1(v)
. . .

...
...
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Along some k-th diagonal in the table all of the Rn,m(v), n + m = k may be empty,
while along another �-th diagonal there may be multiple Rn,m(v), n+m = � > k that
are nonempty. In the latter case, without the availability of additional information, we
are inclined to prefer the rational interval interpolants with n ≈ m [3,6,10].

In the rational interpolation of point data where fi1 = fi2 so-called unattainable
interpolation points can occur, meaning points at which qn,m(vi ) = 0 and conse-
quently, because of the linearized interpolation conditions, also pn,m(vi ) = 0. When
d = 1 the result is a common factor in pn,m(v) and qn,m(v) which is simplified in
rn,m(v) leaving rn,m(vi )unrelated to Fi [15]. This phenomenonhas also beendescribed
in the multivariate rational interpolation of point data in [2]. Fortunately, as we shall
see, unattainability does not occur when the Fi are true intervals with fi1 < fi2. And
in case of point intervals Fi , going through the table of interpolation problems diago-
nal by diagonal, one encounters irreducible rational interpolants before their reducible
equivalents [1].

We remark that, since Ni ⊃ Ni−1 and Di ⊃ Di−1 in r (i)
Ni ,Di

(v), the update from
i − 1 to i only has to start at diagonal (#Ni−1 − 1) + (#Di−1 − 1) with R0,0(v)

belonging to diagonal zero.
For given Fi , i = 0, . . . , s we denote the solution set for the vector of coefficients

(a0, . . ., an, b0, . . . , bm)t satisfying (1.2) by Ln,m(F0, . . . , Fs). Geometrically this
set is the intersection of a finite number of closed half spaces of which the bound-
ary hyperplanes pass through the origin. Let c = (c0, . . . , cn+m+1)

t = (a0, . . . , an ,
b0, . . . , bm)t and

An,m =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0(v0) . . . gn(v0) − f01g0(v0) . . . − f01gm(v0)
...

...
...

...

g0(vs) . . . gn(vs) − fs1g0(vs) . . . − fs1gm(vs)

− g0(v0) . . . − gn(v0) f02g0(v0) . . . f02gm(v0)
...

...
...

...

− g0(vs) . . . − gn(vs) fs2g0(vs) . . . fs2gm(vs)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.3)

So the conditions (1.2) are equivalent with the componentwise inequalities
An,mc ≥ 0. If the matrix An,m has full rank, then Ln,m(F0, . . . , Fs) is a pointed poly-
hedral convex cone with apex in the origin [7]. This polyhedron is full-dimensional,
meaning that it has nonempty interior, if and only if it contains a point c for which
the inequalities (1.2) are strict, meaning An,mc > 0. Solutions in the interior of
Ln,m(F0, . . . , Fs) do not suffer from unattainable interpolation points, because then
the inequalities in (1.2) are strict and consequently qn,m(vi ) �= 0.

A possible normalization for rn,m(v) is

||c||∞ = max (|a0|, . . . , |an|, |b0|, . . . , |bm |) = 1.

Together with the requirement that qn,m(vi ) > 0 this normalization yields a unique
representation for each rn,m(v) ∈ Rn,m(v). Adding the normalization to the interpola-
tion conditions implies that we look at the intersection of Ln,m(F0, . . . , Fs) with the
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faces of the (n + m + 2)-dimensional hypercube [−1, 1]n+m+2. However, it is easier
to relax the normalization to

||c||∞ = max (|a0|, . . . , |an|, |b0|, . . . , |bm |) ≤ 1

and study the intersection of the set Ln,m(F0, . . . , Fs) with the full hypercube
[−1, 1]n+m+2, despite the fact that the solution set now contains redundant representa-
tions of rn,m(v). Another possible normalization is the choice b0 = 1 in combination
with scaling the variables to a region that contains the origin. This choice reduces
the dimensionality of the problem and avoids the redundancy issue. However, it may
leave the thus normalized solution set for the coefficient vector c unbounded which is
undesirable. We illustrate that in Sect. 2.

For the sake of robustness we are only interested in interior points of the set
Ln,m(F0, . . . , Fs). We do not want to return a solution for c that violates (1.2) with
the slightest perturbation in the coefficients. In Sect. 3 we also indicate how the most
robust solution can be computed. First, in Sect. 2, we compare the interval interpolant
to the more traditional best approximant. For the latter we consider the best discrete
rational approximant in the Euclidean (�2) as well as the Chebyshev (�∞) norm.

2 Interval interpolation versus best approximation

We need to find the answer to the question whether for chosen n and m the set
Ln,m(F0, . . . , Fs) is nonempty and then return an interior point of the intersection of
Ln,m(F0, . . . , Fs)with oneor other normalization, assuming that it is full-dimensional.
For simplicity, let for a moment the interval widths fi2 − fi1 of Fi be a constant 2ε
for all i = 0, . . . , s. In general this is rather the exception than the rule though.

Before we answer the first question, we introduce rn,m,∞(v) = pn,m,∞(v)/

qn,m,∞(v), satisfying

rn,m,∞(v) = arg min
rn,m (v)

(
max

i=0,...,s

∣∣∣∣
fi2 + fi1

2
− rn,m(vi )

∣∣∣∣

)
, qn,m,∞(vi ) > 0.

Here we assume, for simplicity, that rn,m,∞(v) exists, which is not guaranteed [4]
because with qn,m,∞(vi ) > 0 the set is not compact. It is clear that Ln,m(F0, . . . , Fs)
is empty if

ε < max
i=0,...,s

∣∣∣∣
fi2 + fi1

2
− rn,m,∞(vi )

∣∣∣∣ ,

because the interval interpolant rn,m(v) cannot approximate the values ( fi1 + fi2)/2
better than the best approximant rn,m,∞(v) in the Chebyshev sense. Of course this
is not the way to determine the feasibility of the interval interpolation conditions
for given n and m. The practical computation is discussed later: it will turn out that
the generalized rational interval interpolant is much easier to determine than its best
approximation counterparts. What we want to point out here is that the coefficient
vector of the best discrete Chebyshev rational approximant rn,m,∞(v) always belongs
to a nonempty Ln,m(F0, . . . , Fs).
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On the other hand, the coefficient vector of the best discrete Euclidean rational
approximant rn,m,2(v) = pn,m,2(v)/qn,m,2(v) satisfying

rn,m,2(v) = arg min
rn,m (v)

s∑

i=0

(
fi2 + fi1

2
− rn,m(vi )

)2

, qn,m,2(vi ) > 0,

if it exists, does not necessarily belong to Ln,m(F0, . . . , Fs). It need not be unique
either.

Remember that the conditions qn,m(vi ) �= 0 are automatically fulfilled for coeffi-
cient vectors in the interior of Ln,m(F0, . . . , Fs). The most robust interior points of
the set Ln,m(F0, . . . , Fs) ∩ [−1, 1]n+m+2 are the ones that maximize the distance to
the complement

R
n+m+2\

(
Ln,m (F0, . . . , Fs) ∩ [−1, 1]n+m+2

)
.

Such points are called Chebyshev centers [5, p. 148] of Ln,m(F0, . . . , Fs) ∩
[−1, 1]n+m+2. A Chebyshev center need not be unique but in a nonempty full-
dimensional polyhedron it always exists. In Sect. 3 we also indicate how the
generalized rational interval interpolation problem can be tuned such that a unique
solution is returned, although this is not a major problem.

First we perform a small experiment to illustrate the difference between rn,m,∞(v)

and the solution of (1.2) built using a Chebyshev center. The latter is denoted by
rn,m,�(v). Also, we illustrate that the normalization b0 = 1 may leave the solution set
unbounded, in which case a Chebyshev center cannot be returned.

Consider the one-dimensional function f (v) = (1/2)/(1 + v). We sample it in
v0 = −1/2, v1 = 0, v2 = 1/2 and add some uncertainty to the sampled values to obtain
F0 = [1 − ε0, 1 + ε0], F1 = [1/2 − ε1, 1/2 + ε1], F2 = [1/3 − ε2, 1/3 + ε2]. Then we
want to find a rational function of the form

r0,1(v) = a0
b0 + b1v

, (c0, c1, c2) = (a0, b0, b1),

that interpolates these intervals, in other words reconstructs the given f (v) up to the
added uncertainty.

We first choose the normalization b0 = 1. The properly normalized best discrete
Chebyshev rational approximant is r0,1,∞(v) = f (v), the function itself. For this
rational function the residues with respect to the midpoint of the intervals are zero.
Hence for whatever values of εi , i = 0, 1, 2 the coefficient vector (1/2, 1, 1) belongs to
L0,1(F0, . . . , Fs) ∩ {c1 = b0 = 1}. With the normalization c1 = b0 = 1 the solutions
for c0 = a0 and c2 = b1 from (1.2) lie in the polygon defined by:

– 2 straight lines through the point (0, 2) with respective slopes −2/(1 + ε0) and
−2/(1 − ε0),

– 2 vertical lines through 1/2 − ε1 and 1/2 + ε1,
– 2 straight lines through the point (0,−2) with respective slopes 6/(1 + 3ε2) and
6/(1 − 3ε2).
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Fig. 1 Feasible region for (1.2)
with s = 2, εi = 0.4, i = 0, 1, 2
and c1 = b0 = 1

Fig. 2 Feasible region for (1.2) with s = 1, ε0 = ε1 = 3 and c1 = b0 = 1

This region is shown in Fig. 1. The coefficient vector for r0,1,∞(v) is marked with
• and the coefficient vector for r0,1,�(v) with �. Note that as the εi increase, the
Chebyshev center moves away from the best discrete Chebyshev approximant, as it
tries to maximize the robustness. As the εi shrink the Chebyshev center moves toward
the best discrete Chebyshev approximant.

Now let us change the interpolation conditions. We take s = 1, v0 = −1/2 and
v1 = −1/3, which is theminimal number of datapoints to considerwhen n = 0,m = 1.
The given intervals are F0 = [1 − ε0, 1 + ε0], F1 = [3/4 − ε1, 3/4 + ε1]. Then
with the normalization b0 = 1 the solution set for (a0, b1) is unbounded as shown
in Fig. 2. Let us switch to the alternative normalization maxi=0,1,2 |ci | ≤ 1. The
set L0,1(F0, . . . , Fs) ∩ [−1, 1]3 then contains multiple representations of the same
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rational functions, but this need not be a problem. Scalar multiples of the vector
(1/2, 1, 1) deliver r0,1,∞(v), and multiples of c� = (0.1799777 . . . , 1, 1), which is the
Chebyshev center of L0,1(F0, . . . , Fs)∩[−1, 1]3, deliver r0,1,�(v). So the appropriate
normalization for use with (1.2) is

max
i=0,...,n+m+1

|ci | ≤ 1

and not b0 = 1. In the next section we discuss the computation of a Chebyshev center
of Ln,m(F0, . . . , Fs)which is the coefficient vector of rn,m,�(v), a most robust solution
of (1.2).

3 Existence, uniqueness and computational issues

The center c of a largest Euclidean ball in the polyhedron Ln,m(F0, . . . , Fs) ∩
[−1, 1]n+m+2, described by the linear inequalities (1.2) combined with the normaliza-
tion maxi=0,...,n+m+1 |ci | ≤ 1, is called a Chebyshev center of the polyhedron. Note
that a Chebyshev center need not be unique. We write the points in the ball as c + u
with ||u||2 ≤ ρ and so we maximize ρ subject to the constraint that the Euclidean ball
remains in the polyhedron. Let A( j)

n,m denote the j-th row of the matrix An,m given by

(1.3). The constraint that the Euclidean ball lies in the halfspace A( j)
n,mc ≥ 0 implies

that
A( j)
n,m(c + u) ≥ 0, ||u||2 ≤ ρ

or
A( j)
n,mc − ρ||A( j)

n,m ||2 ≥ 0, j = 1, . . . , 2s + 2. (3.1)

Hence the constraint that the Euclidean ball lies in the halfspace is a linear inequality
in c and ρ. Maximizing ρ under the linear constraints (3.1) for j = 1, . . . , 2s + 2 is
a well-understood linear programming problem.

When we find ρ = 0 then Ln,m(F0, . . . , Fs) has empty interior. When also c = 0
then (1.1) has no solution. By definition a Chebyshev center is not to be found at the
apex of the polyhedral cone.When a solution is returnedwithρ �= 0 then automatically
qn,m,�(vi ) �= 0 for the denominator qn,m,�(v) built with the accompanying coefficient
vector c.

Although a Chebyshev center need not be unique, it is always a global optimum.
Also rn,m,∞(v) delivered by the iterative differential correction algorithmwhich solves
a sequence of linear programming problems, is a global optimum. This is in sharp
contrast with the iterative algorithms that compute rn,m,2(v) which is the solution of
a possibly nonconvex optimization problem. These may end up in a local optimum,
depending on the provided starting point. Moreover, the global optimum rn,m,2(v)

may also be nonunique.
So compared to the best approximations rn,m,∞(v) and rn,m,2(v), the interval inter-

polant rn,m,�(v) is relatively easy to compute: solving a single linear programming
problem suffices. In addition, we have indicated how to check for the existence of a
solution (numerical issues in this respect are discussed later in this section), which

123



Multivariate data fitting with error control

poses a problem with the other approaches. Remains the problem of uniqueness for
which we return to the question of the normalization of rn,m(v).

Non-uniqueness is not a real issue as long as the computed solution is a global opti-
mum, which it is in case of a Chebyshev center providing the coefficients of rn,m,�(v).
Nevertheless uniqueness can be obtained. When looking at the unbounded polyhedral
cone Ln,m(F0, . . . , Fs), disregarding any normalization, a unique coefficient vector c
in that cone can be identified as follows. The price one pays is the switch from a linear
programming problem to a stricly convex quadratic programming problem. In the sub-
sequent sections we have computed the generalized rational interval interpolants both
with the LP approach and the QP approach and found no difference in the numerical
outcome, as long as a Chebyshev center c and a nonzero radius ρ exist.

It is proved in [16] that if, for a chosen δ > 0, the quadratic programming problem

arg min
c∈Rn+m+2

||c||22
A( j)
n,mc − δ||A( j)

n,m ||2 ≥ 0, j = 1, . . . , 2s + 2 (3.2)

has a solution, then Ln,m(F0, . . . , Fs) has nonempty interior and the solution vector
c is unique. This vector points in the direction of the axis of the largest cone that can
be inscribed in the unbounded polyhedral Ln,m(F0, . . . , Fs) both with the apex in the
origin. So throwing the normalization overboard leads to an unbounded search area
and results in a halfline instead of a point. But the QP problem has a unique solution
while the LP problem does not.

The QP formulation offers another advantage. If the Chebyshev center c returned
by the LP problem is very close to the origin and, at the same time, the radius ρ of the
largest Euclidean ball with center c contained in Ln,m(F0, . . . , Fs) ∩ [−1, 1]n+m+2

is terribly small, then it may be difficult to conclude that the returned solution does
not coincide with the origin and that the radius is nonzero. However, the value of δ in
the QP problem formulation can be made arbitrarily large because Ln,m(F0, . . . , Fs)
is unbounded. While we cannot control the value of ρ in the LP problem, we have
complete freedom in the choice of δ in the QP problem. Both play a similar role,
namely they express the robustness of the solution vector c because in both the LP and
QP formulations a Euclidean ball of radius ρ (in LP) and δ (in QP) and centered at c
is guaranteed to be included in the solution set. The choice of δ is discussed in detail
in [16]. We conclude with a lemma that connects the two problem statements.

Lemma 1 If for some δ > 0 the vector c∗ solves argminc∈Rn+m+2 ||c||22 under the
constraint (3.2), then for L = ||c∗||∞ + δ the vector c∗ is a Chebyshev center of the
polyhedron Ln,m(F0, . . . , Fs) ∩ [−L, L]n+m+2.

Proof So we assume that for some δ > 0 a solution c∗ of the QP problem satisfy-
ing constraint (3.2) exists. Hence the interior of Ln,m(F0, . . . , Fs) is nonempty. With
L = ||c∗||∞ + δ the Euclidean ball B(c∗, δ) is entirely contained in the polyhedron
Ln,m(F0, . . . , Fs) ∩ [−L, L]n+m+2. We now show that there are no Euclidean balls
with radius larger than δ inside this polyhedron. The proof of this fact is by contradic-
tion.
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A Euclidean ball with center c and radius Δ > δ always exists in the interior of
the unbounded Ln,m(F0, . . . , Fs), since this interior is nonempty. Assume that such a
Euclidean ball also lies within [−L, L]n+m+2. Then necessarily

sup
||u||2≤Δ

||c + u||2 ≤ L,

from which we find that
||c||2 + Δ ≤ ||c∗||2 + δ.

Because Δ > δ we have ||c||2 < ||c∗||2. The latter contradicts the minimality of
||c∗||2 because B(c,Δ) ⊂ Ln,m(F0, . . . , Fs) implies that c also satisfies constraint
(3.2):

A( j)
n,mc ≥ Δ||A( j)

n,m ||2 ≥ δ||A( j)
n,m ||2, j = 1, . . . , 2s + 2.

Hence Δ ≤ δ and c∗ is a Chebyshev center of Ln,m(F0, . . . , Fs) ∩ [−L, L]n+m+2.
��

Let us now apply the new data fitting technique to a variety of problems which we
collected from projects with industrial partners.

4 Designingmultidimensional recursive filters

The design of multidimensional recursive filters is of considerable interest, but it is
inherently a nonlinear complex approximation problem. The technology is required in
manydiverse areas, including imageprocessing, video signal filtering, tomography and
different grid-based methods in scientific computing. For instance, an ideal lowpass
filter is specified by its frequency response

H (exp(it), exp(iu)) =
{
1, (t, u) ∈ P ⊂ [−π, π ] × [−π, π ]
0, (t, u) /∈ P

(4.1)

where the domain P can take different forms and be composed of squares, triangles,
horizontal and vertical strips. We illustrate our technique for the computation of the
centro symmetric filter [13] where

P = {π/4 ≤ t ≤ 3π/4,−3π/4 ≤ u ≤ −π/4}
∪ {−3π/4 ≤ t ≤ −π/4, π/4 ≤ u ≤ 3π/4}

and the more difficult 90 degree quadrantally symmetric fan filter [9] where

P = {|t | ≤ u} ∪ {−|t | ≥ u}.

For the former the base functions

gα1,α2(t, u) = cos(α1t + α2u), α = (α1, α2) ∈ N × N ∪ N0 × (−N0)
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Fig. 3 Centro-symmetric filter (a) and quadrantically symmetric filter (b)

are used (we need to adapt our ordering ≺ to include the negative α2). For the latter

gα1,α2(t, u) = cos(α1t) cos(α2u), α = (α1, α2) ∈ N
2.

The frequency domain [−π, π ]×[−π, π ] for v = (t, u) is covered by a grid of s+1 =
33 × 33 = 1089 points by sampling in both directions equidistantly with distance
π/16. The uncertainty intervals Fi offer the advantage that the filter’s performance
specifications are incorporated in the characterization. The practical specifications
of such a filter then take the form of a tolerance scheme, graphically illustrated in
Fig. 3a (centro symmetric filter) and Fig. 3b (fan filter), in which:

– There is a passband wherein the frequency response must approximate 1 with an
error of ±δ1 (plotted with plus signs),

rn,m(ti , ui ) ∈ [1 − δ1, 1 + δ1], (ti , ui ) ∈ P,

– There is a stopband in which the response must approximate zero with an error
less than ±δ2 (plotted with crosses),

rn,m(ti , ui ) ∈ [−δ2, δ2], (ti , ui ) /∈ P ∪ T ,

– There is a transition band of a certain width in which the response drops smoothly
from the passband to the stopband (plotted with circles),

rn,m(ti , ui ) ∈ [−δ2, 1 + δ1], (ti , ui ) ∈ T .
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Fig. 4 Interval interpolant r19,20,�(t, u)

In Fig. 3a, b the transition band is respectively given by

T = ({π/8 ≤ t ≤ 7π/8,−7π/8 ≤ u ≤ −π/8}
∪ {−7π/8 ≤ t ≤ −π/8, π/8 ≤ u ≤ 7π/8}) \P,

T = {−|u| − π/8 ≤ t ≤ −|u|} ∪ {|u| ≤ t ≤ |u| + π/8}.

For the choice δ1 = 0.01 the passband ripple

20 log10
1 + δ1

1 − δ1
= 0.17 dB

and for δ2 = 0.02 the stopband attenuation is

−20 log10 δ2 = 34 dB.

With these parameters we obtain for the centrosymmetric filter a model with

N = D\{(1,−3)}
D = {(α1, α2) ∈ N

2 | 0 ≤ α1 + α2 ≤ 4} ∪ {(α1, α2) ∈ N
2 | 2 ≤ α1 − α2 ≤ 4}.

The rational function r19,20,�(t, u) is plotted in Fig. 4. As envisaged n + m = 39 �
s = 1088.

The second model, obtained for the fanfilter, is of much less complexity than the
one presented in [9]: its numerator and denominator only contain 13 and 15 terms
respectively with the sets N and D given by
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Fig. 5 Interval approximant r12,14,�(t, u)

N = {(α1, α2) ∈ N
2 | 0 ≤ α1, α2 ≤ 3}\{(3, 2), (2, 3), (3, 3)}

D = {(α1, α2) ∈ N
2 | 0 ≤ α1, α2 ≤ 3}\{(3, 3)}.

The resulting rational function rn,m,�(t, u) = r12,14,�(t, u) is shown in Fig. 5. Here
again n + m = 26 � s = 1088.

When the parameters are relaxed to δ1 = 0.05 and δ2 = 0.1 then, as expected, the
obtained model has even lower complexity:

N = {(α1, α2) ∈ N
2 | 0 ≤ α1 + α2 ≤ 3} ∪ {(2, 2)}

D = {(α1, α2) ∈ N
2 | 0 ≤ α1 + α2 ≤ 2}.

The passband ripple becomes 0.87 dB while the stopband attenuation now equals 20
dB. This approximation rn,m,�(t, u) = r10,5,�(t, u) is graphed in Fig. 6.

Instead of relaxing the tolerances δ1 and δ2, the dataset in Fig. 3b can be reduced
to about one quarter because of the symmetric nature of the basis functions. We have

qN ,D(t, u) = qN ,D(−t, u) = qN ,D(t,−u) = qN ,D(−t,−u)

and similarly for pN ,D(t, u). Thismay lead to a subtle difference in the neighbourhood
of the axes t = 0 and u = 0 as can be seen in Fig. 7 compared to Fig. 5.

Similar experiments were made for the circularly symmetric and diamond-shaped
lowpass filters given in [8].

Note that the equiripple behaviour around 1 and 0 in the pass- and stopband respec-
tively, is typical for the obtained models. This is in line with its connection with the
theory of best approximation, as discussed in Sect. 2.
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Fig. 6 Interval interpolant r10,5,�(t, u)
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Fig. 7 Quadrantically symmetric filter with reduced dataset

5 Option price modelling

Options are a type of financial instrument classed as derivatives, as they derive their
value from an underlying asset. A European call option gives its holder the right (but
not the obligation) to purchase from the writer of the option a prescribed asset for
a prescribed price E at a prescribed time T in the future. In return for granting the
option, thewriter of the option collects a payment from the buyer. The theoretical value
C(S, t) of an option is evaluated according to several models. These models attempt to
predict how the value of an option changes in response to changing conditions. Black
and Scholes derived the partial differential equation that must be satisfied by the price
of any derivative dependent on a non-dividend-paying stock,
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Fig. 8 Sampled (E, r , σ ) in [0, 100] × [0, 0.2] × [0, 1] (64 triplets)

∂C

∂t
+ 1

2
σ 2S2

∂2C

∂S2
+ r S

∂C

∂S
− rC = 0,

with boundary conditions

C(S, T ) = max(S − E, 0), (5.1)

C(0, t) = 0, 0 ≤ t ≤ T , (5.2)

C(S, t) ≈ S − E exp(−r t), large S, t ≥ 0, (5.3)

and produced a closed-form solution for a European option’s theoretical price. Here t
denotes the elapsed time with the expiry date at T , S is the asset price which depends
on t , r is the annual interest rate (assumed constant) and σ is the market volatility. The
value E is called the exercise price or strike price. The application of the model in
actual options trading is clumsy because of the assumptions on the dividend payment,
the constant volatility, and a constant interest rate. But stochastic volatility models
require complex numerical methods. Nevertheless, the Black-Scholes model is still
one of the most important methods and foundations for the existing financial market.
We use it here only to illustrate a proof of principle.

Typically the parameters r and σ are estimated, E is chosen and the equation
is solved for C(S, t) on a grid. This procedure can be repeated a few times. For
a few dozen of these (E, r , σ ) triplets and moderate 200 × 200 (uniform or non-
uniform) grids of (S, t) we quickly obtain a few million values. Remains the problem
of writing down an analytical model for the variation of the option price C(S, t)
with the parameters E, r and σ . Since we know that C ≈ 0 for very small S and
C ≈ S−E exp(−r t) for sufficiently large S, we are especially interested in the region
where C/S makes the transition from 0 to 1.

Our domain is [0, 200] for S, [0, 100] for E , [0, 0.2] for r , [0, 1] for σ and [0, 3]
for t (in years). In Fig. 8 we show the (E, r , σ ) triplets for which we have solved the
partial differential equation (they were randomly generated). Since a static 3-d view
is difficult to interpret, we have chosen to give (from left to right) the projections on
the (E, r)–, (r , σ )– and (E, σ )–planes.

In order to be able to show plots of the rational interval approximant, we introduce
the new variables [11]
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Fig. 9 Datapoints (ui , wi ) used for r29,11(u, w)

u = ln(S) − ln(E) + r t, (5.4)

w = σ
√
t, (5.5)

and compute a rational interval approximant rn,m,�(v) = rn,m,�(u, w) for C(u, w)/S.
Each quintuple (S, E, r , σ, t) is mapped to some vector v = (u, w). We use the
computed values for C(S, t) at (Si , Ei , ri , σi , ti ) to obtain f (ui , wi ) = C(ui , wi )/Si
and we define

fi1 = max (0, f (ui , wi ) − 0.002), (5.6)

fi2 = min (1, f (ui , wi ) + 0.002). (5.7)

For the ordered sequence of base functions gi (u, w) we use

1, T1(u), T1(w), T2(u), T2(w), T1(u)T1(w),

T3(u), T3(w), T2(u)T1(w), T1(u)T2(w), . . .

where Tn denotes the n-th Chebyshev polynomial of the first kind. All variables are
also rescaled to the interval [−1, 1]. With the subset of 175 points shown in Fig. 9
we obtain r29,11(u, w) given in Fig. 10 where it can also be compared to the explicit
formula for C(u, w)/S. Note that the exact formula is non-differentiable at the point
(0, 0) and hence that the rational approximation method uses more samples in the
neighbourhood of that point. The index sets N and D used for r29,11(v) are

N = {(α1, α2) | 0 ≤ α1 + α2 ≤ 6} ∪ {(7, 0), (0, 7)} (5.8)

D = {(α1, α2) | 0 ≤ α1 + α2 ≤ 3} ∪ {(4, 0), (0, 4)}. (5.9)
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Fig. 10 Exact value C(u, w)/S (left) and approximant r29,11(u, w) (right)

We now have to explain how the 175 datapoints were selected from the full dataset.
We start with a small number of s0+1 samples, for instance 9 in a 3×3 subdivision of
the (u, w)-square, one point in each of the 9 small squares. We compute r (0)

n0,m0(u, w)

for these s0 + 1 points. Then we check how many of the intervals Fi in the full dataset
are interpolated by this model in addition, without imposing. This is usually more than
merely these s0 + 1. Of the (ui , wi ) where r

(0)
n0,m0(u, w) does not pass through Fi , we

select s1 − s0 ones where the value of the rational interpolant lies furthest from the
prescribed interval. We add these points to obtain s1 + 1 samples in total and repeat
the process. In other words, we compute r (1)

n1,m1(u, w) that interpolates these s1 + 1
data. We check again howmany additional intervals in the full dataset are interpolated
automatically, without imposing. And so on.

When restricting the region of interest to the more interesting

1/2 ≤ S/E ≤ 3/2,

even while reducing the absolute error from 0.002 to 0.001, then n,m and s in
rn,m,�(u, w) decrease to 16, 13 and 101 respectively. The resulting approximation
looks no different from the one given earlier. Therefore we show in Fig. 11, for this
restricted approximant, the relative error

∣∣Sr16,13(u, w) − C(u, w)
∣∣ / C(u, w).

6 Modelling bidirectional reflectance distribution functions

The bidirectional reflectance distribution function (BRDF) ρ is a four-dimensional
function that defines how light is reflected at an opaque surface and it is the corner-
stone of the rendering equation in physics and computer graphics. Therefore building
a model that is able to explain, describe and simulate all complex phenomena involved

123



A. Cuyt, O. Salazar Celis

Fig. 11 Relative error∣∣Sr16,13(u, w) − C(u, w)
∣∣ /C(u, w)

Fig. 12 Vectors ωi toward the light source and ωo toward the viewer or camera

in this process remains an active topic of research. The function takes an incoming
light direction ωi and outgoing direction ωo, both defined with respect to the surface
normal n, and returns the ratio of reflected radiance exiting along ωo to the irradi-
ance incident on the surface from direction ωi . Note that each direction ω is itself
parameterized by azimuth angle φ and zenith angle θ , therefore ρ(θi , φi , θo, φo) as a
whole is 4-dimensional. It is convenient to take the vectors ωi ,ωo and n of unit length
(Fig. 12).

The BRDF is a fundamental radiometric concept, and accordingly is used in com-
puter graphics for photorealistic rendering of synthetic scenes as well as in computer
vision for many inverse problems such as object recognition.

Many researchers have developed devices for efficiently acquiringBRDFs from real
world samples. BRDFs can be measured directly, at different points on the surface and
under several point source illuminatons at known positions, from real objects using
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Fig. 13 Blue channel BRDF (blue metallic paint) as a function of θh and θd (colour figure online)
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Fig. 14 Subset of 207 training data for r25,18,�(θh , θd )

calibrated cameras and lightsources. From this set of images, one thenwants to recover
the surface normal and BRDF at each point on the objects surface.

Instead of the incoming and outgoing directions, one can use the half-angle which
is the angle between the surface normal n and the bisector vector ωi + ωo, and the
difference angle which is the angle between the source vector and the bisector. Both
these angles entail azimuth and zenith variables θh, φh, θd , φd . For isotropic surface
materials φh = 0 and so one measurement typically consists of 90×90×180 samples
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Fig. 15 Relative error of
r25,18,�(θh , θd ) in all datapoints
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Fig. 16 Rendered example (blue metallic paint): original (267Mb) left and approximation (8.5Kb) right
(colour figure online)

where a sample handles multiple color channels, for instance the 3 RGB values. In
other words a measurement amounts to about 267 Mb.

Because the BRDF satisfies a number of empirically observed physical properties
shared by many materials, one can further reduce the domain of the BRDF to two
variables [14]. For isotropic materials the 3-d BRDF can be projected on the 2-d
(θh, θd)-space disregarding φd [12] and hence we compute rn,m,�(θh, θd). For the
bivariate representation, the original 267Mb of data can thus be reduced to some 6000
RGB datapoints, the equivalent of about 1.12 Mb. We remark that data from materials
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with high specularity are especially hard to fit. An advantage of our technique is that
there is no need to separate the diffuse and the specular components. The nonlinear
character of the rational model can handle the challenge.

Defining intervals Fi at each of these 6000 datapoints with a relative accuracy of
± 3% where θh is close to zero and ± 5% elsewhere (see Fig. 13), we can start the
same procedure as in the previous section to come up with the set of training data (see
Fig. 14) required to build an approximant rn,m,�(θh, θd) accurate on the whole set of
datapoints (see Fig. 15).

Using a rational interval interpolant rnC ,mC ,�(θh, θd) for each of the RGB colour
channels (C ∈ {R,G, B}) instead of the full dataset of 267 Mb when rendering the
blue metallic painted ball of Fig. 16, does not generate any noticeable difference.
Note that the data footprint of the rational functions is only the storage of the rational
function coefficients, namely

∑

C∈{R,G,B}
(nC + mC + 1)(32 or 64 bits).
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