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Abstract Options are a type of financial instrument classed as derivatives, as they
derive their value from an underlying asset. The equations used to model the option
price are often expressed as partial differential equations (PDEs). Once expressed
in this form, a discretization method on a finite grid can be applied and the numer-
ical valuation obtained. Remains the problem of writing down an (approximate)
closed-form analytic model for the option price in function of all the variables and
parameters, which is the main objective of this paper. At the same time we also con-
sider the Greeks, which are the quantities representing the sensitivities of the price to
a change in the underlying variables or parameters. Discrete values for these Greeks
can again be derived, either directly from the differentiation matrices occurring in the
option price PDE or by solving new but similar PDEs. Next, analytic models for the
Greeks are computed in the same way as for the option price. As a prototype case,
The Black-Scholes PDE for European call options is considered.
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1 Introduction

The basic product traded in financial option markets is a European call option. It
gives its holder the right, but not the obligation, to purchase from the writer of the
option a prescribed asset for a prescribed price E at a prescribed time T in the future.
The quantity E is called the exercise price or strike price and T is called the maturity
time. In return for granting the option, the writer collects an up-front payment from
the buyer.

Black-Scholes. In contemporary financial option pricing theory, the fair value C of
a European call option is evaluated according to a given stochastic model for the evo-
lution of the underlying asset price. The standard model for the asset price evolution
assumes a geometric Brownian motion. In their seminal work, Black and Scholes
[2] derived from this and additional assumptions on the market, a partial differential
equation (PDE) that must be satisfied:

∂C

∂t
= 1

2
σ 2S2 ∂2C

∂S2
+ rS

∂C

∂S
− rC, S > 0, t > 0. (1)

Here C = C(S, t) denotes the fair value of the European call option if at t time units
before maturity the asset price equals S. Thus, C is a deterministic function of two
independent real variables, S and t . The parameters r and σ are real and denote the
risk-neutral interest rate and the volatility, respectively. The Black–Scholes PDE (1)
is complemented with initial and boundary conditions:

C(S, 0) = max(0, S − E), S ≥ 0,

C(0, t) = 0, t ≥ 0,

C(S, t) ≈ S − E exp(−rt), t ≥ 0 andS sufficiently large.

Note that C(S, 0) is the payoff of the option at maturity.
It is well recognized in the literature that the original assumptions in the Black–

Scholes framework are not fulfilled in the contemporary markets [7]. More advanced
asset price models are being considered, for example with stochastic volatility. Nev-
ertheless, the Black–Scholes model remains an important tool in financial practice.
Furthermore, it constitutes the germ of a variety of more advanced models that are
being considered in the literature today. In view of this, it serves very well to illustrate
our proof of principle in this paper. Also, since a semi-closed form formula is avail-
able for European call option prices (see [2, 10] and Section 4), it enables a study of
the approximation errors.

The approach we consider starts with existing techniques for the numerical solu-
tion of the option pricing PDE with the property that they generate pointwise
approximations. Such techniques are well-known, for instance through the appli-
cation of a finite difference discretization in the S-domain followed by a suitable
(implicit) discretization in the t-domain. In practice, option prices often need to
be obtained for huge numbers of different underlying parameter sets. This can be
computationally very demanding, especially if the option pricing PDE becomes
multidimensional, which is common in finance, see e.g. [13]. In view of this, we pro-
pose in this paper an approach which, once option price approximations have been
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obtained on a grid for a sufficient number of parameter sets, to construct an analyti-
cal approximation formula. This enables to compute option prices with much greater
efficiency for new underlying variable and parameter sets, as it does not require to
numerically solve a new PDE. To our knowledge, this approach is novel in computa-
tional finance. It forms a valuable contribution that is readily augmented to existing
option pricing software.

For the numerical experiments in this paper we have applied a standard numeri-
cal method which employs a second-order central finite difference discretization in
the S-domain followed by a Crank-Nicolson discretization (implicit trapezoidal rule)
in the t-domain. For a few dozen (E, r, σ ) triplets and a moderate (S, t) grid, for
instance with 100 × 50 points, one quickly obtains hundreds of thousands of values
˜C(S, t; E, r, σ ). Our objective in this paper is to construct, after obtaining pointwise
approximate option values for several parameter sets, an accurate, multivariate con-
tinuous model for ˜C that allows fast evaluation of the option value function in terms
of all independent variables as well as parameters. Consequently, option prices can
be computed for new values of the variables and parameters S, t, E, r, σ with minor
effort, compared to numerically solving the PDE. This approach is highly promising
for the large variety of advanced (multidimensional) PDEs, with multiple parameters,
that arise in financial mathematics today, for which no solutions in semi-closed form
are available. The subject is treated in more detail in Sections 4 and 5.

Greeks. Besides the option price we also consider the Greeks, which are the quanti-
ties representing the sensitivities of the option price to a change in the variables and
parameters. In particular, values for the partial derivatives delta, gamma and vega

� := ∂C

∂S
, � := ∂2C

∂S2
, ν := ∂C

∂σ

are of interest. Since delta and gamma appear in the Black–Scholes PDE (1), finite
difference approximations for these two quantities can directly be obtained during
the numerical solution of (1). Approximations for vega can be computed by simulta-
neously solving along with (1) the PDE obtained by differentiating (1) with respect
to σ ,

∂ν

∂t
= 1

2
σ 2S2 ∂2ν

∂S2
+ σS2 ∂2C

∂S2
+ rS

∂ν

∂S
− rν, S > 0, t > 0.

For the latter PDE homogeneous initial and boundary conditions apply.

2 Domain, dimensionality reduction and duality

Before we apply the rational approximation method described in Section 3 to the data
obtained from the PDE solver, we need to specify the approximation domain. Some
regions are inherently more interesting than others. Moreover, although in theory
nothing prevents us from working with the current 5 variables, the proposed method
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Fig. 1 Randomly sampled (E, r, σ ) in ]0, 100] × [0, 0.2] × [0, 1] (64 triplets)

benefits from some dimension reduction techniques and exploiting both homogene-
ity and symmetries. These issues are described next. Their use also facilitates the
graphical illustration of the results.

Domain. Since we know that C ≈ 0 for very small S and C ≈ S − E exp(−rt)

for sufficiently large S, we are especially interested in the region where C/S makes
the transition from 0 to 1. Our domain is ]0, 200] for S, ]0, 100] for E, [0, 0.2] for
r , [0, 1] for σ and [0, 3] for time t to expiration (in years). In Fig. 1 we show the
(E, r, σ ) triplets for which we solve the PDE (they were randomly generated in the
cube [0, 100] × [0, 0.2] × [0, 1]). Since a static 3-d view is difficult to interpret, we
have chosen to give (from left to right) the projections on the (E, r)–, (r, σ )– and
(E, σ )–planes.

Dimensionality reduction. It is convenient to introduce the new variables [7, p.110;
8]

u = ln(S) − ln(E) + rt, (2)

w = σ
√

t, (3)

and consider c(u, w) = C/S. This is allowed for specific types of options. For
instance, it is well-known that European call options are homogeneous of degree one
in S and E [2, 10].

Hence each quintuple (S, t; E, r, σ ) is mapped to some vector v = (u, w). We use
the computed values for C at (Si, ti; Ei, ri, σi) to obtain

c(ui, wi) = C(Si, ti; Ei, ri, σi)/Si . (4)

Application of Leibniz’s rule gives for the Greeks

� := ∂C

∂S
= c(u, w) + ∂c(u, w)

∂u
= �(u, w), (5)

� := ∂2C

∂S2
= 1

S

(

∂c(u, w)

∂u
+ ∂2c(u, w)

∂u2

)

= 1

S
γ (u, w), (6)

ν := ∂C

∂σ
= S

√
t

∂c(u, w)

∂w
=

(

S
√

t
)

κ(u, w), (7)

where the newly introduced γ and κ are functions of (u, w).

Author's personal copy



Numer Algor

−0.5

0

0.5

1

0.5

1

1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

w u

c(
u,

w
)

−0.5

0

0.5

1

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

Δ

w u

(u
,w

)

−0.5

0

0.5

1

0.5

1

1.5

0

1

2

3

4

5

6

γ

w u

(u
,w

)

−0.5

0

0.5

1

0.5

1

1.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
κ

w u

(u
,w

)

Fig. 2 The exact functions expressed in the variables u and w

In practical situations the spot price S almost always lies in the interval [ 12E, 3
2E].

So for the interesting region where 1/2 ≤ S/E ≤ 3/2 and the ranges of the remaining
variables as above, the ranges of u and w are respectively

ln(1/2) ≤ u ≤ ln(3/2) + 0.6, 0 ≤ w ≤ √
3. (8)

Plots of c, �, γ and κ on this domain are shown in Fig. 2.
At this point, it is worth noting that given a sufficiently differentiable approxima-

tion for the option price C, approximations for the Greeks can obviously be obtained
directly from differentiating this approximation with respect to S or σ . (5) to (7) indi-
cate that such approximations can also be derived from differentiating (with respect
to u or w) an approximation for c(u, w). However, such a direct approach is not
advised because typically one order of magnitude in accuracy is lost in each differ-
entiation step. Hence, instead of differentiating an approximation for c(u, w) we use
the computed values for �, � and ν at (Si, ti; Ei, ri, σi) to obtain

�(ui, wi),

γ (ui, wi) = �(ui, wi)Si,

κ(ui, wi) = ν(ui, wi)/(Si

√
ti ).

From these values we construct independent approximations for each of the Greeks.
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Duality. We can further restrict the domain of approximation to either u ≥ 0 or
u ≤ 0 due to the following duality [6, 8]:

c(−u, w) = euc(u, w) + 1 − eu. (9)

Applying this relation to the Greeks gives for (u, w) �= (0, 0):

�(−u, w) = euc(u, w) + 1 − eu�(u, w), (10)

γ (−u, w) = euγ (u, w), (11)

κ(−u, w) = euκ(u, w). (12)

Let D+ and D− denote the part of the domain where u ≥ 0 and u ≤ 0 respectively.
When extending the dualities (9–12) to approximations for c,�, γ and κ , we have

to take into account that we may be introducing discontinuities at u = 0. For instance,
if c(u, w) on D− is approximated by r−(u, w) and if we define

r+(u, w) := e−ur−(−u, w) + 1 − e−u, (u, w) ∈ D+,

then r+(0, w) = r−(0, w) but the approximation is not differentiable anymore at
u = 0. With �, γ and κ the approximation itself even becomes discontinuous so that
we need to define it on the line u = 0 as the average of the approximations onD+ and
D−. Note that this discontinuity is not visible in the displayed figures, such as Fig. 4,
because the approximation is sufficiently accurate (the threshold on the relative error
is too small to be visible in the graphics; the discontinuity is visible with a coarser
approximation though).

We remark that we compute the approximation r(u, w) on D− (and not on D+)
and extend it from there to the rest of the domain because then the error is not mag-
nified by a factor eu with u ≥ 0. It is merely multiplied by a factor less than 1. A
similar remark was pointed out in [8].

3 Rational interval interpolation

We aim to capture the underlying parameter dependency with a generalized rational
function

r	,m(u, w) = p	,m(u, w)

q	,m(u, w)
=

	
∑

i=0
ai Bi(u, w)

m
∑

i=0
bi Bi(u, w)

,

where the multivariate basis functions Bi(u, w) can be multinomials uk1wk2

(k1, k2) ∈ N
2, or some multivariate orthogonal polynomials, trigonometric or other

basis functions. In what follows we simply take the multinvariate monomials as
basis functions, ordered by increasing total degree. The specific order in which the
monomials of the same total degree are ordered is specified in (17) further down.

The rational function r	,m(u, w) essentially has only 	 + m + 1 degrees of free-
dom because one of the coefficients ai and bi can always be fixed to normalize the
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Fig. 3 Univariate approximations for the slice κ(−0.5, w) on 0 ≤ w ≤ √
3

representation (a common choice is q0 = 1). Typically, fairly low degree rational
functions (i.e. 	+m small) can accurately approximate functions like the ones shown
in Fig. 2. This is mainly due to their outstanding ability to display flat behav-
ior followed by a sudden and steep increase. As an example, consider different
approximations for the univariate slice κ(−0.5, w), where u = −0.5 is fixed and
0 ≤ w ≤ √

3. It is not difficult to find from the Black-Scholes formula (18) in
Section 4, by differentiation, that an analytical expression for κ(u, w) is

κ(u, w) = e
− (2u+w2)2

8w2

√
2π

.

For the univariate function κ(−0.5, w), we compare a low degree best ratio-
nal approximation to the best polynomial approximation with the same number
of unknowns. The distance is measured using the uniform (Chebyshev) norm
||f (w)||∞ = sup{|f (w)| : 0 ≤ w ≤ √

3}. Figure 3a shows the best rational approx-
imation of degree 4 in numerator and denominator as well as the best polynomial
approximation of degree 8. The polynomial approximation is clearly a lot worse
than the rational approximation, which is visually indistinguishable from the origi-
nal function. How much worse is shown in Fig. 3b, where the difference between
κ(−0.5, w) and the rational, respectively the polynomial approximation is shown.
Note the characteristic equi-oscillating behavior of the error curves. The maximum
error of the polynomial is 0.0091, while that of the rational function is 0.00095.

Although best rational approximations are optimal, their possible non-existence
[3] or non-uniqueness [15] are profound and subtle topics which require special atten-
tion. Besides these theoretical considerations, they are usually computationally more
expensive to obtain and in general require iterative techniques. For instance, for fixed
	 and m, the differential correction algorithm [1] for best discrete rational approx-
imations requires solving a sequence of linear programming (LP) problems. In the
current paper, we propose to solve the involved approximation problem by a different
and very natural method of which the details are given next.
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As explained in the Sections 1 and 2, from a PDE solver, approximate values f̃i

are obtained at distinct locations (ui, wi), i = 0, ..., s, after the dimensionality reduc-
tion. Here the f̃i denote approximate values for either the option price or one of the
aforementioned Greeks. A useful property of some modern discretization methods,
in which the time steps and the grid sizes are determined adaptively, is their ability
to estimate the errors of the computed values (see for instance [9]). That is, the com-
puted f̃i obtained from such methods are expected to approximate the (essentially
unknown) exact fi within a user-specified (absolute or relative) tolerance ε > 0.
Consequently, the upper and lower bounds

fi = f̃i − ε, fi = f̃i + ε

or
fi = f̃i (1 − ε), fi = f̃i (1 + ε), (13)

readily define real-valued intervals Fi = [fi, fi] which encapsulate both the approx-
imate value f̃i and the exact (but unknown) value fi . In the sequel we work
with

fi = f̃i − ε(1 + |f̃i |), fi = f̃i − ε(1 + |f̃i |),
to provide an easy transition between absolute errors in case of small values and
relative errors in case of regular values.

Rather than approximating the point-values f̃i we look for a rational function
r	,m(u, w) which satisfies the interval interpolation conditions

r	,m(ui, wi) ∈ Fi ⇔ fi ≤ r	,m(ui, wi) ≤ fi, i = 0, . . . , s, (14)

and this for the smallest possible 	 + m with 	 + m 
 s. For fixed 	 and m and pro-
vided that q	,m(ui, wi) > 0, it follows that the numerator p(u, w) and denominator
q(u, w) of r	,m(u, w) have to satisfy the linear inequalities

fi q	,m(ui, wi) ≤ p	,m(ui, wi) ≤ fi q	,m(ui, wi), i = 0, .., s. (15)

Denote the vector of unknown coefficients by

c = (p0, . . . , p	, q0, . . . , qm)T ∈ R
	+m+2

and denote by A the (2s + 2)× (	+m+ 2) constraint matrix implied by the inequal-
ities (15). In order to obtain a nontrivial vector c �= 0 which strictly satisfies the
component wise inequalities Ac ≤ 0, we propose the computation of a Chebyshev
direction [12] of the corresponding unbounded polyhedral cone described by Ac ≤ 0
by solving the strictly convex quadratic programming (QP) problem:

argminc∈R	+m+2 (‖c‖2)2
subject to Ajc ≤ −δ ‖Aj‖2 , j = 1, . . . , 2s + 2.

(16)

Here δ > 0 is an arbitrary robustness margin, Aj denotes the j-th row of the matrix
A and ‖ · ‖2 is the Euclidean norm. For an in-depth discussion of the geometri-
cal interpretation of this QP formulation and possible alternatives, we refer to the
forthcoming [5]. The above QP problem can for instance be solved using the freely
available MATLAB interface qpas [14].

The smallest possible value 	+m is determined by solving the QP problem (16) for
each combination of increasing 	+m = 0, 1, 2, . . . until a feasible solution is found.
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The order in which the pairs (	, m) are traversed is chosen by the user. We usually
opt for a diagonal order that is as symmetric as possible in the variables, namely

(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1), (3, 0), (0, 3), (2, 1), (1, 2), (4, 0), . . .
(17)

Although modern QP solvers can efficiently handle several thousands of constraints,
we propose a selection procedure among the given s + 1 data to reduce the total
number of constraints and speed up this process.

4 Modelling large data clouds

Remember that the total number s + 1 of given data can easily reach the hundreds
of thousands. For instance, if for each of the 64 random triplets (E, r, σ ) shown in
Fig. 1, a 200 × 100 (uniform or non-uniform) (S, t)-grid is constructed, a total of
1.28× 106 5-dimensional data points is generated. Now let us transform these points
(S, t; E, r, σ ) to 2-dimensional data (u, w), without any overlap occurring. Taking
also into account the reduction to the domain of interest (8), the duality and the
extension from negative to positive u, the number of data that remain in the ranges
− ln(3/2) − 0.6 ≤ u ≤ 0 and 0 ≤ w ≤ √

3 is s + 1 = 292353. For the interval
widths, we allow a relative deviation in (13) of ε = 0.005 for the Greeks and only
ε = 0.001 on the option price.

In order to further reduce the total number of inequalities in (16) we propose
the following selection procedure. Of the given s + 1 data intervals, initially only a
small number s0 of intervals is selected (for instance, according to a Latin hypercube
design) and a rational function r	0,m0(u, w) is computed that satisfies (14) for these
s0 data. These s0 intervals are called the training data. Then it is checked how many
of the original s + 1 interval interpolation conditions are automatically satisfied by
r	0,m0(u, w) in addition to the s0 imposed ones. Usually this is quite a lot more. These
s + 1 − s0 intervals are called the verification data.

Among the violated interval verification data, we select s1 − s0 additional data
points to compute r	1,m1(u, w) that satisfies (14) for these s0+ (s1−s0) = s1 data. In
other words, we update the set of training data. These s1 − s0 additional training data
are placed where r	0,m0(ui, wi) deviates most from the given intervals Fi . Because
the previous s0 training data are obviously a subset of the new s1 training data, nec-
essarily 	1 + m1 ≥ 	0 + m0. That is, the number of coefficients 	1 + m1 + 2 needed
to interpolate the updated s1 training data cannot be less than the previously needed
	0 + m0 + 2 coefficients. Hence the search for 	1 and m1 can be continued from
the diagonal 	0 + m0 rather than from scratch each time. With r	1,m1(u, w) we then
check the new s + 1 − s1 verification data again. And so on till the rational model
satisfies all verification data.

This procedure keeps the computational complexity as low as possible: the solu-
tion is not computed from imposing all s + 1 interval data but rather from a carefully
selected subset which then entails all interpolation conditions. Using this approach
we easily achieve a reduction of s + 1 by a factor of several thousands of the given
large dataset.

Author's personal copy



Numer Algor

−0.5

0

0.5

1

0.5

1

1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

l,m

w u

r
(u

,w
)

−0.5

0

0.5

1

0.5

1

1.5

0.2

0.4

0.6

0.8

1

l,m

w u

r
(u

,w
)

−0.5

0

0.5

1

0.5

1

1.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

l,m

w u

r
(u

,w
)

Fig. 4 Models based on approximations on the domain D− and extended to D+ by application of (9–12)

Modelling c(u, w), �(u, w) and κ(u, w). For the rational approximations shown
in Fig. 4a till Fig. 4c, respectively only 74, 74 and 133 samples are used of the
292353 available ones. With these small training sets, rational interval interpolants
for c−(u, w), �−(u, w) and κ−(u, w) of the form

r	,m(u, w) =
∑

(h,k)∈L phku
hwk

∑

(h,k)∈M qhkuhwk
, #L = 	 + 1, #M = m + 1

are computed with the setsL andM of index pairs (remember the symmetric diagonal
ordering (17)) respectively given by

{(h, k) ∈ N : 0 ≤ h + k ≤ 3}, {(h, k) ∈ N : 0 ≤ h + k ≤ 4} \ {(3, 1)}
for rc−

9,13(u, w),

{(h, k) ∈ N : 0 ≤ h + k ≤ 4} \ {(3, 1)}, {(h, k) ∈ N : 0 ≤ h + k ≤ 3} \ {(1, 2)}
for r�−

13,8(u, w) and

{(h, k) ∈ N : 0 ≤ h + k ≤ 4} ∪ {(5, 0), (0, 5)}, {(h, k) ∈ N : 0 ≤ h + k ≤ 3} ∪ {(4, 0), (0, 4)}
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for rκ−
16,11(u, w). An analytic model as a function of the original variables

(S, t; E, r, σ ) is obtained by substituting the change of variables (2) in the final
function r(u, w). The modelling of γ (u, w) is discussed separately.

Modelling γ (u, w). Let N(x) denote the cumulative distribution function (CDF) of
the standard normal distribution,

N(x) = 1

2
+ 1

2
erf

(

x√
2

)

.

Then the well-known Black-Scholes formula states that [7, p. 110]

c(u, w) = N(u/w + w/2) − e−uN(u/w − w/2) (18)

and that γ (u, w) = κ(u, w)/w. However, if we divide rκ
16,11(u, w) by w, we do not

obtain a very good approximation for γ (u, w), although the error |rκ
16,11(u, w) −

κ(u, w)|/(1 + |κ(u, w)|) is bounded overall by 0.005. This is a consequence of the
fact that we need r

γ

	,m(u, w) to equal zero when w = 0 except at the point (u, w) =
(0, 0). To model such a singularity, rκ

	,m(u, w) need have the proper behaviour near
w = 0: the approximation really needs to decrease very fast for w ≈ 0, taking
values of the order of 10−250 and smaller. We therefore follow another approach for
the modelling of γ (u, w). As explained earlier, fitting γ (u, w) by differentiating an
approximation for c(u, w),

γ (u, w) = ∂c(u, w)

∂u
+ ∂2c(u, w)

∂u2
,

is not advised. We rather focus on log(κ(u, w)).
We choose ε = 0.0001 (here ε equals 1 bps or one basispoint, which can easily

be guaranteed for European call/put options obeying the Black-Scholes model) and

compute r
log κ−
10,3 (u, w) with the numerator and denominator degree sets L and M

respectively given by

L = {(h, k) ∈ N : 0 ≤ h + k ≤ 3} ∪ {(0, 4)}, M = {(h, k) ∈ N : 0 ≤ h + k ≤ 1} ∪ {(0, 2)}.
Only 53 training data are required. In Fig. 5 we show exp

(

r
log κ

10,3 (u, w)
)

as an

approximation for κ(u, w) and the true relative error, computed a posteriori. As
before, the approximation is constructed on u ≤ 0 and extended to u > 0. The true
relative error rises only slightly above 0.005. The approximation

exp
(

r
log κ

10,3 (u, w)
)

w
≈ γ (u, w)

is also very good. In Fig. 6 we show the function and the true relative error, which is
of course identical to the true relative error on κ(u, w).

5 Modelling sparse data samples

A different challenge is to construct an analytic model r	,m(u, w) from only a min-
imal number of data. We now describe the required adaptations to the method of
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Fig. 5 Models based on fitting log(κ(u,w))

Section 4 when no large number of verification data is available. In addition we omit
to make use of the dualities (9) and (10–12), because we want to illustrate use of the
modelling technique when not too much about the underlying function is known. We
still do restrict our analysis to the region of interest given in (8).

So we start the modelling process with the computation of r	0,m0(u, w) from a
small number of data and we want to refine this model iteratively by sampling as few
additional values as possible. How do we proceed? We discuss the matter in terms of
the original variables (S, t; E, r, σ ) instead of the transformed variables (u, w). The
latter will still be used in the computation of the analytic model though. For simplic-
ity, we store the transformation between the discrete grid of datapoints (S, t; E, r, σ )

obtained from the PDE solver and the discrete set of interpolation points (u, w) used
in the models r	,m(u, w) in a table (for the randomly generated (E, r, σ ) given in
Figure 1 and uniform 80 × 80 (S, t) grids the transformation was bijective).

So assume you only have at your disposal the PDE solution at an 80 × 80 (uni-
form or non-uniform) (S, t)-grid for 4 (E, r, σ ) triplets. In a first step we model
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Fig. 6 Approximation of κ(u,w)/w = γ (u,w) based on fitting log(κ(u,w))
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these 25600 data intervals by a rational function r	0,m0(u, w) following the algorithm
described in the previous section. As before, all available data are divided into inter-
polation points (training data) and verification points (verification data). But different
from Section 4 is that in the end, we want the model to be (sufficiently) accurate on
the 80 × 80 (S, t) grids associated with each of the 64 randomly selected (E, r, σ )

triplets given in Fig. 1, while we only want to collect data on 80× 80 (S, t) grids for
a limited number of (E, r, σ ) tuples.

So when iterating, several things need to be taken into consideration:

• When having a data cloud of reference (or validation) material besides the
interpolation conditions, the (absolute or relative) model error at these non-
interpolation points is easily obtained. Without this reference material at our
disposition, a model error can only be estimated from

εi(u, w) :=
∣

∣r	i ,mi
(u, w) − r	i−1,mi−1(u, w)

∣

∣

1 + ∣

∣r	i ,mi
(u, w)

∣

∣

,

(u, w) ∈ (S, t; E, r, σ )-grid of size 80 × 80 × 64

where r	i ,mi
and r	i−1,mi−1 respectively denote the analytic models computed

from si + 1 and si−1 + 1 training data, in other words the models from the last
and the one but last set of training data. The denominator in εi(u, w) is again
chosen to provide a smooth transition from relative to absolute error in the case
of very small function or model values.

• The value max(u,w) εi(u, w) is then checked against the threshold ε and here
some care must be paid to avoid a false optimistic result. When r	i ,mi

is com-
puted from only a slight update of the data that produced r	i−1,mi−1 , then the two
analytic models may be so similar that the error estimate εi(u, w) is small on the
entire domain. As a first precaution we can check both

max ε
(1)
i (u, w) ≤ ε,

max ε
(2)
i (u, w) ≤ ε, (19)

where

ε
(1)
i (u, w) :=

∣

∣r	i ,mi
(u, w) − r	i−1,mi−1(u, w)

∣

∣

1 + ∣

∣r	i ,mi
(u, w)

∣

∣

,

ε
(2)
i (u, w) :=

∣

∣r	i ,mi
(u, w) − r	i−2,mi−2(u, w)

∣

∣

1 + ∣

∣r	i ,mi
(u, w)

∣

∣

.

As a second precaution we steer any additional sample points moderately away
from the already available data points as described below. This improves at the
same time the conditioning of the interpolation problem, which is an added
advantage.

• So when adding interpolation data we avoid samples at positions that are very
close to previously sampled positions (u, w) because these usually add little or
no extra information. Hence we stay some minimal distance δ away from every
already sampled position (u, w), measured using one or other distance function,
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when collecting a new sample. On the one hand the value of δ should not be too
small, while on the other hand it should not be so large that it leads us away from
an interesting region. A strategy could be to adapt δ as the iteration continues,
in other words, impose a step dependent distance δi (instead of a constant δ)
between the locations of the si+1 already available data samples and the si+1−si
newly added data samples. Here δi can be decreased as the iteration proceeds.

• When adding interpolation points we make a distinction between choosing a
new triplet of parameters (E, r, σ ) and choosing some new points (S, t). A new
triplet is only selected after all verification data associated with the last added
80 × 80 grid are satisfied. The reason for this is that for each separate triplet
(E, r, σ ) the PDE solver usually returns a full (uniform or non-uniform) grid of
data points in the remaining variables S and t . So, inspecting argmax ε

(1)
i (u, w)

or argmax ε
(2)
i (u, w), in that order and depending on which one of both violates

(19), identifies a new and different triplet (Ei+1, ri+1, σi+1) for which the PDE
solver is then called. Having obtained the solution at an additional grid of (S, t)

values, the technique of the previous section is used to compute r	i+1,mi+1(u, w).
By this we mean that the values obtained at the grid of (S, t) locations need not
be added all at once to the interpolation conditions, but can for each new triplet
(Ei+1, ri+1, σi+1) be separated into training and verification data.

• Since ε
(1)
i (u, w) and ε

(2)
i (u, w) are only estimates of the error and not guaranteed

upper bounds, we recommend for the stop criterion to divide the objective ε by
some safety factor φ ≥ 1, in order to obtain a more reliable analytic model. This
way one safeguards the technique against underestimating the hardness of the
problem. The iteration is terminated only after

max ε
(1)
i (u, w) ≤ ε/φ,

max ε
(2)
i (u, w) ≤ ε/φ. (20)

When expressing ε as ε = β−n, where usually β = 2 or 10, we found it useful
to choose φ ≥ β.

• When φ in (20) is too large, then it may happen that the iteration doesn’t
stop, while (19) is satisfied. As a result additional (E, r, σ ) tuples are added at
argmax ε

(1)
i (u, w) or argmax ε

(2)
i (u, w) and data on (S, t) grids are generated

without much use. It may be that the approximate model r	i ,mi
(u, w) is accurate

enough and automatically satisfies all added interval data. When a whole grid
of 6400 data is generated that does not lead to a single additional interpolation
point and an update of the model, we suggest to decrease φ as the iteration con-
tinues, until φ = 1. One runs into this problem for instance, when choosing φ

for κ(u, w) too large.

We illustrate the sparse adaptive sampling technique and compare with the results
of Section 4. As mentioned, for each of 4 start triplets (E, r, σ ) data are collected at
6400 (S, t) locations. This adds up to a total of 25600 samples. We target a relative
deviation of ε = 0.05 for the Greeks and ε = 0.005 for the price c(u, w). We further
choose φ = 50 for all functions except κ(u, w) where we take φ = 10. A uniform
choice of δ = 0.01 worked well.
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Fig. 7 Models based on sparse interval interpolations

The first 25600 interval data are all interpolated from only 101 samples for
c(u, w), 118 samples for �(u, w) and 88 samples for κ(u, w). Now that the ana-
lytic model passes through all 25600 initial data intervals, we can add a new
(E, r, σ ) triplet and call the PDE solver to deliver a new grid of solutions at 6400
(S, t) tuples. The location of the new (E, r, σ ) triplet is decided from inspecting
argmax(u,w) ε

(1)
i (u, w), or argmax(u,w) ε

(2)
i (u, w), and checking the transformation

table for the 5-variable vector that is associated with the (u, w) location where a
maximum is attained.

Continuing in this way we ultimately obtain the models graphed in Fig. 7.
The numerator and denominator index sets L and M of the graphed models are
respectively given by

{(h, k) ∈ N : 0 ≤ h + k ≤ 3} ∪ {(4, 0), (0, 4)}, {(h, k) ∈ N : 0 ≤ h + k ≤ 4} \ {(1, 3), (2, 2)}
for rc

11,12(u, w),

{(h, k) ∈ N : 0 ≤ h + k ≤ 2} ∪ {(3, 0), (0, 3)}, {(h, k) ∈ N : 0 ≤ h + k ≤ 2} ∪ {(3, 0), (0, 3)}
for r�

7,7(u, w) and

{(h, k) ∈ N : 0 ≤ h+k ≤ 2}\{(1, 1)}, {(h, k) ∈ N : 0 ≤ h+k ≤ 2}∪{(3, 0), (0, 3)}

Author's personal copy



Numer Algor

for rκ
4,7(u, w). The rational approximations are computed from only 17 (E, r, σ )

and a total of 145 (u, w) interpolation points for c, 8 (E, r, σ ) and 132
(u, w) interpolation points for � and 4 (E, r, σ ) and 88 (u, w) interpolation
points for κ .

Since the Black-Scholes PDE serves as a benchmark here, and since we know the
explicit expressions for C(S, t) and the Greeks in terms of the parameters E, r and
σ , we can compute (a posteriori) the true overall error (following the formula used in
the definition of εi in order to accomodate both small and regular values):

• for rc
11,12(u, w) it equals 0.0053,

• for r�
7,7(u, w) it is 0.0499,

• and for rκ
4,7(u, w) we obtain 0.0476.

When changing the start data for the computation of the rational models, the
results differ of course. But from the many, many runs that we have performed, we are
showing results that are very representative. For instance, κ(u, w) and �(u, w) were
easier to model than c(u, w) requiring less (E, r, σ ) tupels, meaning less calls to the
PDE solver to generate new data, and less interpolation points overall (of course the
accuracy conditions on the Greeks are more relaxed).

6 Conclusions

We describe how to compute analytic models for option prices and Greeks, both
from a large data cloud (in Section 4) and from a smaller set of adaptively collected
data (in Section 5). We employ rational interval interpolation and, as a prototype
case, consider the reputed Black-Scholes PDE for European call options. The rational
interval interpolation technique is especially useful for capturing steep increases or
decreases, which are common in financial applications, such as in the Greeks.

A relative accuracy of 1 ‰ for c(u, w) and 5 ‰ for the functions �(u, w) and
κ(u, w) is easy to guarantee when working with a large data set. In case of a selective
smaller data set we easily achieve respectively 5 ‰ and 5 %. The rational interval
interpolation technique can in principle be extended to more advanced option pricing
models in finance, with more variables and parameters, for which no exact solutions
in semi-closed form are available. If desired, the quadratic programming problem
(16) can also be extended with positivity conditions for the denominator, as in [4], or
monotonicity, as in [11].
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