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1. NONLINEAR SYSTEMS OF EQUATIONS 
One of the central problems of scientific computation is the efficient numerical 
solution of systems of n equations 

fi(xl, X2, * - - 9 %I = 09 i = 1, 2, . . . , n, (1.1) 

in n unknowns x1, x2, . . . , x,. This is a special case of the operator equation 

f(x) = 0, (1.2) 

in which f: D C R” + R”, 0 E R” denotes the zero vector 0 = (0, 0, . . . , 0), and 
the point x E R” is sought. If f is an affine operator, 

f(x) = Ax + b, (1.3) 
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with the matrix A = (eij) and the vector b = (bl, bz, . . . , b,) given, then the 
system (1.1) is said to be linear. This important special case is now fairly well 
understood in both theory and computational practice. Otherwise, (1.1) is a 
nonlinear system, and the situation is quite different from the linear case with 
respect to both theory and practice. Most of the methods for nonlinear systems 
investigated to date [14,X] involve some form of iteration, and many also involve 
approximation of the nonlinear system by a linear system during the various 
steps of the solution process, such as in the case of Newton’s methods and its 
many variants [14,15]. It has been observed that some solution procedures work 
better than others on a given problem, so that in the absence of a clear-cut 
criterion for choosing the optimal method, it is advisable to have several choices 
available in the form of computer programs that are easy to use. 

It will be assumed that the operator f corresponding to the system (1.1) has 
first and second Frechet derivatives f ‘, f fl on its domain D C R” [15]. In this 
case, the first Frechet derivative off at x is represented by the Jacobian matrix 

f’(x) = F ) 
( ) J 

and the second by the Hessian operator 

(1.4) 

(1.5) 

[15]. Necessary values of the derivatives appearing in (1.4) and (1.5) will be 
obtained by automatic differentiation [ 171, so that the user need only supply 
expressions or subroutines for the n functions fi(xl, x2, . . . , x,) appearing in 
(1.1). This avoids both the labor of providing code for derivatives and the 
inaccuracy of numerical differentiation. In [20], it was shown how to automate 
the calculation of the Jacobian matrix (1.4) needed in Newton’s method by the 
use of type GRADIENT. Here, type HESSIAN [ 181 will be used to evaluate both 
(1.4) and (1.5), which are required for the computational implementation of a 
cubically convergent iterative procedure, the multivariate Halley method due to 
Cuyt [2, 3,4]. 

2. THE MULTIVARIATE HALLEY METHOD 

This method is based on the theory of abstract Pad6 approximants [2, 41, and 
conditions for its numerical stability have been given by Cuyt [3]. The abstract 
setting is a Banach algebra [15]: R” with multiplication and division of vectors 
defined componentwise forms such a structure for the norm ]] x ]] = max(i) ] xi ], 
for example. Halley’s method starts from an initial approximation x0 to a solution 
x = x* of (1.2), and then defines the sequence (r”] of successive approximations 
by the following algorithm: 

(a”)* x u+l = xy + - 
a” + ib”’ 

(2.1) 
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where 

u.” = -f’(x”)-‘[ix”) (the Newton correction), 

and 

b” = f’(x”)-‘f”(x”)a”a”, v = 0, 1, 2, . . . . 

In the actual computation, the Jacobian matrix f ‘ix”) is not inverted. Rat,her, 
the linear system 

f ‘(x”)u” = -f (x”) 

is solved for a”, following which the linear system 

(2.2) 

f ‘(x”)b” = f N(xY)u”uY (2.3) 

is then solved for b”. Since the systems (2.2) and (2.3) have the same coefficient 
matrix, the decomposition of the Jacobian matrix f’ (x’) used to solve (2.2) can 
also be used to solve (2.3), resulting in a saving of effort. 

An outline of the computational effort for one step of Halley’s method is thus 

(1) evaluation off ix”), f ‘ix”), f “ix”); 
(2) solution of (2.2) for a”; 
(3) evaluation off n(xY)uYuY; 
(4) solution of (2.3) for b”; 
(5) calculation of the Halley correction c” = (a”)‘/(~” + ibY); 
(6) addition of the Halley correction to x” to obtain x”+‘. 

This sequence of operations is more elaborate than required for Newton’s 
method [15, 201, which requires only the evaluation off ix”), f ‘ix”), the solution 
of (2.2) for a”, and finally the addition of u” to x” to obtain x”+l. However, in 
favorable cases, the rate of convergence of Halley’s method is cubic, whereas 
Newton’s method converges quadratically. Thus the greater effort required for 
each step of Halley’s method could be offset if fewer steps are required to obtain 
the accuracy desired. Two steps of Newton’s method can be combined to yield a 
method with biquadratic convergence. However, this requires the solution of (2.2) 
with different coefficient matrices f ‘ix”) and f ‘ix”+‘) and right sides -f (x”) and 
-f (x”+l). 

For computational implementation, it is convenient to consider the steps of 
Halley’s method to consist of a procedure for evaluation (Step l), which will 
depend on the specific system being solved, and a procedure for iteration (Steps 
2-6), which will have the same form for all systems. The operations of compo- 
nentwise multiplication and division of vectors will also have to be provided in 
addition to the standard vector operations; These are simple to define, sirlce for 
u=(q,uz,..., a,) and b = (bl, b2, . . . , b,) E R”, one has 

ub = (ulbl, uzbz, , . . , unb,), 

(2.4) 

where division is defined in general only if bi # 0, i = 1, 2, . . . , n. 
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985. 
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3. USE OF AUTOMATIC DIFFERENTIATION 

Newton’s method and the method of Section 2 ate sometimes shunned because 
it is assumed that code has to be supplied for the derivatives of the functions fi, 
or because these functions are defined by subroutines rather than simple expres- 
sions. However, since the rules for differentiation are well understood, the 
computer itself can produce the required code by automatic differentiation of the 
given expressions or subroutines [6, 171. In the case of functions defined by 
expressions, programs capable of obtaining first and second derivatives have 
been in use for some time [5, 7, 151. More recently, differentiation methods for 
subroutines have also been developed [6, 16, 17, 181. Since the latter case is the 
most general, it will be examined here. 

To illustrate the fundamental idea of automatic differentiation, consider a real 
function f of n real variables x = (x1, x2, . . . , x,). The pair (f, f ') = (f(x), Of(x)) 
is a datum of type GRADIENT for a given value of x [18, 201, where Of(x) 
denotes the gradient vector 

Vfb) = 
( 

df(x) df(x) af(4 
dr'dx'...'ax * 

1 2 n ) 
(3.1) 

Writing F = (f, f ‘) to represent an element of this new type of data, the next 
step is to define the corresponding arithmetic operations to implement the rules 
for differentiation in a computable form. For example, for G = (g, g’), addition 
and multiplication are defined by 

F + G = (f + g, f' + g'h 
F*G = (f*g,f*g' +g*f'), 

(3.2) 

respectively. Similarly, functions such as the sine function can be represented in 
the form 

GSIN(F) = (sin(f), cos(f)*f'). (3.3) 

The independent variable xi is represented by the GRADIENT variable X[i] = 
(xi, ei), where ei is the ith unit vector, and the evaluation of a GRADIENT 
expression will automatically yield both the values of the function f(x) and its 
gradient vector Of(x) at the given value of x. Thus the programmer need only 
supply code for the evaluation of a function to get also its derivative, once the 
standard set of GRADIENT operators and functions [20] is available. 

For the present purpose, second derivatives are needed, and so type GRA- 
DIENT is extended to type HESSIAN, a datum of which is the triple F = (f, f ', 

f") = (f(x),Vf(x),Hf(x)) [W, h w ere Hf (x) is the Hessian matrix 

(3.4) 

Once again, there is no problem in the implementation of arithmetic operations 
and standard functions, for example, 

F + G = (f + g, f’ + g’, f” + g”), 

F*G = (f*g, f*g’ + g*f’, f*g” + f’*g’* +g’*frT + g*f”), (3.5) 
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985. 
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and 

SIN(F) = (sin(f), cos(f)*f', cos(f)*f" - sin(f)*f’*f’T). (3.6) 

The HESSIAN variables X[i] corresponding to the independent variables Xi 
are X[i] = (xi, ei, O), where ei is the ith unit vector, and 0 denotes the n X n zero 
matrix. Thus evaluation of expressions of type HESSIAN yields the value of the 
second derivative f"(x) as well as the values of the function f(x) and its first 
derivative f ‘(x). Although the formulations of HESSIAN operators and standard 
functions are more complicated than those for type GRADIENT [20], program- 
ming them is no real challenge, and this needs to be done only one time. Once 
available, these subroutines shift the burden of differentiation from the program- 
mer to the computer, which is as it should be. 

In order to calculate the Jacobian matrix (1.4) and Hessian operator (1.5) of a 
uector-ualued function f(x) = (fi(x), fi(x), . . . , fn(x)), each real-valued component 
function fi(x) is defined to be of type HESSIAN. In this case, the ith row of the 
Jacobian matrix f ‘(x) is given by the gradient vector Vfi(X) of the ith component 
function, and the Hessian matrix Hfi(x) of the ith component function will be 
the ith “panel” of the Hessian operator f"(x). 

4. TYPE HESSIAN IN PASCAL-SC 

In primitive computing languages such as FORTRAN, automatic differentiation 
requires interpretation of expressions [5, 71 or precompilation [6, 171. However, 
in languages that permit user-defined operators, such as ALGOL 68, Ada, and 
Pascal-SC [l, 131, statements can be written in ordinary notation, with deriva- 
tives evaluated automatically. In order to make full use of the facilities already 
available in Pascal-SC for vector and matrix arithmetic [22], type HESSIAN is 
introduced in a way to make it consistent with the definitions of types RVECTOR 
and RMATRIX for n-dimensional REAL vectors and matrices, respectively. The 
standard declarations [22] are 

CONST DIM = n; 

TYPE DIMTYPE = l..DIM; 
RVECTOR = ARRAY [DIMTYPE] OF REAL; (4.1) 
RMATRIX = ARRAY [DIMTYPE] OF RVECTOR; 

Following these, type HESSIAN is declared by 

TYPEHESSIAN=RECORDF: REAL; DF: RVECTOR; HF: RMATRIXEND; (4.2) 

[19]. Thus, as the result of a subroutine for computation of f(x) as the HESSIAN 
variable F, one has 

F.F = f(x), F.DF = vf(x), F.HF = Hf(x). (4.3) 

A complete package of HESSIAN arithmetic operators and standard functions 
has been prepared in Pascal-SC [18]. It is efficient to consider variables of types 
INTEGER and REAL as constants for the purpose of differentiation, so a total 
of 22 arithmetic operators are required. If K, R, and H denote generic variables 
ACM Transactions on MathematicalSoftware,Vol. 11, No. 1,March 1985. 
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of types INTEGER, REAL, and HESSIAN, respectively, these are 

+ H, K + H, H + K, R + H, H + R, H + H, - H, K - H, H - 
K, R - H, H - R, H - H, K * H, H*K, R*H, H*R, H*H, (4.4) 
K / H, H / K, R / H, H / R, H / H. 

The power operator ** and various standard functions are also available for type 
HESSIAN [18]. Typical examples of HESSIAN operators can be found in the 
evaluation routine given in Appendix C. 

In order to represent the vector x = (x1, x2, . . . , x,) of independent variables 
and the vector-valued function f(x) = (fi(x), f&r), . . . , f”(x)), with components 
of type HESSIAN, it is convenient to introduce the data type HESSVAR, defined 
by 

TYPE HESSVAR = ARRAY [DIMTYPE] OF HESSIAN; (4.5) 

In this way, it is possible to code systems of equations (1.1) in a form that follows 
ordinary mathematical notation. For example, the simple system 

e -x1+=2 - 0.1 = 0, 
(4.6) 

emxl-*Z - 0.1 = 0, 

investigated by Cuyt and Van der Cruyssen [2, 41 requires the following HES- 
SIAN operators and functions: 

OPERATOR - (H: HESSIAN) RES: HESSIAN; 
OPERATOR - (HA, HB: HESSIAN) RES: HESSIAN); 
OPERATOR - (H: HESSIAN; R: REAL) RES: HESSIAN; (4.7) 
OPERATOR + (HA, HB: HESSIAN) RES: HESSIAN; 
FUNCTION HEXP(H: HESSIAN): HESSIAN; 

The subroutines for these have to appear in the heading of the procedure 
HESSEVAL(VAR X, F: HESSVAR) for the evaluation of f(x) corresponding to 
(4.6) (see Appendix C). The evaluation off and its first and second derivatives is 
then carried out by the statements 

FL11 := HEXP(-X[l] + X[2]) - 0.1; 

FL21 := HEXP(-X[l] - X[2]) - 0.1; 
(4.6) 

which follow the form of (4.6) exactly. 
Similarly, HESSEVAL for the function f(x) corresponding to the system 

16x’: + 16x: + x: - 16 = 0, 

x:: + x; + x3” - 3 = 0, (4.9) 

xf - x2 = 0, 

considered in [20], requires the following operators: 

OPERATOR * (K: INTEGER; H: HESSIAN) RES: HESSIAN; 
OPERATOR ** (R: REAL; K: INTEGER) RES: REAL; 
OPERATOR ** (H: HESSIAN; K: INTEGER) RES: HESSIAN; 
OPERATOR + (HA, HB: HESSIAN) RES: HESSIAN; (4.10) 
OPERATOR - (H: HESSIAN; K: INTEGER) RES: HESSIAN; 
OPERATOR - (HA, HB: HESSIAN) RES: HESSIAN; 
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after which the evaluation of f and its derivatives takes place by means 
of the statements 

FL11 := 16 * (X[l] ** 4) + 16 * (x[2] ** 4) 

+ X13] **4 - 16; (4.11) 

F[21 := X[l] ** 2 + x[2] ** 2 + X[3] ** 2 - 3; 

FL31 := X[l] *t 3 - x[2]; 

which resemble (4.9). Parentheses are necessary in the first statement of 
(4.11) because * and ** have the same priority in Pascal-SC [13]. The 
coding for the system (4.9) is analogous to the statements given in Ap- 
pendix C for the system (4.6). 

Step 1 of Halley’s method as described in Section 2 is thus carried 
out simply by the evaluation of the function f(x) as of type HESSVAR, 
where the independent variable x also has the same type, with curren.t 
value X[1’].F = xi, i = 1, . . . , n. The value of the transformation F is 
given by the RVECTOR B with components B[i] = F[i].F, and the Ja- 
cobian matrix of F is the RMATRIX JACF with rows JACF [i] = 
F[i].DF, i = 1, . . . , n. As will be shown below, the panels F[i].HF of 
the Hessian operator of F can be used directly in the computation, and 
so it is not necessary to construct the operator itself. 

5. SOLUTION OF LINEAR SYSTEMS OF EQUATIONS IN PASCAL-SC 

Steps 2 and 4 of Halley’s method require the solution of linear systems 
of equations, an operation that is also required by Newton’s met,hod. 
Pascal-SC provides the basic procedure LGLP for this purpose [22], 
which is declared by 

PROCEDURE LGLP(DIM, AKDIM: INTEGER; VAR A: RMATRIX ; VAR B: 

RVECTOR; 
VAR Y: IVECTOR); 

The meaning of DIM is the same as before; if one wishes to solve a smaller 
system, the parameter AKDIM can be used to set the number of rows and 
columns of the coefficient matrix A and components of the right side vector :B 
that enter into the computation. More significantly, instead of returning a 
floating-point RVECTOR x as an approximate solution of the linear system 

An=B, (5.1) 

LGLP returns an interval vector (IVECTOR) Y, which, if proper, is guaranteed 
to contain the exact solution x of (5.1) [lo, 21, 221. Furthermore, successful 
completion of LGLP guarantees that the floating-point matrix A is nonsingular 
[21, 221. If A is singular or extremely badly conditioned, LGLP will return an 
improper interval vector Y with all components equal to the improper interval 
[+1, -11 [22]. 
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In actual practice, LGLP is observed to be highly accurate, even for matrices 
that are known to be poorly conditioned [21]. In any case, if 

Y = (bl, &I, b2, &?I, * . . , k&I, hII) 
is proper (ai 5 bi for i = 1, . . . , n), one has 

(5.2) 

ai I Xi I bi, i = 1, 2, . . . , n, (5.3) 

for all components xi of the exact solution x = (xi, x2, . . . , x,) of (5.1), from which 
an approximate solution with known error bounds can be constructed [19]. This 
kind of guaranteed accuracy is possible because Pascal-SC completely supports 
interval arithmetic [8, 11, 12, 221 as well as accurate floating-point arithmetic. 

Since Step 4 of Halley’s method requires the solution of another linear system 
of equations with the same coefficient matrix as in Step 2, it is more efficient to 
use the decomposition of the coefficient matrix and other auxiliary results from 
the first system to solve the second than starting anew. For this purpose, the 
Pascal-SC procedure LGLPR is provided [22]: 

PROCEDURE LGLPR (DIM, AKDIM: INTEGER; VAR A: RMATRIX; VAR B: 
RVECTOR 

NRS : BOOLEAN; VAR R: RMATRIX ; VAR MB: IMA- 

TRIX; VAR Y: INVECTOR) ; 

EXTERNAL 522; 

For the first system to be solved, one sets NRS = FALSE, and then subsequently 
NRS = TRUE for each new right side. The results from the first solution needed 
later are stored as the real matrix R and interval matrix MB. 

After solution of the linear systems (2.2) or (2.3), the interval vector Y has to 
be checked and converted to a real vector, before the computation can be 
continued. This is done by the function MID given in Appendix B. 

6. COMPUTATION WITH BILINEAR OPERATORS 

In Step 3 of Halley’s method, the right side f”(x”)a”a” of the system (2.3) is 
constructed by operating with the bilinear operator f “(x”) twice on the vector a”. 
The first operation yields a matrix, and the second a vector [Xi]. The way in 
which HESSIAN variables are defined makes it easy to implement these opera- 
tions in terms of the vector and matrix operators available in Pascal-SC [22]. In 
general, a bilinear operator 

B = (bijk) 

will be considered to be composed of n matrices 

Bl = (b&t & = (&jk), - * * t Bn = t&J, 

called i-panels, or simply panels of B. For a vector n E R”, the matrix 

(6.1) 

(6.2) 

A = (aij) = BX = (6.3) 

will have rows A’ given by the matrix-vector product 

Ai = Bix, i = 1, 2, . . . , n. (6.4) 
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Once the matrix I; is formed by computing the vectors (4.4), then the vector 

(6.5) 

is obtained by a single additional matrix-vector multiplication. In the case 
B = f”(x), one has Bi = Hfi(x”), SO that 

and thus 

Ai = Hfi(x”)~“, i = 1, 2, . . . , n, (6.6) 

f”(x”)u”u” = Au”, (6.7:) 

so the required vector is obtained by a total of (n + 1) matrix-vector multipli- 
cations. In Pascal-SC, matrices are stored rowwise, and so no transposition is 
required when forming the matrix A from the vectors Ai in (4.6) [22]. It is also 
important to note that in Pascal-SC, scalar products of vectors and also matrix-- 
vector products are computed with the minimum possible round-off error; that 
is, their values are obtained to the closest floating-point numbers [9, 10, 221. 
This accuracy is far greater than can be obtained by the usual method of 
simulation of these operations by sums of products of floating-point numbers 
[lo]. The calculation of the rows of A by (6.6) and the vector (6.7) require only 
the Pascal-SC operator 
OPERATOR * (A: RMATRIX; B: RVECTOR) RES: RVECTOR; 

for matrix-by-vector multiplication [22]. 

7. AN ITERATION PROCEDURE FOR HALLEY’S METHOD 

In order to write a procedure for one step of Halley’s method (2.1), all that is 
needed in addition to the above is the calculation of the Halley correction in 
Step 4 and the addition of this vector to the initial vector (Step 5). Calculation 
of the Halley correction requires operators for the componentwise multiplication 
and division of vectors. Suitable formulations of these are as follows: 

OPERATOR * (VA, VB: RVECTOR) RES: RVECTOR; 
VAR I: DIMTYPE; U: RVECTOR; 
BEGIN 

FOR I := 1 TO DIM DO 
U[Il := VA[I] * VB[I]; 
RES := U 

END; 

and 

OPERATOR / (VA, VB: RVECTOR) RES: RVECTOR; 
VAR I: DIMTYPE; U: RVECTOR; 
BEGIN 

FOR I := 1 TO DIM DO 
IF (VA[I] = 0) and (VB[I] = 0) THEN U[I] := 0 
ELSE U[I] := VA[I]/VB[I]; 
RES := U 

END; 
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In (6.2), the indeterminant form O/O is assigned the value 0, by continuity of the 
Halley approximation. The calculation of the Halley correction also requires the 
standard Pascal-SC operators 
OPERATOR * (A: REAL; B: RVECTOR) RES: RVECTOR; 
OPERATOR + (A, B: RVECTOR) RES: RVECTOR; 

for multiplication of vectors by real numbers, and addition of vectors [22]. With 
these and the componentwise operators (7.1) and (7.2), the Halley correction can 
be evaluated by a statement of the form 
CN := (AN * AN)/(AN + 0.5 * BN); (7.3) 

where, of course, AN = a”, BN = b”, CN = c”. The current value of X is then 
updated by the statement 
FOR I := 1 TO DIM DO X[I] .F := X(I].F -t CN[I]; (7.4) 

The steps required for a Halley iteration are collected in the form of the Pascal- 
SC procedure given in Appendix B. Together with the procedure 

HESSEVAL(VAR X, F: HESSVAR); 

for the evaluation of the function f(r) corresponding to the system of equations 
(l.l), a program for the iterative solution of (1.1) by Halley’s method can be 
constructed easily. A simple program of this type is given in Appendix A, which 
presents the results of each iteration to the user, who can then decide whether 
to iterate further, stop the iteration, or start over with another initial vector. 

In the program of Appendix A, the compiler directive 
$USES LGL, DIM = #; 

brings in the necessary type declarations, sets the constant DIM to the dimension 
of the system specified by the user [13], and refers the compiler to the external 
library LGLLIB containing the linear equation-solving and matrix inversion 
routines [ 131. The $INCLUDEodirectives bring in the source code for the method 
being used and for evaluation of the systems, which are in the external files 
HALLEY.SRC and HESSEVAL.SRC, respectively [13]. In general, the program- 
mer need only supply the file HESSEVAL.SRC for evaluation of the system 
being solved, and modify the source code of the program ITERATE to set the 
dimension and give the name of the method being used in the heading of the 
output. The only place where modifications are necessary is indicated by “#” in 
the source code file ITERATE.SRC. 

8. NUMERICAL RESULTS 

The method described in this paper was applied to the systems (4.8) and (4.9), 
and the results were compared with those obtained by Newton’s method [20]. 
The initial approximations for the system (4.8) were 

Xl = 4.3, xp = 2.0, (8.1) 

[3, 41, and the initial approximations for (4.9) were 

X] = 1.0, x2 = 1.0, x3 = 1.0, (8.2) 
ACM Transactions on Mathematical Software, Vol. 11, No. 1, March 1985. 
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[20]. For the syst.em (4.8), Newton’s method requires 55 iterations to reduce the 
residual to 0 to 12 decimal places, whereas Halley’s methods required only five 
iterations. On the other hand, for (4.9), the corresponding numbers were eigh.t 
iterations for Newton’s method, and five for Halley’s method, a result that is 
more favorable to Newton’s method. The results are given in detail in Appendix 
lJ. 

The methodology presented in this paper can also be used to automate other 
higher order methods for the solution of systems of equations, such as Chebyshl- 
ev’s method and the method of tangent hyperbolas [14, 151. 

APPENDIX A. A SIMPLE PROGRAM TO DRIVE HIGHER ORDER 
ITERATIVE METHODS 

PROGRAM ITERATE(iNPUT,OUTPUT); 
$USES LGL, DIM=#; (* DIMENSION OF SYSTEM l ) 

TYPE HESSIAN = RECORD F: REAL; (* FUNCTION VALUE l ) 
DF: RVECTOR; (* GRADIENT VECTOR *) 
HF: RMATRIX (* HESSIAN MATRIX l ) 

END; 
HE~~VAR = ARRAY [DIMTYPE] 0~ HESSIAN; 

VAR X,F: HESSVAR; (* INDEPENDENT AND DEPENDENT VARIABLES l ) 
1,J: DIMTYPE; (* INDEX VARIABLES l ) 

c: CHAR; (* CONTROL CHARACTER l :) 
K: INTEGER; (+ ITERATION COUNTER ') 

FUNCTION MlUWLL: RMATRIX; (* RETURNS THE ZERO MATRIX l ) 
VAR 1,J: DIMTYPE; 

C: RMATRIX; 
BEGIN 

FOR I:=1 TO DIM DO 
FOR J:=l TO DIM DO 

C[I,J] := 0; 
MRNULL :=c 

ENDI (* FUNCTION MRNULL l ) 

SINCLUDE HE~~E~AL.SRC; (* SOURCE CODE FOR PROCEDURE HESSEVAL l ) 
SINCLUDE HALLEY. SRC; (' SOURCE CODE FOR ITERATION STEP l ') 

BEGIN (* PROGRAM ITERATE l ) 

WRITELN; (* SIGN-ON MESSAGE l ) 
WRITELN('HALLEY"S METHOD FOR SOLUTION OF SYSTEMS OF EQUATIONS'); 
WRITELN; 

FOR I:=1 TO DIM DO (* INITIALIZATION OF INDEPENDENT VARIABLES *') 
BEGIN 

X[I].HF:=MRNuLL; (* SETS HESSIANS TO ZERO MATRIX l ) 
FOR J:=l TO DIM DO X[Il.DF[J]:=O; 
X[I].DF[I]:=l (* SETS GRADIENTS TO UNIT VECTORS l ) 

ENDI (* INITIALIZATION OF INDEPENDENT VARIABLES "1 

C:='R';WHILE C = 'R' DO 
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BEGIN (* SYSTEM SOLUTION l ) 

WRITELN;WRITELN('ENTER VALUES OF INDEPENDENT VARIABLES'); 
FOR I:=1 TC DIM DO READ(X[Il.F); 
WRITELN;WRITELN('INITIAL VALUES ARE');K:=O; 
C:='I';WHILE C = 'I' DC 

BEGIN (* ITERATION l ) 

HFSSEVAL(X,F); (* EVALUATE SYSTEM AT CURRENT VALUE OF X '1 
WRITELN; 
FOR I:=1 TO DIM DC (' PRINT VALUES OF X,F l ) 
WRITELN('X[',I:2,'] = ',X[Il.F,' F[',I:2,'] = ',F[I].F); 
WRITELN; 
WRITELN('ENTER "1" TO ITERATE, "R" TO RESTART, "Q" TO QUIT'); 

READ(C,C); (* ITERATION CONTROL ') 
IF C = 'I' THEN 

BEGIN 
-Y(X,F) i (* ITERATION STEP *) 
K: =K+l ; (+ INCREASE ITERATION COUNTER *) 
WRITELN;WRITELN('RESULTS OF ITERATION ',K:3); 

ENDi (* ITERATION STEP l ) 

END: (' ITERATION *) 

END (* SYSTEM SOLUTION ') 

END. (* PROGRAM ITERATB +) 

APPENDIX 8. SOURCE CODE FOR THE MULTIVARIATE HALLEY METHOD 

PROCEDURE HALLEY(VAR X,F: HESSVAR); 

(* HALLEY METHOD l ) 

VAR I: DIMTYPE; 
JACF : RMATRIX; (* THE JACOBIAN MATRIX l ) 

AN: RVECTOR; (* THE NEWTON CORRECTION *) 
BN: RVECTOR; 
CN: RVECTOR; (+ THE HALLEY CORRECTION l ) 

A: RMATRIX; 
B: RVECTOR; (* USED BY LGLPR l ) 
R: RMATRIX; (* " l I 
Y: IVECTOR; (* I l I 

MB: IMATRIX; (* I l ) 

(' STANDARD MATRIX AND VECTOR OPERATORS *) 

OPERATOR + (A,B: RVECTOR) RES: RVECTOR; 
VAR I: DIMTYPE; 

BEGIN FOR I:=1 TO DIM DC A[I] := A[I]+B[I]; 
RES :=A 

END: 
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OPERATOR l (A: REAL; B: RVECTOR) RES: RVECTOR; 
VAR I: DIMTYFE; 
BEGIN FOR I:-1 TO DIM DO B[I] := A*B[I]; 

RFS:=B 
END; 

OPERATOR * (A: RMATRIX; B: WEKTOR) RFS: RVECTOR; 
VAR I: DIMTYPE; 

WAR: RVECTOR; 
BEGIN 

BVAR := B; 
FOR I:=1 TO DIM M 
B[Il :- SCALP (A[I],BVAR,O); 
RES :-B 

Em; 

(* END OF STANDARD MATRIX AND VECTOR OPERATORS l ) 

(* OPERATORS FOR COMPONENTWISE MULTIPLICATION AND DlVISION OF VECTORS l ) 

OPERATOR l (A,B: RVECTOR) RES: P.VEZTOR; 
VAR I: DIMTYPE;C: RVECTOR; 
BEGIN FOR I:=1 TO DIM DO C[I]:=A[I]'B[I]; 

REs:-2 
END, 

OPERATOR / (A,B: RVECTOR) RES: RVECTOR; 
VAR I: DIMTYPE;C: RVECTOR; 
BEGIN FOR I:= 1 TO DIM DO 

IF (A[I]=O) AND (B[I]=O) THEN C[I]:=o 
ELSE C[I]:=A[I]/B[I]; 
REs:=c 

END; 
(* FUNCTION TO CONVERT PROPER INTERVAL VECTOR TO REAL VECTOR ') 

FUNCTION MID(VAR Y: IVECTOR): RVECTOR; 
VAR I: DIMTYPE;C: RVECTOR; 
BEGIN 

IF Y[l].INF <= Y[l].SUP THEN (* Y IS PROPER ') 
FOR I:=1 TO DIM D0 C[I]:=Y[I].INF+(Y[I].SUP-Y[I].INF)/2 
ELSE (* Y IS IMPROPER l ) 
BEGIN (* SEND ERROR MESSAGE AND RETURN TO OPERATING SYSTEM l ) 

WRITELN('JACOBIAN MATRIX IS SINGULAR OR BADLY CONDITIONED'); 
FOR I:=1 TO DIM D0 Y[I].SUP:=Y[I].INF; (* RESET Y l ) 
svR(O) (* RETURN TO O/S *) 

END; 
MID:< 

ENDi 

BEGIN (* HALLEY ITERATION l ) 

(* CALCULATE JACOBIAN MATRIX AND RIGHT SIDE OF (2.2) l ') 

FOR I:=1 TO DIM DO 
BEGIN 

JACF[I] := F[I].DF; (* JACOBIAN MATRIX *) 
B[I] :=: -F[I].F (' RIGm RAND SIDE ':) 

END: 
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(* SOLVE FOR NEWTON CORRECTION l ) 

LGLPR(DIM,DIM,JACF,B,FALSE,R,MB,Y)i 
AN := MID(Y); (* NEWTON CORRECTION l ) 

(* CALCULATE RIGHT SIDE OF (2.3) AND SOLVE FOR BN l ) 

FOR I:=1 TO DIM Do A[I] := P[I].HF*AN; 
B:=A*AN; 
LGLPR(DIM,DIM,JACF,B,TRUE,R,MB,Y); 
BN:=MID(Y); 

(* CALCULATE HALLEY CORRECTION l ) 

ct4 := (m*m)/(m + 0.5'~~); (* HALLEY CORRECTION l ) 

FOR I:=1 TO DIM Do X[I].F := X[I].F + CN[I]; (* UPDATE VALUES OF X l ) 

END; (* HALLEY ITERATION l ) 

APPENDIX C. SOURCE CODE FOR HESSIAN EVALUATION 
OF THE SYSTEM (4.8) 

PROCEDURE HESSEVAL(VAR X,F: HESSVAR); 

(+ HESSIAN OPERATOM AND FUNCTIONS FOR SYSTEM EVALUATION l ) 

OPERATOR + (HA,HB: HFSSIAN) RES: HESSIAN; (* H + H l ) 
VAR 1.J: DIMTYPE;U: HESSIAN; 
BEGIN U.F:=HA.F+HB.F;FOR I:=1 TO DIM DO 

BEGIN U.DF[I]:=HA.DF[I]+HB.DF[I]; 
FOR J:=l TO DIM DO 
U.HF[I,J]:=HA.HF[I,J]+HB.HF[I,J] 

ENDi 
REs:=u 

END; 

OPERATOR - (H: HESSIAN) RES: HESSIAN; 
VAR 1,J: DIMTYPE;U: HESSIAN; 
BEGIN U.F:=-H.F;FOR I:=1 TO DIM Do 

BEGIN U.DF[I]:=-H.DF[I]; 
FOR J:=l TO DIM DO 
U.HF[I,J]:=-H.HF[I,J] 

END: 
REs:=u 

END: 

(* -H l ) 

OPERATOR - (H: HESSIAN;R: REAL) RES: HESSIAN; (* A - R l ) 
VAR U: HESSIAN; 
BEGIN U.F:=H.F-R;U.DF:=H.DF;U.HF:=H.HF; 

REs:=u 
ENDi 
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OPERATOR - (HA,HB: HESSIAN) RES: HESSIAN; c* H - H l I 
VAR I,J: DIMTYPE;U: HESSIAN: 
BEGIN U.F:=HA.F-HB.F;FOR I:=1 TO DIM DC 

BEGIN U.DF[I]:=HA.DF[I]-HB.DF[I]; 
FOR J:=l TO DIM Do 
IJ.HF[I,J]:=HA.HF[I,J]-HB.HF[I,J] 

END; 
REs:=u 

ENDI 

FUNCTION HEXP(H: HESSIAN): HESSIAN; (* HEXP '1 
VAR 1,J: DIMTYPE;U: HESSIAN; 
BEGIN U.F:=EXP(?i.F); 

FOR I:=1 M DIM DC 
BEGIN U.DF[I]:=U.F*H.DF[I]; (* I LCGP l 1 

FOR J:=l M I DC 
BEGIN U.HF[I,J]:=U.F*H.HF[I,J]+U.DF[I]*H.DF[J]; 

IF I<>J THEN U.HF[J,I]:=U.HF[I,J] 
ENDI 

END; (+ I LOOP l 1 
HF.XP:=U 

END i (' FUNCTION HEXP l ) 
(* END OF HESSIAN OPERATORS AND FUNCTIONS '1 

BEGIN (* HESSEVAL '1 

(* DEFINITIONS OF FUNCTIONS IN SYSTEM ') 

FITI := HEXP(-X[l] + X[Z]) - 0.1; 
FL21 := HEXP(-X[l] - X[2]) - 0.1; 

(* END OF DEFINITIONS OF SYSTEM FUNCTIONS l ) 

END: (* PROCEDURE HESSEVAL l ) 

APPENDIX D. NUMERICAL RESULTS 

D.l Halley’s Method for the System (4.8) 

INITIAL VALUES ARE 

X[ l] = 4.30000000000E+00 F[ l] = 2.58843723000E-04 
X[ 21 = 2.00000000000E+00 F[ 21 = -9.81636952230E-02 

RESULTS OF ITERATION 1 

X[ l] = 3.33615528246E+OO F[ l] = 2.40511813000E-04 
X[ 21 = l.O3597241993E+OO F [ 21 = -8.73756488903E-02 

RESULTS OF ITERATION 2 

X[ l] = 2.560818009373+00 F[ l] = 1.44792584000E-04 
X[ 21 = 2.59679794981E-01 F[ 21 = -4.042372200443-02 

RESULTS OF ITERATION 3 

X[ 1] = 2.308175634693+00 F[ l] = 9.324795000003-06 
X[ 21 =i 5.683785305003-03 F[ 21 = -1.121100995703-03 
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FxESUi.,TS OF ITERATION 4 

X[ l] = 2.302585151183+00 F[ l] = 3.02000000000E-10 

X[ 21 = 6.12055700000E-08 F [ 21 = -1.193960000003-08 

RESULTS OF ITERATION 5 

X [ 11 = 2.30258509299E+OO F [ 1] = 0.00000000000E+00 

X[ 21 = -2.433561400003-12 F[ 21 = 0.00000000000E+00 

D.2. Halley’s Method for the System (4.11) 

INITIAL VALUES ARE 

X[ 11 = 1.00000000000E+00 F[ 11 = 1.70000000000E+01 
XL 21 = 1.00000000000E+00 F [ 21 = 0.00000000000E+00 
X[ 31 = 1.00000000000E+00 F[ 31 = 0.00000000000E+00 

RESULTS OF ITERATION 1 

X[ l] = 8.91118701964E-01 F[ l] = 9.37521623100E-01 

X[ 21 = 7.05429347548E-01 F[ 21 = -9.44922445000E-03 

X[ 31 = 1.30339083879E+OO F[ 31 = 2.20137281800E-03 

RESULTS OF ITERATION 2 

X[ 11 = 8.77982528233E-01 F [ 11 = l.O3685690000E-03 

X[ 21 = 6.767866893023-01 F[ 21 = -9.09324000000E-06 

X[ 31 = 1.33082582033E+OO F[ 31 = 9.05738500000E-06 

RESULTS OF ITERATION 3 

X[ 11 = 8.77965760274E-01 F[ 1] = 0.00000000000E+00 
X[ 21 = 6.76756970516E-01 F[ 21 = O.OOOOOOOOO0OE+OO 

X[ 31 = 1.33085541162E+OO F[ 31 = 2.00000000000E-12 

RESULTS OF ITERATION 4 

x[ 11 = 8.779657602743-01 F[ l] = 0.00000000000E+00 

X[ 21 = 6.76756970517E-01 F[ 21 = O.OOOOOOOOOOOE+OO 

X[ 31 = 1.330855411623+00 F[ 31 = 1.00000000000E-12 

RESULTS OF ITERATION 5 

X[ l] = 8.779657602743-01 F[ l] = 0.00000000000E+00 
X[ 21 = 6.767569705186-01 F[ 21 = O.OOOOOOOOOOOE+OO 

X[ 31 = 1.33085541162E+OO F[ 31 = 0.00000000000E+00 
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