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Abstract. This paper describes a very flexible "general order" multivariate Padd approximation technique for 
the model reduction of a multidimensional linear shift-invariant recursive system, i.e., a system characterized 
by a multivariate rational transfer function. The technique presented allows full control of the regions of support 
in numerator and denominator of the reduced system and also admits a nonbranched continued fraction represen- 
tation for an easy realization of the model. The method presented here overcomes some of the problems of related 
approaches to mode/reduction of multidimensional linear recursive systems. Different rational approximants can 
be introduced to compute the reduced model, but a drawback is that these approximants are not always readily 
available in continued fraction form for immediate implementation of the reduced system. Also multibranched 
continued fractions can be used to approximate the transfer function, but it was pointed out that the regions of 
support of numerator and denominator blow up rapidly as one considers successive convergents. Both these prob- 
lems are overcome here. 
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1. Introduct ion 

Mult id imens iona l  systems arise in p rob lems  like computer -a ided  tomography,  image proc-  

essing, image deblurr ing,  seismology,  sonar  and radar  applications,  and many other  prob- 

lems. Many operat ions  pe r fo rmed  on one-d imens ional  signals remain  val id in the 

mul t id imens ional  case but  the mathemat ics  for handl ing mul t id imens iona l  systems is less 

complete  than the mathemat ics  for handling one-dirnensional  systems [1]. Fil tering signals, 

such as in image  deblurr ing,  is a discipl ine born  of  the compute r  revolution,  that is con-  

cerned with the extraction and/or enhancement of  information contained in a one-dimensional  

or  mult idimensional  sequence of  measurements.  Noises can be filtered from spoken messages 

or  picture images.  Systems can transform a message  to a form recognizable  by a computer.  
The  number  o f  applicat ions is legion. We shall indicate here  new techniques for the mode l  

reduct ion of  mul t id imens iona l  l inear shift-invariant (LSI) systems with  infinite-extent  im- 
pulse response (IIR). F rom the one-dimensional  theory one knows that the problem of model  
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reduction is equivalent to the computation of Pad~ approximants [2]. It will become clear 
that this is also true in multidimensional systems theory. 

A multidimensional discrete signal is represented by a multidimensional array x(n b . . . ,  
np). For simplicity of notation we will restrict ourselves to the case p = 2. An important 
example of discrete signals is the unit impluse ~(nl, n2) , defined by 6(nt, n2) = 1 for n~ 
= n 2 = 0 and 6(nl, n2) = 0 elsewhere. 

When talking about two-dimensional LSI systems we will always refer to recursive systems 
or systems with infinite-extent impulse response, which transform an input signal x(nl,  
n2) into an output signal y(nl, n2) such that y(nl, n2) can be described by a difference equa- 
tion of the form 

y(nl, n2) = ~ a(kl, k2)X(nl - kl,  n2 - k2) 
(t:~,k2)~N 
NC 77 2 

(kl,k2) E D o 
D ° c 2z2\ {(o,o)} 

b(kl, k2)y(nl - kl,  n2 - k2), (1) 

where D ° ¢ ~b. The sets N and D = D ° t3 {(0, 0)} are the regions of support of the arrays 
a(nl, n2) and b(n 1, n2) respectively with b(0, 0) = 1. For x(nl ,  n2) = 6(nl, n2) the above 
difference equation becomes 

h(nl, n2) = a(nl,  n2) - ~ b(kl, kz)h(nl - k 1, n2 - k2), 
(k 1 ,k2)~D ° 

(2) 

and since D ° ¢ ~b the signal h(nl, n2), which is called the impulse response of the system, 
indeed has infinite extent. Remark that a recursive system is only recursively computable 
if it allows an ordering by which the output values y(nl, n2) c a n  be computed sequentially, 
given a set of initial conditions. It is clear that this depends on the subset D ° C 77 2. 

Taking the z-transform of  both sides of (2) results in 

H(zl ,  z2) = A(zt ,  z2) - ~ b(kl, ke)H(zl, z2)z;k'z~ ~ 
(k 1 ,k2) ED ° 

= ~_a a ( k l ,  k 2 ) z l k l Z 2  kz - n ( z l ,  z2) ~ b ( k l ,  k 2 ) z l k l z 2  k2. 
( k l , k2 )~N (kl,k2)~D o 

Here H(zl, z2) is the z-transform of the impulse response h(nl, n2) and is called the transfer 
function of the system. So the transfer function of a recursive system is the ratio of the 
z-transforms A(zt ,  z2) and B(zl,  z2) of the coefficient arrays a(nl,  n2) and b(nl, n2), with 
b(0, 0) = 1: 

n( z l  ' z2 ) = ~(kt,k2)EN a(kl, k2)z{k 'z f  k~ 

1 + ~(k,,k~)~D o b(kl, k2)z{k'Z2 k~ 
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__ ~(k, ,k2)~N a(kl, k2)z{k'z~ ~ 
~(k,,k2)~D b(kl, k2)zlklz2 k2 

A(Zl, Z2) 

B(Zl, z2) 
(3) 

2. Model reduction 

Without loss of generality [1, pp. 176-180] we restrict ourselves here to systems whose im- 
pulse response has support on the first quadrant. We can therefore write for the transfer 
function of the desired system 

H(Zl, z2) Z Z h(r/1, -nl -n2 : n2)Zl Z2 
n~=0 n2=0 

or, equivalently, 

H 1, 1 = Z Z h(nl, rt2)w~w~ 2, (4) 
1 W2 n~=0 nz=0 

where the equality sign is only formal. We know from (3) that for a recursive system the 
transfer function H(1/wl, 1/w2) is a bivariate rational function in wl and w2, and hence 
techniques from bivariate Pad~ approximation can be used to approximate the series (4). 
In [3], [4] Canterbury approximants were used to compute the reduced model. A drawback 
is that these Canterbury approximants are not available in continued fraction form for an 
easy realization of the model [5], [6]. In [7], [8] multibranched continued fractions are 
used to approximate the transfer function. However in [9] is pointed out that the index 
sets or regions of support of numerator and denominator blow up rapidly as one considers 
successive convergents. In the sequel of this section we present a very flexible multivariate 
Padd approximation technique that, on one hand, allows full control of the index sets in 
numerator and denominator of the reduced system and, on the other hand, admits a con- 
tinued fraction representation for its immediate implementation. 

Given a power series expansion 

H(Wl, w2) = Z h(i, j)w] wg2, (5) 
(i,j)~tw 

we shall compute an approximant p(wl, w2)/q(wl, w2) to (5) by an accuracy-through-order 
principle. The polynomials p(wl, w2) and q(wl, w2) are of the form 

p(wl' w2) = Z a(i, j)wil wJ2, 
( i , j ) ~ N  

q(wl, w2) = Z b(i, j)w] wJ2, 
( i , j )  ED 



312 A. CUYT, S. OGAWA AND B. VERDONK 

where N (numerator) and D (denominator) are finite subsets of £V 2, indicating in a way 
the degree ofp(w t, w2) and q(w b w2). Let us denote, with # for the cardinality of a set, 

#N = n + 1, #D = m + 1 

It is now possible to let p ( w l ,  w2) and q(wl ,  w2) satisfy 

(H  q - p ) ( w b  w2) = E g(i, j )w]  w J2 
(i,j)EEV2\E 

(6) 

if, in analogy with the univariate case, the index set E (equations) is such that 

N c _ E ,  
# ( E \ N )  = m = #l)  - 1, 
E satisfies the inclusion property. 

(7a) 
(7b) 
(7c) 

The last condition on E means that when a point belongs to the index set E, then the rec- 
tangular subset of points emanating from the origin with the given point as its furthermost 
corner, also lies in E. Condition (7a) enables us to split the system of equations 

g( i, j )  = O, ( i, j )  E E, 

in an inhomogeneous part defining the numerator coefficients 

i j 

E E h(lz, v)b(i - It, j - v) = a(i, j ) ,  
/z=O v=O 

(i, j) ~ N, (8a) 

and a homogeneous part defining the denominator coefficients 

i j 

~ ]  ~ h(tz, v)b(i - #, j - v) = O, 
~=0 v=O 

(i, j )  ~ E \ N .  (8b) 

By convention b(i, j) = 0 if (i, j) ~ D. Condition (7b) guarantees the existence of a non- 
trivial denominator q(wl ,  w2) because the homogeneous system has one equation less than 
the number of unknowns and so one unknown coefficient can be chosen freely. Condition 
(7c) finally takes care of the Padd approximation property, namely 

I-I - P~ (wb w2) = ~ ]  f(i, j)w~ wJz. 
(i,j)~V2\E 

For more information we refer to [10]. For the sake of simplicity we assume that the 
homogeneous system of equations (8b) has maximal rank. However, what follows can easily 
be extended to the case where this is not true, by adding points to the set E \ N  until the 
rank deficiency has disappeared, but at this moment this would only complicate the nota- 
tion. So for the moment #E = n + m + 1. 
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Let us now introduce a numbering of the points in ~Y7 2. We can for instance enumerate 
hV 2 as follows: 

(0, 0), (1, 0), (t3, 1), (1, 1), (2, 0), (2, 1), (0, 2), (1, 2), (2, 2), 
(3, 0), (3, 1), (3, 2), (0, 3), (1, 3), (2, 3), (3, 3) . . . . .  

This particular numbering of/TV 2 is only one possible choice. Any other numbering r(i, 
j)  of kV 2 can be chosen as long as it satisfies the following property: 

i < k a n d j  < l ~ r(i, j )  <_ r(k, l). (9) 

Using the above enumeration, we can write 

0 = N _ I  C No C N 1 C  "'" C Nn-1 C Nn = N ,  

#Nt - -  I + 1, 

NI\N1 1 = {(il, h)},  l = 0, . . . ,  n, 

r(il, h )  = I. 

In ot]her words, for each l = 0, . . . ,  n we add to Nl-1 the point (it, Jl) which is next in 
line in N A ~W 2. Analogously we write 

0 = D _  1 C  D O C D 1 C " ' "  C Din_ 1 C D m = D  

with 

and 

#D t = l + 1, 

D l \ D l - 1  = {(dl, el)},  l = O, . . . ,  m ,  

with 

n- [ -m 

E= [J EI=E,+m, 
/=0 

El = N I ,  1 = 0  . . . . .  n, 

En+l\En+l-I  = {(in+l, L+Z)}, l =  1 . . . .  , m, 

r(in+l, .~+l) = n + l. 

Note that because of condition (9) the subsets El (l = 0 . . . . .  n + m) consisting of the 
first ! + 1 elements of E, individually satisfy the inclusion property. 
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It was shown in [10] that a determinant representation for 

p~(wl, w2) = Z a( i , j )wi lwJ2 ,  0 <_ l <_ n, 
(i,j)ENl 

and 

qr(Wl, w2) = Z b( i , j )w]wJ2,  0 < r <_ m, 
(i,J) EDr 

satisfying 

(~Iqr - p t ) (w l ,  w2) = Z g(i,  j)wil ~ 2  
(i,j)EJ~\El+r 

is given by 

pt(w~, w2) = 

Z h(i  - d o , j  - eo )w  ] w ~  . . .  Z h(i  - dr, j - er)W ] w ~  
(i,j) ENl (i,j) ENl 
h(it+l - do, Jz+l - eo) . . .  h(il+I - dr, Jl+l - e~) 

h(il+r - do, h+r - -  e0) • . .  h(il+r - dr, Jl+r -- er) 

and 

qr(Wl, w2) = 

. 

h(il+l - do, Jl+l - eo) . . .  h(il+l - dr, Jl+l - er) 

h(il+r - do, Jl+r - eo) . . .  h(il+r - dr, Jl+r - er) 

where h(i, j) = 0 i f i  < 0 o r j  < 0. 
A solution of the original problem (6) is then given by pn(wl ,  w2)/qm(wl,  W2) since Nn 

= N,  D m = D and E~+ m = E.  However, the rational functions p l (w l ,  W2)/qr(W 1, W2) are 
themselves Pad~ approximants. They satisfy only part of the approximation conditions 
(6) (determined by Et+r) and have Nl and Dr as "degree" of numerator and denominator. 
If  one does not need explicit knowledge of the numerator and denominator coefficients 
a(i,  j )  and b(i,  j ) ,  it is shown in [11] that the value of the Pad~ approximants p l (w l ,  w2)/ 

qr(Wl, W2) can easily be computed recursively for l + r _< n + m. 
We shall now show how a nonbranched continued fraction representation can be con- 

structed for the Pad~ approximants P1/qr" However, we first want to point out that the ap- 
proximants introduced in [12] differ from the Pad~ approximants described here, in the 
sense that in [12] the index set E must have a well-specified form which does not satisfy 
the inclusion property. Therefore, the recursive computation scheme of [12] is different 
from the one discussed in [11]. Also, no continued fraction representation has been given 
for the approximants in [12]. 
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From now on we shall write for the lower-order solutions of the Pad6 approximation 
problem (6) 

P___(I (wl, We) = [NI/Dr]EI+/ q~ 

With these solutions we can fill up a table of Pad6 approximants where [Nn/Dm]G+ m = 
[N/D]e: 

[No/Do]Eo [No/D1]E1 [No/D2]G 

[N1/Do]E, [NJD1]G [NJD2]E3 

[NJDo]e2 [N2/DdE3 ". 

In this table we consider descending staircases of multivariate Pad6 approximants, like 

[G/Do] G 

INs+ L/Do]G+ l [Ns+ I/D1]E~+2 

[Ns+2/D1]Es+3 [Ns+2/DZ]Es+4 

and construct continued fractions of which the /th convergent equals the (l + 1) th entry 
on the staircase. We restrict ourselves to the case where every three successive elements 
on tJhe staircase are different. In [13] it is proved that, given this staircase, a continued 
fraction representation of the form 

[Ns+l/Do]G+ ~ - [Ns/Do]G J + 
[NJD°]G + [  1 

÷ 

_e t  s+l) -qts+l) I+ I 
[1 + qt s+l) l1 + et s+l) 

I I+ + . 

[1 + q~+l) [1 + e~ s+l) 

exists of which the successive convergents equal the successive Pad~ approximants on the 
staircase. We now resume the formulas necessary for the computation of qt s+l) and et s+l) 
in our case. A proof of these formulas can be constructed in a completely analogous way 
as was done in [13] for a more general problem. 

Input of the algorithm is 

~I(wl, w2) = Z h(i, j)w] w J2 . 
(i,j)~W z 
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With  the u n i t  i m p u l s e  r e s p o n s e  h(i, j )  and  wi th  the sets 

E1 = {(i0, Jo), . - - ,  (it, Jl)}, 

D r = {(do, eo) . . . .  , (dr, er)} 

we cons t ruc t  for 1 = O, . . . ,  n + m and  r = O, . . . ,  m,  

tr(1) = Z h(i - dr, j - er)W~ -d" wj2 -e~, 
( i , j ) f E l  

and  for 1 = O, . . . ,  n + m and  r = 1, . . . ,  m,  

g~?r = tr(1)  - t r - l ( O ,  

g~)-l,s_ _q+l) _ .q+O $ r - l , r  X r - t , s  g~()-l,~ ~7( I ) 
o r , s  gq+l) _ ~q) 

r - l , r  5 r - l , r  

s = r +  1, r + 2 ,  . . . .  

Th e  qt s+I) and  e} s+l) are s tored as in  table  (10): 

qt 1) 

e] 1) 
q f )  q~l) 

et 2) e~ 1) 
q?) q~2) " . .  

e? e? 
qt4) q~3) " . .  

et4) : @)  

whi le  the  va lues  o (t) a re  s tored  as i n  table  (11).  ~ r , s  

T h e  first  c o l u m n  of  (10) is g iven  by 

_(s+l) 
q~S+l) = to(S + 2) - to(S + 1) ~0,1 

to(S + 1) - to(s) g~S~l) -- ~50,1~(s+2) 
_ h(is+2 - do, Js+2 - eO)w)+2-d° W~ s+z-eO ~50,10(s+1) 

h(is+l - do, Js+l - eo)w~{ +a-d° WJ2"+l-eo 60,1-(s+1) -- gO, l--(s+2) 

S u b s e q u e n t  e - c o l u m n s  a re  c o m p u t e d  f r o m  

~(s+l)  ~(s+/+l)  
e} s+l) + 1 = s l - l , t  - s t - l , l  (q}S+2) + 1), 

gtS_+Ot 
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W 

, - . I  ° ' "  + t  

O ~ 

0 

+ 

---~ + ~  

, 

I 

+ 

+ 

n 

I 

+ 

+~ 

+~ 

(11) 
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and subsequent q-columns by 

q}S+ 1) e(S+2)As+2)l_l ,.11_l _(s+l-,) _ .(s+O (s+l) __ ,~ 1-2,l-1 6 1 - 2 , 1 - 1  g [ - 1 , l  

etS_~ 1) gtS_~/,7_tt gtS_~ - gtSj]lJ -1) 

In case not all three successive approximants on the descending staircase are different, 
singular rules must be used for the computation of the qt s+l)- and etS+lLvalues. These 
singular rules can be found in [14]. 

The staircases considered above were all lying below the main diagonal of the table of 
multivariate Padd approximants. I f  a Padd approximant (Pt/qr)(wl, w2) with l < r has to 
be computed, then the following reciprocal covariance property could be used [15]: calculate 
the Padd approximant (qJPl)(wl, w2) to the series 1/~r and invert it. 

We shall now illustrate the above technique with an example. Consider the LSI system 
given by the transfer function 

1 
H(zl, z2) - - - ,  (12a) 

B(Zl, z2) 

where 

B(Zl, z2) = O(wi  -l, w 2 1) 

= (1 - 0.1wa - 0.1w2 - 0.1wlw2)(1 - 0.15wt - 0.15w 2 - 0.2WlW2) 
(1 - 0.2wl - 0.2w2 - 0.4wlw2). (12b) 

The Taylor series expansion of H(wl, w2) = H(w; -1, wY 1) is given by 

H(wl, w2) = 1 + 0.45Wl + 0.45w2 + 0.1375w 2 + 0.975wlw2 + 0.1375w~2 + " " .  

We choose the sets N, D, and E for the general-order Padd approximant to/ t(Wl,  w2) as 
follows: 

N = {(0, 0), (1, 1)}, 
D = {(0, 0), (1, 0), (0, 1)}, 
E = N kJ {(1, 0), (0, 1)}. 

Note that the sets N, D, and E satisfy condition (7) and that, besides E, also D satisfies 
the inclusion property. The sets N and D are the index sets of  the polynomials p(wl ,  w2) 
and q(wl, w2); i.e., 

p(wl,  w2) = a(0, 0) + a(1, 1)wlw2, 
q(w 1, w2) = b(0, 0) + b(1, 0)w 1 + b(0, 1)w2, 
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where the coefficients a(/, j) and b(i, j) must satisfy (8). In this example, we can immediately 
solve the system of equations (8) and find 

p(wl, w2) = 1 + 0.495wlw2, 
q(w b w2) = 1 - 0.45wl - 0.45w 2. 

In other words, the transfer function of the reduced system obtained through the Padd ap- 
proximation technique described here is given by 

/~/(Zl, Z2) = 
1 + 0.495zl~z~ -t 

1 - 0.45z~ 1 - 0.45z~ 1 

Whereas the number of terms in the numerator and denominator of the original transfer 
function equals 16, for/-/(Zl, z2) this number amounts to 4. 

For model reduction techniques the issue of stability of the reduced system is an impor- 
tant one. A system is called bounded-input bounded-output (BIBO) stable if the output 
signal is bounded whenever the input signal is bounded. As in the one-dimensional case, 
this definition of stability can be reformulated in terms of the transfer function of the system. 
The following theorem summarizes some of the existing results. 

THEOREM [1]: Let Tbe  a two-dimensional first-quadrant LSI system with a rational transfer 
function given by (3) and having no nonessential singularities of the second kind on the 
unit bicircle. Then the system is stable if and only if 

(i) B(zl, z2) ~ 0 for [zll -> 1, I z2i ~ 1 
if and only if 

(ii) (a) B(zl, z2) ~ Ofo r  lzl] - 1, lz21 = 1 
(b) n(zt, z2) ;e 0 for Izll = 1, !z2l -> 1 
:if and only if 

(iii) (a) B(zl, z2) # 0 for [zl] = 1, Iz21 -- 1 
(b) B(a, z2) ~ 0 for Iz21 -> 1 for any a such that lal = 1 
(c) B(zl, b) ~ 0 for IZll -> 1 for any b such that Ibl = 1. 

It is clear from the above theorem that the stability of multidimensional LSI systems is 
essentially related to the zero set of the denominator polynomial. In order to be able to 
discuss the stability of the reduced system, we are therefore further investigating the polar 
sets of  the multivariate Pad~ approximants which model the reduced system. Partial results 
have been obtained so far and can be found in [16], [17]. 

In our example, the original system given by (12) is stable. This can be verified by look- 
ing at the root map of B(zl, z2) [1]. The root map of B(zl, z2) consists of two root images: 
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one root image shows the loci of the roots of B(Zl, z2) as zl traverses the unit circle zl 
= e i 4  f o r  - -  71" _< ~b ~ 71-. The other root image shows the loci of the roots of B(zl ,  z2) 

as z2 traverses the unit circle. We remark that part (ii) of the theorem states that the system 

is stable if both root images of B(zl ,  z2) lie inside the unit circle. Since B(z l ,  z2) given 
by (12) is symmetric in Zl and z2, the two root images of B(zl,  z2) coincide and are given by 

a k q- Ck e-i~5 
Zl =Z2  = , -- 7r <-- 0 < 7r, k =  1 , 2 , 3 ,  

1 - bke -i4' 

where 

a 1 = 0.1 bl = 0.1 c I = 0.1 
a2 = 0.15 b 2 = 0.15 c 2 = 0.2 

a 3 = 0.2 b 3 = 0.2 c 3 = 0.4 

One can easily verify that with those values of ak, bk and ck, k = 1, 2, 3, the root images 

of B(zl ,  z2) lie inside the unit circle and hence the original system is stable. If we look 

at the root images of the reduced system, we find 

0.45 
Zl = z2 - -- 71" < ~b < -/r. 

1 - 0.45e - i 6 '  - - 

Again it can easily be verified that these root images lie entirely inside the unit circle and 

therefore the reduced system, obtained by the Pad~ approximation technique, is also stable 

in this example. 

3. Summary 

The technique for model reduction of a multidimensional linear shifi-invariant recursive 

n ( z l ,  z2) = 

system 

F,~i,j)~ N a(i,  j)z~-'z2 J 

1 + ~(i , j )ED o b(i, j ) z { ' z 2  J 

which is known through its unit impulse response 

w2) = h i, 
(i,j)~lN 2 



MUEI?IDIMENSIONAL LINEAR SHIFT-INVARIANT RECURSIVE SYSTEMS 321 

can be summarized as follows. Choose subsets NI C N, D r C D = D ° U {(0, 0)} index- 
ing multivariate polynomials p~(w 1, w2) and qr(%, w2) respectively and impose the follow- 
ing conditions on pt(wt, Wz) and qr(Wl, w2): 

(/~qr -- p,)(Wl, We) = ~ g(i, j)w~ w J2, 
(i,J)Ej~V2\El+r 

where Nl, Dr, and Et+r must satisfy conditions (7) and the subscripts I, r, and I + r come 
from a particular enumeration of ff~2 which satisfies (9). The multivariate Padd approxi- 
mant (pl/qr)(Wa, W2) can be computed either through an explicit determinant formula or 
in continued fraction form for an easy realization of the reduced model. To this end, put 
s = l -  r a n d w r i t e  

pl(wl' w2) = Z h(i, j)w~ w J2 + 
qr(wt, W2) (i,j?~Ns [ 1 

h(is+ l, i "~u,is+ ha;Js+l as+lJ 'v  1 - -2  ] + 

I Iq _q!S+,, I +  + . 
~] I1 + q}S+t) 11 + e}S+l) fl 11 + q~s+l) i=1 

Notes 

*This report was written while the first author visited the University of Kobe by means of a Masuda Research 
Fellowship. 
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