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We establish a de Montessus theorem for multivariate homogeneous Padé approximants.
The interesting feature is that the approximants converge locally uniformly (that is, uniformly
in compact sets) away from a certain analytic set, but need not converge locally uniformly in
any neighbourhood of any point of the analytic set.

1. Introduction and results

The classical de Montessus theorem for one complex variable asserts that if f is
analytic in |z| < R, except for poles of total multiplicity #, none lying at 0, then the
(m, n) Padé approximant [m/n](z) to f(z) converges to f(z), as m — oo, uniformly
in compact subsets of |z| < R omitting poles of f.

There have been several generalizations of this to multivariate Padé approxi-
mants. The latter fall naturally into two categories of approximants: homogeneous
and non-homogeneous. Most of the de Montessus type theorems have been given
for the latter — see [5,7,8,11,14]. In this paper, we establish a de Montessus theorem
for homogeneous Padé approximants.

Recall first the definition of homogeneous Padé approximants: Let f(z) denote a
power series of k variables z;, z,, ...z;, convergent in a neighbourhood of 0, where

2= (21,23, ...2x)- (1)

We can rearrange the Maclaurin series of f into a homogeneous expansion
@)=Y £, (2)

where f;(z) is a homogeneous polynomial of degree j, that is,
fi(z) = Z vy szflzéz Zik (3)
St de=i
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The homogeneity of degree j is expressed in the identity
filuz) = u'fi(z), ueC. 4)

The homogeneous Padé approximant of type (m,n) to f, denoted [m/n](z) =
(P/Q)(z), is a rational function of z, where

PE)= Y pe)i0G) =Y 4 (5)
satisfy
fo-PR= 3 o) ©)
J=mn+m+n+1

(Each p;, g;, ¢; is a homogeneous polynomial of degree j.)

At first sight, the “shift”” mn in the homogeneous terms in P, Q and the remainder
term in fQ — P is disconcerting. However, it is essential within this framework to
guarantee existence of the approximant. P/Q does have an irreducible form, but
even this irreducible form need not be analytic at 0. Homogeneous Padé approxi-
mants are unique — see [6, chapter 2] for further orientation.

The only convergence result for sequences of homogeneous Padé approximants
{{m/n)}m_; with n fixed, is due to Cuyt [9]. The result involves functions f/(z) mer-
omorphic in a ball centre 0 in C* whose set of singularities is given by

S:={zeC":5(z) =0}, (7)
where

S(z)=)_5(2) (&)

Jj=

[

is a polynomial of degree 4, so that each s; is homogeneous of degree j and s, is not
identically zero. We assume that there exist infinitely many m such that we can
cancel common factors from both numerator and denominator of [m/n] to
obtain a denominator that does not vanish at 0. If n > u, Cuyt showed that a sub-
sequence of {[m /] };'le converges locally uniformly (that is, uniformly in compact
sets) away from the zero set of a certain polynomial of degree at most x.

We shall show that in the case where y = n the full sequence {[m/n]} converges
away from a certain (k — 1)-dimensional analytic set, and moreover, the full
sequence need not converge locally uniformly in a neighbourhood of any point
of the analytic set. Unlike the result in [9], we do not need to assume that
[m/n](z) is analytic at 0. Our result is largely an application of the classical one vari-
able de Montessus theorem and the crucial projection property of the homoge-
neous Padé approximant: This property involves the “‘slice functions”

Al =f(A2), z€C,A= (A, N, ..., A) € CA{0}. (9)
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It obviously suffices to consider A with

Al =1, (10)
as scaling factors can be absorbed into the variable z. If [m/n](z) denotes the (m, n)
homogeneous Pade approximant to f, and [m/n];, (z) denotes the ordinary one

variable Padé approximant to fy(z), then the projection property is the following
identity:

[m/n](Az) = [m/n];(2). (11)

This is easily deduced from (5), (6) because z™" factors out from both P and Q. The
projection property was studied in detail in [4].

Since the univariate de Montessus theorem applies to balls centre 0, we need the
domain B of our f(z) to be such that for each A, {z : Az € B} is a ball centre 0. We
shall use positive homogeneous functions (cf. [12]) to define such regions:

Definition 1
We say that a continuous function p : C¥ — [0, 00) is a positive homogeneous func-
tion if

(@) p(z) >0,z 0;p(0) = 0;
(i) p(uz) = |ulp(z),Yu € C ,z € CF.

Given r € (0, 00}, we define the p-ball, radius r, to be

Blp;r) :=={z € C~: p(z) < r}. (12)

As an example, any norm on C¥ is a positive homogeneous function. Thus the
usual Euclidean ball centre 0, radius r, is of the above form. It is only slightly
less obvious that any polydisc centre 0 is also of the above form. If r; > 0,
1 £j <k, and we choose

p(z) := pl(z1, 23, ...2) = max{|z|/r; : 1 <j <k},
then
{z:lz] <r: 1<j<k}=B(pl).
Note that for fixed A, and any p as above,
Az € B(p;r)<=z| < r/p(A).

So the p-balls have the desired property of being projected onto balls when we take
homogeneous coordinates. We shall use the notation

By:i={z:]z| < r/p(\)} (13)

for this projected ball, once we have fixed p and r.
To avoid the complexities of meromorphic functions of several variables, we
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shall assume that our function has the form

g(z)
==, € B(p;r), 14
f(z) S@) - (p;1) (14)
where g(z) is analytic in B(p;r) and S(z) is a polynomial of degree n (so has the
form (8) with 4 = n) and

S(0) #0; s,(z) not identically zero. (15)

Note that then the set of singularities of f is contained in the zero set S of S. The
ordinary one variable de Montessus theorem for {[m / n]} is only applicable to f; if -
it has poles of total multiplicity #. Accordingly we have to distinguish

A={Xe C* . ||IA|l =1 and f; has less than » poles in By} (16)

This is “thin” in C*, as it has at most (k — 2) degrees of (complex) freedom: If we
write

S(Az) =D 5N, (17)
j=0

then A is contained in the analytic set {A : ||| = 1 and s;(X) = 0}. It is hardly sur-
prising that we cannot hope for convergence on the set S of singularities of f, but it
is more surprising that we can neither in general hope for convergence on the ana-
Iytic set

Ey:={Xz:ze€C,Ae A} (18)

It is unfortunate that A is never empty and so E, always contains 0. Thus we cannot
in general hope for uniform convergence of the approximants near 0, as we shall see
in example 4 below.

Note that for unimodular z € C and AeCF with ||A]|=1, we have
Jun(z) = fo(uz), so uX gives rise to the same complex line {Az: z € C} as does A.
However, this superfluity in the definition of A does not affect our results or proofs.

Following is our main result:

Theorem 2

Let p be a positive homogeneous function and let B(p;r) (0 < r < o0) be the p-ball
radius r. Let f be of the form (14), where S is a polynomial of degree #, satisfying
(15) and with zero set S.

(a) For z € B(p;r)\(EAUS), we have
lim [m/n)(z) = f(z). (19)

m—co

Moreover, if K is a compact subset of B(p;r)\(Ey, US), we have

limsupr— [m/n]HZ:'EK) <1 (20)
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Moreover, given 0 < s < r;e > 0 and a compact subset L of the unit ball of C*
that does not intersect A, we have

1/m
I - Az) | <1 21
msup| max ?f}fw‘f [m/n]|(Az) (21)
ISA7)| = ¢

(b) If Lis as above, and for each A € L, the denominator Q,, x(z) in [m/n], (z) is
normalized to be monic of degree n, we have for each compact set K C C

2

1/m
lim sup (r;\lgz(HQm,A(z) — S(A2)/s5(N) HLN(K)) <1. (22)

m—o0

Moreover, we can order the zeros z;,,(A) of Q,,(z) and the zeros z;(\) of
S(Az) so that

1/m
lim sup (TSLX‘ZJ””(A) - zj()\)o <1 (23)

m—00
and each zero of S(Az) attracts zeros of Q,, »(z) according to its multiplicity.

In the case when r = 0o, so that f is defined in CF, we can improve the rate of
convergence:

Theorem 3
Assume that r = oo in theorem 1. Then all the assertions in theorem 1 of the form

1/m

limsup[ /" <1

m—0o0
can be replaced by
lim [ Y™ = 0.

m—00

As we mentioned earlier, we cannot hope for locally uniform convergence of
[m/n] on the set E,:

Example 4
We need not have uniform convergence of {[m/n]},,_; in any neighbourhood of
any point of E,.

We show this for k = 2 and n = 1. Let % be an entire function, and

2y — 21

f(z1,22) = h(zy) + h(z3) + o1

We note that if X = (A, \;) and [|A|| = 1, then it is easy to see that £, has poles of
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total multiplicity 1 unless A\; = X, or A\; =0, for

A2) = h(Mz) + h(\2) + Z()\)lzz%)il)
So
- {ew(\%’%>’9 € [0’2”]} u{e”(0,1),6 € 0,2]}.
Then also

Ey={(z,z) : 2z C} U{(0,2) : z € C}.
If first A; = X,, then
(2) = 2h(M2)
and if A; = 0, then
f,\(Z) = h(AzZ) + h(O) - )\22.

Thus the {[m/1]} Padé sequence to f will not converge locally uniformly in any
neighbourhood of any point of E, provided the ordinary {[m/1],} Padé approxi-
mants to 4 do not converge locally uniformly in any neighbourhood of any point
of C. (The first two coefficients in the second case do not affect this property.)
There are many well known examples of such entire 4, going back at least to

Perron [15]. For those readers unfamiliar with these constructions, we sketch the
details: If

h(z) = Zhjzj
j=0

then for those m such that 4, # 0,

m—1 de

) hz
_ oo Tme
m/1],(2) Xojh T/l

Thus [m/1],(z) has a pole at z = h,,/hy,, ;. Now if {£};2, is a sequence of non-zero
complex numbers that are dense in C and are such that each point is repeated infi-
nitely often in the sequence, then we can choose a rapidly increasing sequence of
positive numbers {m;};2; such that for m = m;, we have h,/h,., = ¢ so that
[m/1], has a pole at £;. We can even allow this while ensuring that the coefficients
hy, of h approach 0 arbitrarily fast as m — 6. Then for £ € {§; : j = 1}, we have
that ¢ is a pole of [m/1], for infinitely many m, so

lim sup|frm/1],(€) | = oo.

As {£;}72, is dense, we have the desired result. (We note that it is possible to have
divergence to oo of {[m/1],} on a set of Hausdorff logarithmic dimension 1 and
also positive logarithmic capacity — see [13].)
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Remarks

(I) Note that on each complex line {Az:z € C }, the projected approximants
[m/n);, (z) to fi(z) converge a.e. with respect to planar Lebesgue measure.
(In fact one can say much more: they converge outside a set of Hausdorff
dimension 0 and logarithmic dimension at most 1.) It follows that [m/n|(z)
converges a.c.with respect to 2k-dimensional Lebesgue measure on B(p;r) as
m — oco. More generally, this holds for the columns {[m/p]}, _, provided
p = n.

(II) Buslaev et al. [3] showed that if / is meromorphic in C with poles of total multi-
plicity p, then for n > p, a subsequence of {[m/n],},._, converges locally uni-
formly to 4 away from the poles of 4. It follows that under the hypotheses of
our theorem 3, once we have fixed X, a subsequence of {[m/nl; (z)}._; con-
verges uniformly in compact subsets of C omitting poles of fy(z). This raises
the question of whether a subsequence of {[m/n](z)},._,exists that converges
pointwise throughout E, (and hence Ck) away from singularities of f. That
is, we want the subsequence in the Buslaev-Goncar-Suetin result to be indepen-
dent of A. This seems unlikely, but is worth further investigation.

(III) We have remarked that E, is never empty, and hence we cannot in general
guarantee convergence of {[m/n]}, _, in a neighbourhood of 0, without refer-
ring to properties of the one variable Padé approximants for the slice functions
/. To see that E, is never empty, note that A € A if S(Az) has degree < n, that
is, if s;,(A) = 0 (recall the representations (8) and (17)). Since

sn(Az) = 2"5,(N),

we see that s,(A) is a homogeneous polynomial of degree n in A. Hence it has
zeros A on the unit ball and in fact its zero set on that unit ball is a non-empty
analytic set (the reader to whom this is unfamiliar should examine the case
k=2).

We prove the theorems in section 2.

2. Proofs

Throughout we assume that f satisfies the hypotheses of theorem 1. We begin
with:

Proof of (19)

Now if z € B(p;r)\(E, US), then we can write z = Az for some vector X of unit
norm, where f3 has poles of total multiplicity # in B,. Then the projection property
(11) and the classical univariate de Montessus theorem give

lim [m/n](z) = lim [m/n];,(2) = fa(2) = f(Az) = f(2). O

The classical de Montessus theorem also gives uniform and geometric
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convergence in B) and this seems the natural starting point to prove the uniformity
in theorem 2. We tried this approach, but could not get it to work: the standard
tools such as Goncar’s Lemma [10], which allow passage from convergence in
one dimensional Hausdorff measure to uniform convergence, are inapplicable.
So we follow the standard proofs of the de Montessus theorem and establish uni-
formity in A.
We break the proof into several steps.
Step 1: Continuity in A
Fix a unit vector Ay ¢ A. Then f (z) has n poles in By, = {z: |z| <r/p(X)} and -

hence S(Agz) has zeros of total multiplicity # there. Recall from (17) that we can
write for A ¢ A,

n

S(z) = s;(N) [[(z = z(\).

=1
Choose o < 7 < w < r such that
o

po)’

Let 6 > 0. We choose € > 0 so small that for || — Ag|| < &, we have the following
four properties:

lzi(Ao)| < 1<j<n

(I) deg (S(Az)) =n (as a polynomial in z).

(1)
S <oy <pmr TSI 29
) <7 =

(IIDIf z;( o) is a zero of S(Agz) of multiplicity k, then S(Az) has zeros of total mul-
tiplicity & inside the circle centre z;(Ay), radius 6.
(IV)For z = z;(A), 1 <j <n,
’g()\z)‘ = C, (26)
where C # C(A).

We indicate briefly how to choose ¢. It is easy to see that (I) and (II) follow from
(IIT) and continuity of p (provided § is small enough). Now the principle of the
argument shows that if n > 0 is small enough, and z;(\) is a zero of S(Ayz) of mul-
tiplicity k&,

d
27 -z (o)l=n S(Xo?)

Continuity of S(Ag) and its derivative allow us to preserve this relation for A close
to Ag. So we have (III). To see (IV), we note that our hypothesis that
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,(2) = g(X2)/S(Az) has n poles forces g(Agz) # 0,z = zi(Xo), 1 <j < n, s0 we
in choose C > 0 such that

‘g()‘OZ)‘ > 2C’ z= Zj(AO)a 1 <jsn

6 in (III) is small enough, then this last inequality and the continuity of g allow us
- deduce (26).

’ep 2: An estimate on /' — [m/n] for |A — Ao < ¢
‘e set R:=7/p(Ag) (recall o < 7 < w < r and (24)). Let us set

I (2) = [Sx(AOmr — Puun)] (2) = [820ma — SaPmr] (2),
here we write for the given A
m/n](Az) = [m/n] 7, (z) = (P /Qma)(2)-

ere the numerator and denominator are normalized so that QO (z) is a polyno-
ial in z of degree at most n, with

0ma®)= [ (-z) IT (1=z/z0). (27)

|z;(A)] < 2R |z;(A)|>2R
oreover, Sy(z) = S(Az); gx(z) = g(Az). Note that then

rlfllilngm’)‘(t)‘ < (3max{1,R})".

nce hy, »(z)/2""*! is analytic in |z| < R, we have for fixed / > 0,
A y

[ mtn+l
W 1 hu (1) (d\' ]z dr
fma2) = 2mi /|t:R il \dz t—z

_1 / (©0n2)(0) (d\' [
T 2w =R frtntl dz t—z '

ere using (25), we see that

max |g,(1)| = max|g(Ar)| < max |g(z)| =: C,
|fI=R lt|=R

z€B(pw)
were Cy # Ci(A). We deduce that for |z| < o/p(Xg) = (0/7)R,
[ @)] < Calo/7)", (28)

were C) # Cy(A, m, z). (Recall that R is independent of X.)

ep 3: The estimate (28) simplified at zeros of S
woughout this step, we fix a zero z;(X) of Sy(z) of order & say. Since (SxP ) (2)
s a zero of order k at this point, (28) gives for / =0,1,2...,k — 1

)

(€32n )" (51()] < Cafo/r)". (29)
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(Recall that by choice ‘Zj()‘)l < a/p(Ag).) For I =0, this and (26) give
|0ua(5(0)| < [€2/Cl/7)™

Leibniz’s formula gives

-1
0 (5N)ea(z (V) = (8x@ma) ” (5(3) - Z( )G ).

—

Applying (29), (26) to this and induction on /, we obtain for / =0,1,2, ...,k — 1,

005 (5)| < Cs(o/r)" (30)

where C; # C3(\, m,j) (recall that & is at most #). We also need to use that g, and
its derivatives up to a fixed order are uniformly bounded in A. We distinguished
above between zeros of Q,, (z) inside and outside |z| < 2R. We now fix a small
6 > 0 and distinguish three types of zeros. Write

Omrn@= ] (GE-z22) JI GE-z) I (-zzM>)

(V<R (V2R z(A>2R
W)z (V)] <8 2N -z (N[>
= (UpnVW)(2).

We omit the dependence on m, X in ¥/, W. The crucial thing is that for |z — z;(\)]
< 6/2, we have

VW|(z) 2 Cs,
where Cy # C4(A, m,j) (but depends on §). We also have obvious upper bounds on

VW and its derivatives. We can strip off the factors VW from the estimate (30)

using Leibniz’s formula and induction on /, exactly as we stripped off g, from
(29). We then obtain for / =0,1,2,..,k — 1,

UL ()] < Cslo/r)™ (1)

Here Cs # Cs(X, m, j). Since U, »(z) is monic, we see that for m > my, it has degree
at least k, where my is independent of X, m, j. (For if it has degree /, its /th derivative
is identically /!, which does not decay to 0. We obtain a contradiction if / < k —1.)
As such an estimate holds for each zero of S(Az) we deduce that U, »(z) has degree
exactly k. Taylor series expansion at z;(X) gives

k=1 770 7
Una(z) — (z — zj()\))k = Z%A—([l](—)) (z - zj()\))l.

=0

(Note that the left-hand side has degree at most £ — 1.) Applying (31) in this last
estimate gives for each s > 0,

max|U,A(z) — (z — Zj()\))kl < Colo/)™ (32)

|zl <5

Here Cg # Cg(X, m,j) (but depends on s).
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Step 4: Proof of theorem 2(b)

Note first that any compact subset L of the unit ball of C* that does not intersect A
can be covered by finitely many neighbourhoods of the form {X : [|A = Xg|| < e}
From (32) we deduce (23) and also our proof above showed that any § neighbour-
hood of any zero of S(Az) attracts zeros of Q,, »(z) according to its multiplicity.
Finally, multiplying the estimate (32) over each zero of S(Az) easily yields (22):
recall that s3,(\) is the leading coefficient of S(Az) expressed as a polynomial in z.

Step 5: Proof of (21) of theorem 2(a)

Note that for large m, the normalization (27) adopted in step 2 above and theorem
2(b) actually ensure that Q,, »(z) will be monic. We apply (28) with / = 0 to deduce
that for |z| < 0/p(Ag) (and hence for |z| < o(/p(A) if 01 < 0)

|f = [m/n]|(Az) < Colo/7)"/|SA(2)Qma(2)| < Ci(o/T)"

provided m = my and for a fixed ¢, |S(Az) /sf,(A)‘ > e. Here we are applying (22).

Of course, C; # C3(A\,m, z).

Step 6: Proof of (20) of theorem 2(a)

Suppose that K is a compact subset of B(p; r) not intersecting S or E,. Recall that
E,is non-empty (see remark (IIT) in section I), so we cannot have 0 € K. Then for
each zy € K, we can write gy = Agzy where zy # 0, S(Agzg) # 0 and deg(S(Ngz))
= n. Our proof above shows that we have uniform and geometric convergence
for |z| < o/p(A) and || A — X[ < e. (Formally, we showed this for |z| < o/p(Ng)
but this does not make a difference as we can make o slightly larger.) It is not dif-
ficult to see that if i is small enough and as z, # 0, then for ||z — zy|| < 1, we have
z = Az, where ||A — Xg|| < . So we have uniform and geometric convergence in a
neighbourhood of z;. As K can be covered by finitely many such neighbourhoods,
we have (20). O

Proof of theorem 3
It is clear that if r = co, we can choose o/7 arbitrarily small in the above
arguments. ]
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