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Abstract — Over the past few years there is a clear
trend towards design exploration using mathemati-
cal modelling. The data sets generated for this pur-
pose may be huge and/or expensive. We describe
how rational interpolation can be useful in this re-
spect. In our exploration we focus on the univariate
case, although all models can easily be generalized
to a multivariate setting when the multivariate data
sets are tensor (grid) structured. The example we
include models the impedance of a pyramidal sinu-
ous antenna.

1 PROBLEM STATEMENT

1.1 Introduction

Log-periodic antennas have recently garnered re-
newed research interest since they found applica-
tion as wideband reflector antenna feeds. The ad-
dition of a ground plane ensures a stable phase
center in addition to the relatively frequency sta-
ble uni-directional (through relaxation of the self-
complimentary constraint) radiation pattern [1, 2,
3]. Simulation of these structures through full-
wave computational electromagnetic (CEM) solvers
is normally computationally very expensive due to
the inherent multi-scale features of the antenna and
large frequency bandwidth.

In this paper we present a new rational interpo-
lation scheme to significantly accelerate the input
impedance modeling of non-self-complementary
log-periodic antennas, specifically the pyramidal
sinuous antenna of [3]. Multi-fidelity data is ob-
tained by simulation of a truncated sinuous an-
tenna, used as the low fidelity (LF) data, along with
a similar full bandwidth antenna, used as the high
fidelity (HF) data. Since the mid-band behavior
of the impedance is expected to follow a roughly
log-periodic frequency dependence, we are only in-
terested in accurate models of the impedance at the
band-edges. Since the truncated antenna becomes
electrically smaller and better scaled due to the re-
duced bandwidth of the problem, the LF data are
obtained from cheaper CEM simulation. A multi-
fidelity rational interpolation scheme interpolates
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the frequency variation of sparsely sampled HF (full
antenna) data from the more densely sampled LF
data (truncated antenna).

1.2 Antenna description

The antenna used here is a pyramidal sinuous an-
tenna as described in [3], and shown in Figure 1.

Figure 1: Pyramidal sinuous antenna.

Design parameters are τ , δ, α and θ, where
τ = rn/rn+1 is the growth rate ratio. Furthermore,
the minimum and maximum values of the projected
radius r1 and rN (where N is the total number of
sinuous cells) are determined from the bandwidth
as r1 = λH/[8(α + δ)] and rN = 1.2λL/[4(α + δ)]
where λH and λL are the respective wavelengths at
the high and low cutoff frequencies. We consider
an antenna with an approximately 3:1 bandwidth
(between 350 and 1050 MHz) as the HF model and
a truncated antenna of 2:1 bandwidth (between 350
and 700 MHz) as the LF model. The design param-
eters in our example equal τ = 0.7825, α = 22.5◦,
δ = 13.5◦, θ = 53◦ and h = 5 mm. Note that, for
the LF model, we only simulate the first half of the
bandwidth (up to 525 MHz) in order to ignore the
unwanted high frequency edge effect which is not
physically related to the HF antenna model.

A comparison of the computational requirements
for the two models is given in Table 1, with all sim-
ulations performed using the method of moments
code FEKO. Even for this modest bandwidth de-

Model Frequency Mesh CPU time
(MHz) (#triangles) (hours)

Fine 350 - 1050 4869 5.819
Coarse 350 - 700 3477 1.217

Table 1: Comparison of fine and coarse models.

sign a significant speed-up by a factor of 5 is ob-



served for the LF model evaluation. When the
bandwidth of the HF model is increased, however,
this improvement factor rapidly grows since the
number of CEM unknowns in the HF model scales
with bandwidth squared, while the LF model sim-
ulation time remains constant.

2 RATIONAL MODELLING SCHEME

2.1 Rational interpolation of HF data

Given data fi = f(xi) at distinct points xi ∈ [a, b],
a rational function rn,m(x) of degree n in the nu-
merator and m in the denominator that interpo-
lates these data is computed from

p(x) =

n∑
i=0

aix
i

q(x) =

m∑
i=0

bix
i

(fq − p)(xi) = 0, i = 0, . . . , n+m. (1)

Since different solutions p1, q1 and p2, q2 of (1) are
equivalent, meaning that p1(x)q2(x) = q1(x)p2(x),
the rational interpolant rn,m(x) is defined as the
irreducible form of p(x)/q(x) with p, q satisfying
(1). Its representation can be normalized in dif-
ferent ways: one can prefer a monic numerator,
or monic denominator or any other normalization.
This choice is of no importance.

An advantage of working with rational functions
is their ability to model steep changes and singular-
ities. A drawback of the use of rational functions is
of course the fact that they may exhibit undesirable
poles. Moreover, when a zero of the denominator
polynomial q(x) occurs at an interpolation point
xi, then the interpolation condition at xi may not
be met, since the equation (fq)(xi) = p(xi) im-
plies that the same xi is also a zero of the numer-
ator. Hence condition (1) is satisfied whatever the
value of fi is. Such an interpolation point is called
unattainable.

Our aim is to develop a model that is free from
undesirable poles and unattainable interpolation
points. To this end we introduce barycentric ra-
tional interpolation.

2.2 Barycentric interpolation of HF data

Let `i(x) =
∏n

j=0,j 6=i(x−xj) = `(x)/(x−xi) where

`(x) =
∏n

j=0(x− xj) and let

rn,w0,...,wn
(x) =

∑n
i=0 wifi`i(x)∑n
i=0 wi`i(x)

=

∑n
i=0 wifi/(x− xi)∑n
i=0 wi/(x− xi)

.

Then rn,w0,...,wn
(x) interpolates at the points

xi, i = 0, . . . , n for whatever wi. While in the previ-
ous section both numerator and denominator were
determined from n+m+1 interpolation conditions,
here the denominator is fixed by the location of the
xi and the numerator guarantees the interpolation
property. So the number of interpolation conditions
is reduced to n+ 1.

A necessary condition for rn,w0,...,wn(x) to be
polefree is wiwi+1 < 0 [4]. For instance, it can
be proven that the choice wi = (−1)i guarantees a
barycentric rational interpolant rn,w0,...,wn

(x) free
of real poles. As a consequence no interpolation
points can be unattainable. An example of this ap-
plied to the impedance Z of the antenna explained
in Section 1, is shown in Figure 2.

Figure 2: Barycentric interpolation applied to the real
and imaginary parts of the impedance Z (circled dots:
interpolation points, blue dashed line: validation val-
ues, black line: rn,w0,...,wn(x) with wi = (−1)i).

A sufficient condition for weights wi = (−1)iωi,
with ωi > 0 and a < x0 < . . . < xn < b, to guaran-
tee a denominator free of poles on the real line [5],
is given by

ωj−1

b− xj−1
<

ωj

b− xj
, j = 1, . . . , n

ωj

xj − a
>

ωj+1

xj+1 − a
, j = 0, . . . , n− 1.

(2)

Remains to choose the wi such that inbetween the
high fidelity (HF) data that are being interpolated,
the rational function follows a trend indicated by
some low fidelity (LF) data.



2.3 Barycentric interpolation of multi-
fidelity data

In order to distinguish between the HF and the LF
data points, we denote the former by xHi and the
latter by xLi . We also denote the values given at the
points xHi by fHi and those given at xLi by fLi . The
number of HF points is denoted by n+ 1 and that
of LF points by m + 1, so n and m get a different
meaning compared to (1). The rational interpolant
we are interested in now is the one given by

rn,w0,...,wn
(x) =

∑n
i=0 wif

H
i /(x− xHi )∑n

i=0 wi/(x− xHi )
(3)

where the wi satisfying (2) are given by

arg min
w0,...,wn

m∑
j=0

∣∣fLj − rn,w0,...,wn(xLj )
∣∣2 . (4)

Condition (4) is a nonlinear optimization problem,
which can be replaced by the linearized

arg min
w0,...,wn

m∑
j=0

∣∣∣∣∣fLj
n∑

i=0

wi/(x
L
j − xHi )−

n∑
i=0

wif
H
i /(x

L
j − xHi )

∣∣∣∣∣
2

.

(5)

A similar approach, that however did not guarantee
a polefree model, was presented in [6]. Although
the formulas (3)-(4) or (3)-(5) express precisely
what we expect from the computed rational model,
the constraints (2) often restrict the search space
for the least squares problems so much that the
w0, . . . , wn resulting from the optimization problem
do not deliver a really good model.

Figure 3 illustrates (3), with the constraints (2)
and (5) applied.

So in practice, the method does not meet our
expectations. This has encouraged us to look for
yet another improvement.

2.4 Blended rational models for multi-
fidelity data

We stick to the concept of the barycentric form
which we want polefree, but preferably with a more
relaxed condition than (2) on the weights in the
expression. Therefore we turn our attention to
blended models. Already the Lagrange form of a
polynomial pn(x) of degree n, interpolating data fi
at points xi for i = 0, . . . , n,

pn(x) =

n∑
i=0

wifi`i(x), wi = 1/

n∏
j=0,j 6=i

(xi − xj),

Figure 3: Interpolation of multi-fidelity data from (3)
and (5) with (2) (circled dots: HF interpolation points,
blue dots: LF data, blue dashed line: validation values,
black line: rational model).

can be considered as a simple blended model: the
local interpolants fi at xi are blended together into
a global interpolant by the blending functions `i(x)
which by the choice of appropriate weights evaluate
to 1 at the xi. We explain how this idea can be
applied to our problem statement.

Let the xHi be indexed such that xH0 < . . . < xHn .
Then we can first construct local models pi(x) ex-
hibiting the trend indicated by the LF data in the
interval [xHi , x

H
i+1]. By doing this we do not put

the whole responsibility for the trend behaviour
in the weights wi. Afterwards these local mod-
els are then blended together by suitable blending
functions, such as the quadratic B-splines Bi−1,2(x)
with support [xHi−1, x

H
i+2] and satisfying

n−1∑
i=0

Bi−1,2(x) = 1, xH1 ≤ x ≤ xHn−1

Bi−1,2(xHi ) = 1/2 = Bi−1,2(xHi+1)

Bi−1,2(xHi−1) = 0 = Bi−1,2(xHi+2)

at the HF interpolation points. This leads us to the
rational expression, now having a piecewise polyno-
mial numerator and denominator, of the form

Rn,w0,...,wn(x) =

∑n−1
i=0 wipi(x)Bi−1,2(x)∑n−1

i=0 wiBi−1,2(x)
. (6)

Since the functions Bi−1,2(x) are positive, it is suf-
ficient to impose that

wi > 0, i = 0, . . . , n (7)



to make Rn,w0,...,wn
(x) polefree. For the local mod-

els pi(x) we use a Bézier curve, as the LF data are
collected at equidistant points xLi,0 < . . . < xLi,mi

in

the interval [xHi , x
H
i+1], with

∑n−1
i=0 (mi−1) = m+1

and where we put xLi,0 = xHi , x
L
i,mi

= xHi+1:

pi(x) =

mi∑
j=0

fLijβij(z), (8)

fLij = f
(
xLi,j
)
, z =

x− xHi
xHi+1 − xHi

,

βij(z) =

(
mi

j

)
zj(1− z)mi−j .

The local polynomial model pi(x) defined on the
interval [xHi , x

H
i+1], has the property that it inter-

polates in xLi,0 = xHi and xLi,mi
= xHi+1 and that

it follows the trend given by the so-called control
points xLi,1 < . . . < xLi,mi−1 inbetween. The weights
in (6) are the solution of the least squares problem

arg min
w0,...,wn

n−1∑
i=0

mi∑
j=0

∣∣fLi,j −Rn,w0,...,wn(xLi,j)
∣∣2 (9)

or

arg min
w0,...,wn

n−1∑
i=0

mi∑
j=0

∣∣∣∣∣fLij
n−1∑
k=0

wkBk−1,2(xLi,j)−

n−1∑
k=0

wkpk(xLi,j)Bk−1,2(xLi,j)

∣∣∣∣∣
2

.

(10)

The sums for j running from 0 to mi are actually
sums for j from 1 to mi − 1 as in the endpoints of
each interval the function interpolates.

Much to our satisfaction the model (6) with (7)-
(8) and (9) or (10) gives accurate results, as il-
lustrated in Figure 4. In an upcoming paper we
present more details and explain how the new tech-
nique can be generalized to the multivariate case.
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