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Abstract

This paper describes the design of sinuous antenna reflector feeds using blended
rational interpolation. The blended rational interpolation method is developed
to interpolate a sparse set of high-fidelity (HF) data while following the trends
of a denser set of low-fidelity (LF) data. The HF data are obtained by full-wave
computational electromagnetics simulations of the input impedance of a pyra-
midal sinuous antenna above a ground plane, while the LF data are obtained, at
a significantly reduced computational cost, through simulations of a truncated
version of the same antenna. Comparisons with other interpolation schemes,
both for HF as well as for multifidelity data sets, are presented. It is shown
that the blended rational interpolation scheme presented herein yields improved
accuracy in most cases. A design example is also presented where a global model
of the maximum input reflection coefficient over frequency is built over the
design space and thus used to identify the region of acceptable performance.
Comparisons with a validation set of HF data resulted in similar results, with the
blended rational interpolation model requiring significantly shorter computer
simulation time.
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1 INTRODUCTION

Very wide bandwidth and low loss feed antennas for reflector systems have recently found application in modern radio
telescopes such as the Allen telescope array1 and the Square Kilometre Array (SKA).2 A popular class of feed antennas for
such systems uses log-periodic geometries to achieve (quasi) frequency independent performance, while using inclined
metallic surfaces over ground planes3,4 to provide a unidirectional beam with a stable phase centre. These antennas relax
the classical constraint of a self-complementary geometry—which is known to provide a near constant input impedance
and bidirectional radiation pattern5—to achieve the unidirectional radiation characteristics without the use of absorbing
cavities (which result in a 3-dB loss). Recently, a sinuous type antenna was demonstrated6 to be a possible candidate as
feed for the SKA reflector system.7 However, due to the inherent wide bandwidth and multiscale properties of these types
of antennas, the simulation time with full-wave computational electromagnetic (CEM) tools is often prohibitively slow
for design and analysis tasks requiring a large amount of evaluations of the structure for a variety of frequencies and
geometric parameters. To formally optimise a design of such a structure, one requires a significantly faster model of the
responses of interest than that provided by full-wave CEM simulations.
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In this paper, we present a modelling strategy tailored specifically to the design of non-self-complementary log-periodic
antennas. The idea relies on the availability of a faster low-fidelity (LF) model of the actual high-fidelity (HF) simulation
model. Given the log-periodic nature of the antenna geometry, it is expected that the performance will be relatively smooth
in the centre of the band, while degradation of both the impedance as well as radiation pattern performance is expected
near the band edges due to mainly the truncation of the periodic structure. An LF model can thus be constructed to
mimic the performance of the actual HF model only near the band edges—the regions where performance degradation is
expected. Practically, this means that instead of simulating the full bandwidth CEM model, a narrower bandwidth model
with the same geometric parameters, and truncated to have the same lower or upper operating frequency limit, can be
simulated instead. It is expected that the performance around the band edges of the LF and HF models should be similar,
and also exhibit similar variations due to geometric changes.

The LF models constructed in this manner will still require a significant time to simulate and will exhibit some dif-
ferences from the HF models. We therefore use a new multifidelity rational interpolation scheme to be able to smoothly
and accurately model the input impedance of the antenna on a parameter space of interest. The rational model is con-
structed such that it interpolates whatever HF data are available, while following the trends of the LF data which are,
by construction, more finely sampled than the HF data. To this end, we start with a classical barycentric rational func-
tion description, which allows for well-defined constraints on the weights to allow a pole-free interpolation function.
This model is extended to approximate the LF data in a least squares sense, while still interpolating all the HF data.
The simple Lagrange form of the rational function leads to weight constraints which, in many cases, are too restrictive
to allow the interpolant to follow the LF trends between the interpolating HF data points. We therefore suggest here a
new blended rational interpolation strategy, which uses Bernstein polynomials as local approximations of the LF data, to
remove the responsibility of following the LF trend behaviour from the weights. Local models are blended together glob-
ally by B-spline functions, the supports of which are restricted to the region of the local models. In this way, we are able to
define a barycentric rational interpolation function with only a positive value constraint on the weights to ensure pole-free
behaviour. The basic idea was first described in a recent conference paper,8 where only one-dimensional real output data
were considered. Here, we expand the model to handle complex output data as well as higher dimensional input spaces.

The paper is organised to first describe the antenna problem at hand in terms of the antenna geometry as well as the
performance metrics of interest. Thereafter, the new blended rational interpolation scheme is described and illustrated
using an example sinuous antenna. Then, the accuracy of the interpolation model is tested for a wide variety of examples
against a range of other HF and multifidelity modelling schemes, where it is found that the method suggested here pro-
vides the most accurate models in most cases. Finally a design example is presented to show the utility of the method for
a practical antenna design problem.

2 ANTENNA DESCRIPTION

The antenna problem of interest here involves a conductor backed pyramidal sinuous antenna used as a reflector antenna
feed. Specific performance metrics of interest, as well as a geometrical description of the antenna system, is provided
in this section. Furthermore, a discussion on the slow simulation time—and the subsequent difficulty in designing the
antenna—is provided, along with a description and justification of a faster, but inevitably less accurate, LF antenna model.
This model is then used in the rest of the paper to estimate the actual (or HF) reflection response of the antenna over wide
frequency and geometrical parameter ranges.

2.1 Performance metrics
The design application presented here is a feed antenna for the reflector system of the SKA radio telescope.7 Design of
reflector feed antennas typically involves finding an antenna geometry that results in a primary radiation pattern which
illuminates the reflector so as to maximise the gain G of the system, while simultaneously controlling the energy spilling
past the reflector system which results in radiometric noise entering the system and a subsequent increase in noise tem-
perature T. In addition, the antenna impedance should be matched to the driving source or load. Designing an antenna
to operate optimally over a wide frequency bandwidth thus requires a large number of goal function evaluations (CEM
simulations) to adequately explore the frequency variations and design space. We therefore seek fast and accurate models
of the design goals to make this problem tractable.
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The radiation pattern response should maximise the so-called receiving sensitivity (proportional to G∕T used in commu-
nication system antennas), which is the ratio of effective aperture area and the total system noise Ae∕Tsys. The calculation
of this performance metric has been discussed by many workers, where comprehensive treatments can be found in pre-
vious works.9-11 Some recent papers12,13 present accelerated methods for the calculation of the system temperature, and
the methods discussed therein will be used in this work for all the receiving sensitivity calculations.

At the same time, the reflection coefficient magnitude response should, as usual, be below some specified value. Ratio-
nal function interpolation models of input impedance as a function of frequency are widely used because of their physical
relevance to circuit models and electromagnetic wave phenomena.14 By extension, rational functions may also be well
suited to interpolate variations over geometrical parameters of antenna structures since, numerically, they can capture
steep variations in the response, and physically, antenna geometry variations often relate to frequency variations through
the electrical size variations of the structure (eg, the length of a thin wire dipole).

2.2 Antenna geometry
Figure 1 shows the geometry of the specific sinuous antenna considered here, which was previously presented in other
studies,6,8,15 and repeated here for clarity. The geometry is parametrised with the angles 𝜃, 𝛼, and 𝛿, the growth rate 𝜏 =
dn∕dn + 1, as well as the height above the ground plane h. The operating bandwidth of the antenna is controlled by the
truncations at d1 = 𝜆h∕8(𝛿 + 𝛼) and dN = 1.2𝜆l∕4(𝛿 + 𝛼) , where N is the total number of log-periodic cells, and
𝜆h and 𝜆l indicate the wavelength corresponding to the maximum and the minimum operating frequencies respectively.
The ground plane size is selected equal to the maximum projected diameter of the antenna, and the dual polarisation
simulation edge port detail is shown in Figure 2. During the design phase a differential edge port is preferred for the
simulations to simplify the geometry, and details on the design of a balanced wire feed can be found in Steenkamp et al,15

where comparisons between simulations and measurements are also provided.
In previous work,6,15 the antenna was designed by evaluating a relatively coarse grid of frequencies and design param-

eters, and simply selecting the best available version from this limited set. The reason is due to the prohibitively slow
simulation times required for wide band versions of this antenna—in the order of several hours for 3 ∶ 1 bandwidth, and
several days for 6 ∶ 1 bandwidth on a typical workstation. This is due to the inherent wideband and multiscale nature of
the structure, which requires a large number of discretisation unknowns in the simulation. To speed-up the design pro-
cess, a lower fidelity (coarse) model was suggested in Cuyt et al,8 which is significantly faster to simulate, but still captures
the important variations in the antenna performance—although at an inevitably reduced accuracy. The following section
describes development of the LF model and provides some information on simulation times and accuracy.

FIGURE 1 Geometry and design parameters of the sinuous antenna, showing a side projection in the left panel, and a top projection of
one of the four petals in the right panel

FIGURE 2 Dual polarisation differential simulation feed detail. Ground plane not shown for clarity
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2.3 Fast LF antenna model
Consider the sinuous antenna, designed to operate over the [350, 1050]MHz bandwidth, with parameters 𝜏 = 0.7825, 𝛼 =
22.5◦, 𝛿 = 13.5◦, 𝜃 = 53◦ and h = 5mm. Two LF models are also constructed with the same geometrical parameters, but
with operating bandwidths of 2 ∶ 1 in [350, 700] and [525, 1050] MHz, termed the low band and the high band models,
respectively. The input reflection coefficient responses of all 3 models are shown in Figure 3. As with all (quasi) frequency
independent antennas, the performance degrades near the band edges due to truncation effects, while in the middle
of the operating band, a logarithmic periodic response is observed. By simulating narrower bandwidth antennas as LF
models, one can estimate the band edge performance of the actual HF antenna—which is exactly the region where the
performance is degraded and therefore where the design goal is actually specified. Notice in Figure 3 how the LF responses
closely resemble the HF response in the region of their respective band edges, ie, the low frequencies for the low band
LF model and the high frequencies for the high band model. The dashed lines indicate the edge effects of the LF models
which are ignored, since they do not represent anything relating to the HF model. In all our LF models, the antennas are
designed to operate over a 2 ∶ 1 bandwidth (with the same design parameters as the HF model), but only simulated over
the lower or upper half of the operating bandwidth for the low band and high band models respectively. An illustration
of the FEKO16 simulation models is shown in Figure 4, where the typical mesh is overlayed onto the physical structure.
For this example the mesh sizes and simulation times are reported in Table 1, where a 5-time speed-up is noticed for this
modest bandwidth example.

In this case, the speed-up is due mostly to the lower number of frequency samples required in the simulation, but, as
the HF design bandwidth increases, this speed-up factor increases exponentially since the LF models remains the same,
while the number of mesh cells in the HF models scales as bandwidth squared.

Unfortunately, even though a significant speed-up is observed for the LF models, the simulation times are still slow
when a large number of designs must be investigated. Also, and more importantly, the responses of the LF and HF models
are not identical, and may in fact show significant differences. A strategy is therefore sought to both correct and approxi-
mate the LF data, so that a fast and accurate model may be obtained for computationally expensive tasks such as design
optimisation and sensitivity studies. The following section describes the required modelling strategy.

FIGURE 3 Comparison between the (high-fidelity) HF and (low-fidelity) LF model reflection coefficients. The blue line is the low band
LF model, the red line the high band LF model, and the black line the HF model. Dashed lines indicate ignored edge effect regions in the
coarse model frequency bands

FIGURE 4 Comparison of the simulation meshes of the high-fidelity model (left), the low band low-fidelity (LF) model (centre) and the
high band LF model (right)
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TABLE 1 Comparison of high-fidelity (HF) and low-fidelity (LF) model
simulation metrics

HF LF low band LF high band

Operating band (MHz) [350, 1050] [350, 525] [787.5, 1050]
Mesh cells 3746 2909 3544
Frequency samples 36 16 11
CPU time (hours) 3.12 0.345 0.376

3 RATIONAL INTERPOLATION SCHEME

The development presented here follows that presented in Cuyt et al.8 For clarity, and for the sake of notation, some of
the basic concepts are repeated here. Emphasis is placed on the extensions to the previously presented method, namely,
interpolation of complex data over multidimensional parameter spaces. To facilitate the explanation of the mathematical
development, an example data set is generated from a sinuous antenna, with parameters 𝜏 = 0.7825, 𝛼 = 22.5◦, 𝛿 =
13.5◦, 𝜃 = 53◦ and h = 5mm. The low band LF model is used for this illustrative example which uses 5 HF interpolation
data points, 36 LF data points, and 351 HF validation data points equally spaced in [350, 525] MHz.

3.1 Barycentric rational interpolation
Given complex data fi = f(xi) at distinct real points xi ∈ [a, b], i = 0, … ,n, a rational function rn,w0,· · ·,wn(x) interpolating
f(x) at the points xi, may be constructed in the barycentric form

rn,w0,· · ·,wn(x) =
∑n

i=0 wi𝑓i𝓁i(x)∑n
i=0 wi𝓁i(x)

=
∑n

i=0 wi𝑓i∕(x − xi)∑n
i=0 wi∕(x − xi)

,

with 𝓁i(x) =
∏n

𝑗=0,𝑗≠i(x − x𝑗) = 𝓁(x)∕(x − xi) and 𝓁(x) =
∏n

𝑗=0(x − x𝑗). The denominator is fixed by the location of the
xi and the numerator guarantees the interpolation property rn,w0,· · ·,wn(xi) = 𝑓i, i = 0, · · ·,n, which holds for whatever wi.
The number of interpolation conditions is thus n + 1.

A necessary condition for rn,w0,· · ·,wn (x) to be pole-free on the real axis, is wiwi + 1 < 0.17 For instance, it can be proven
that the choice wi = (−1)i guarantees a barycentric rational interpolant rn,w0,· · ·,wn(x) free of real poles. As a consequence,
no interpolation points can be unattainable,18 meaning that the model effectively interpolates every interpolation point.

A sufficient condition for weights wi = (−1)i𝜔i, with 𝜔i > 0 and a < x0 < … < xn < b, to guarantee a denominator
free of poles on the real line,19 is given by

𝜔𝑗−1

b − x𝑗−1
<

𝜔𝑗

b − x𝑗
, 𝑗 = 1, · · ·,n

𝜔𝑗

x𝑗 − a
>

𝜔𝑗+1

x𝑗+1 − a
, 𝑗 = 0, · · ·,n − 1.

(1)

The interpolation model resulting from this strategy, where only the HF data are considered, is shown in Figure 5. It is
clear that the interpolant does not follow the validation data very closely away from the sampled data.

Since we also have (more densely sampled and equidistant between consecutive HF points) data available from the LF
model, we may use these to inform our selection of wi such that the interpolant follows the trend of the LF data in-between
the (sparse) HF data points which are still interpolated. We denote the m + 1 LF data points by xL

i and the n + 1 HF
points by xH

i . We also denote the values given at the points xH
i by 𝑓H

i and those given at xL
i by 𝑓 L

i . Note that 𝑓H
i at xH

i can
also be interpreted as a LF value at the same sample point. We incorporate the information provided by the LF data by
solving a multifidelity form of the barycentric rational interpolation problem given by

rn,w0,· · ·,wn(x) =
∑n

i=0 wi𝑓
H
i ∕(x − xH

i )∑n
i=0 wi∕(x − xH

i )
, (2)
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FIGURE 5 Barycentric rational interpolation of the input impedance as a function of frequency using only the high-fidelity (HF) data with
n + 1 = 5

FIGURE 6 Barycentric rational interpolation of the input impedance as a function of frequency using the high-fidelity (HF) and
low-fidelity (LF) data with n + 1 = 5 and m + 1 = 36

where the wi satisfying (1) are given by

arg min
w0,· · ·,wn

m∑
𝑗=0

|||𝑓 L
𝑗 − rn,w0,· · ·,wn (x

L
𝑗 )
|||2, (3)

with | · | denoting the modulus of a complex value.
Condition (3) is a nonlinear optimisation problem, which can be linearised as

arg min
w0,· · ·,wn

m∑
𝑗=0

|||||𝑓 L
𝑗

n∑
i=0

wi∕(xL
𝑗 − xH

i ) −
n∑

i=0
wi𝑓

H
i ∕(xL

𝑗 − xH
i )
|||||
2

. (4)

A similar approach that however did not guarantee a pole-free model was presented in Deschrijver et al.20 Although the
formulas (2) to (3) or (2) to (4) express precisely what we expect from the computed rational model, the constraints (1)
often restrict the search space for the least squares problems so much that the w0, … ,wn resulting from the optimisa-
tion problem do not deliver a really good model. This is illustrated in Figure 6, where one can notice the interpolant
failing to follow the LF data trends away from the HF interpolation points. So in practice, the method does not meet our
expectations. This has encouraged us to look for an improvement.
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3.2 Blended rational interpolation of multifidelity data
We stick to the concept of the barycentric form which we want pole-free, but preferably with a more relaxed condition
than (1) on the weights in the expression. Therefore, we turn our attention to blended models. Already the Lagrange form
of a polynomial pn(x) of degree n, interpolating data fi at points xi for i = 0, … ,n,

𝑝n(x) =
n∑

i=0
wi𝑓i𝓁i(x), wi = 1∕

n∏
𝑗=0,𝑗≠i

(xi − x𝑗),

can be considered as a simple blended model: The local interpolants fi at xi are blended together into a global interpolant
by the blending functions 𝓁i(x) which by the choice of appropriate weights evaluate to 1 at the xi. We explain how this
idea can be applied to our problem statement.

Let the xH
i be indexed such that xH

0 < · · · < xH
n and let the xL

i in the interval [xH
i , xH

i+1] be denoted by xL
i,0 < · · · < xL

i,mi

with xL
i,0 = xH

i , xL
i,mi

= xH
i+1 and

∑n−1
i=0 (mi − 1) = m + 1. Then, we can first construct local models pi(x) exhibiting the

trend indicated by the LF data in the interval [xH
i , xH

i+1]. By doing this, we do not put the whole responsibility for the trend
behaviour in the weights wi. For the local models pi(x) we use a Bézier curve, as the LF data are collected at equidistant
points in the interval [xH

i , xH
i+1]:

𝑝i(x) =
mi∑
𝑗=0

𝑓 L
i𝑗𝛽i𝑗(z),

𝑓 L
i𝑗 = 𝑓

(
xL

i,𝑗

)
, z =

x − xH
i

xH
i+1 − xH

i

,

𝛽i𝑗(z) =
(

mi
𝑗

)
z𝑗(1 − z)mi−𝑗 .

(5)

The local polynomial model pi(x) defined on the interval [xH
i , xH

i+1] has the property that it interpolates in xL
i,0 = xH

i and
xL

i,mi
= xH

i+1 and that it follows the trend given by the so-called control points xL
i,1 < · · · < xL

i,mi−1 in-between.
Afterwards, these local models are then blended together by suitable blending functions, such as quadratic or cubic

B-splines Bi,d(x) where the degree d = 2 or 3. For d = 2, it is defined by the knots (xL
i−1,mi−1−1, xH

i , xH
i+1, xL

i+1,1). Here,
xL

i−1,mi−1−1 and xL
i+1,1 are respectively the LF points preceding xH

i and following xH
i+1. For d = 3, we add the knot (xH

i +xH
i+1)∕2

in the middle. To define the B-spline when i = 0 or i = n − 1, we add a virtual point outside the interval [xH
0 , xH

n ] at
approximately the same distance as the one between the LF points. With these knots, we know that Bi,d(x) has support
[xL

i−1,mi−1−1, xL
i+1,1]. Figure 7 illustrates the local models and blending functions, and how they relate to the LF and HF data.

FIGURE 7 Local models pi (top panel) and blending functions Bi,2 (bottom panel) used in the blended rational interpolation scheme.
Small dots indicate the LF data and large dots the HF data—both sets taken from the middle 2 intervals of the top panel of Figure 6. The blue
curves represent the functions relating to the interval between the first 2 HF data points, and black curves those relating to the interval
between the last 2 HF data points. Solid lines indicate the local models on their relevant domains, while dashed lines indicate the extensions
of the local models outside the relevant intervals
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This leads us to the rational expression, now having a piecewise polynomial numerator and denominator, of the form

Rn,w0,· · ·,wn−1 (x) =
∑n−1

i=0 wi𝑝i(x)Bi,d(x)∑n−1
i=0 wiBi,d(x)

. (6)

With d = 2 the function Rn,w0,· · ·,wn−1 (x) is continuously differentiable. With d = 3 it is twice continuously differentiable.
Because xH

i − xL
i−1,mi−1−1 < xH

i − xH
i−1 and xL

i+1,1 − xH
i+1 < xH

i+2 − xH
i+1, use of the LF points as knots restricts the influence of

pi(x) almost solely to the interval [xH
i , xH

i+1], as can be seen in Figure 7. The latter is important when HF points are spread
far apart. Since the functions Bi,d(x) are positive, it is sufficient to impose that

wi > 0, i = 0, · · ·,n − 1 (7)

to make Rn,w0,· · ·,wn−1 (x) pole-free on the real axis. Because 𝑝i(xH
i ) = 𝑓i, 𝑝i(xH

i+1) = 𝑓i+1, i = 0, · · ·,n − 1, we know that the
model Rn,w0,· · ·,wn−1 (x) also interpolates in every HF point xH

i :

Rn,w0,· · ·,wn−1 (x
H
0 ) =

w0𝑝0(xH
0 )B0,d(xH

0 )
w0B0,d(xH

0 )
= 𝑓H

0 ,

Rn,w0,· · ·,wn−1 (x
H
i ) =

∑i
k=i−1 wk𝑝k(xH

i )Bk,d(xH
i )∑i

k=i−1 wkBk,d(xH
i )

= 𝑓H
i , 0 < i < n,

Rn,w0,· · ·,wn−1 (x
H
n ) =

wn−1𝑝n−1(xH
n )Bn−1,d(xH

n )
wn−1Bn−1,d(xH

n )
= 𝑓H

n .

The weights in (6), restricted to (7), are taken to be the solution of the least squares problem

arg min
w0,· · ·,wn−1

n−1∑
i=0

mi∑
𝑗=0

|||𝑓 L
i,𝑗 − Rn,w0,· · ·,wn−1 (x

L
i,𝑗)

|||2 (8)

or

arg min
w0,· · ·,wn−1

n−1∑
i=0

mi∑
𝑗=0

||||||𝑓 L
i𝑗

n−1∑
k=0

wkBk,d(xL
i,𝑗) −

n−1∑
k=0

wk𝑝k(xL
i,𝑗)Bk,d(xL

i,𝑗)
||||||
2

. (9)

The sums for j running from 0 to mi are actually sums for j from 1 to mi−1 as in the endpoints of each interval the function
interpolates.

The model (6) with (5), (7), and (8) or (9) gives significantly improved results, as illustrated in Figure 8, where the
interpolant more closely follows the LF data trends between the HF interpolation points.

3.3 Extension to multidimensional parameter spaces
In this section, we explain how to generalise our model to the case where the MF points are not real points anymore but
real vectors in RD(D > 1). For the sake of notation and without loss of generality, we restrict ourselves to D = 2 in the
description.

Consider complex HF data 𝑓H
i𝑗 at a grid of distinct real vectors

(xH
i , 𝑦

H
𝑗 ) ∈ [a1, b1] × [a2, b2],

i = 0, · · ·,n1, 𝑗 = 0, · · ·,n2
(10)

with xH
0 < · · · < xH

n1
, 𝑦H

0 < · · · < 𝑦H
n2

and complex LF data 𝑓 L
(i,ki),( 𝑗,l𝑗 )

at a grid of distinct real vectors

(xL
i,ki
, 𝑦L

𝑗,l𝑗
) ∈ [a1, b1] × [a2, b2],

i = 0, · · ·,n1 − 1, ki = 0, · · ·,mi,1,

𝑗 = 0, · · ·,n2 − 1, l𝑗 = 0, · · ·,m𝑗,2

(11)
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FIGURE 8 Blended rational interpolation of the input impedance as a function of frequency using the (high-fidelity) HF and (low-fidelity)
LF data with n + 1 = 5 and m + 1 = 36

with xL
i,0 < · · · < xL

i,mi,1
equidistant in [xL

i,0, xL
i,mi,1

], xL
i,0 = xH

i , xL
i,mi,1

= xH
i+1, i = 0, · · ·,n1 − 1 and similarly for the y-values. We

want to find a model, similar to the one in the previous section, which interpolates the HF data and follows the trend of
the LF data. To do this, we need to find multidimensional local models pij(x) and multidimensional blending functions.

For the local models, we can use a multivariate form of the Bernstein polynomials21:

𝑝i𝑗(x, 𝑦) =
mi,1∑
k=0

m𝑗,2∑
l=0

𝑓 L
(i,k),( 𝑗,l)𝛽(i,k),( 𝑗,l)(u, v)

(u, v) =

(
x − xH

i

xH
i+1 − xH

i

,
𝑦 − 𝑦H

𝑗

𝑦H
𝑗+1 − 𝑦H

𝑗

)
,

𝛽(i,k),( 𝑗,l)(u, v) = 𝛽ik(u) · 𝛽𝑗l(v).

The local model pij(x, y) interpolates in the HF points from {xH
i , xH

i+1} × {𝑦H
𝑗
, 𝑦H

𝑗+1} and follows the trend given by the LF
points in the rectangle with the HF points as corner points.

For the blending functions, we can simply use the tensor product of B-splines. Let for d = 2 or 3,

Bi,𝑗,d(x, 𝑦) ∶= Bi,d(x) · B𝑗,d(𝑦),

with support [xL
i−1,mi−1,1−1, xL

i+1,1] × [𝑦L
𝑗−1,m𝑗−1,2−1, 𝑦

L
𝑗+1,1], where our notation is entirely analogous to the one introduced in

the previous section.
Now, we can easily write down the two-dimensional rational expression interpolating every HF data point:

Rn,w(x, 𝑦) =
∑n1−1

i=0
∑n2−1

𝑗=0 wi𝑗𝑝i𝑗(x, 𝑦)Bi,𝑗,d(x, 𝑦)∑n1−1
i=0

∑n2−1
𝑗=0 wi𝑗Bi,𝑗,d(x, 𝑦)

with w = (wij)ij, i = 0, … ,n1 − 1, j = 0, … ,n2 − 1. It is again sufficient to impose

wi𝑗 > 0, i = 0, · · ·,n1 − 1, 𝑗 = 0, · · ·,n2 − 1 (12)

to make Rn,w(x, y) pole-free in R2. The weights wij, restricted to (12), are given by

argmin
w

n1−1∑
i=0

n2−1∑
𝑗=0

mi,1∑
k=0

m𝑗,2∑
l=0

||||𝑓 L
(i,k),( 𝑗,l) − Rn,w

(
xL

i,k, 𝑦
L
𝑗,l

)||||
2

(13)

or the linearised

argmin
w

n1−1∑
i=0

n2−1∑
i=0

mi,1∑
k=0

m𝑗,2∑
l=0

||||𝑓 L
(i,k),( 𝑗,l)Dn,w

(
xL

i,k, 𝑦
L
𝑗,l

)
− Nn,w

(
xL

i,k, 𝑦
L
𝑗,l

)||||
2
, (14)
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FIGURE 9 Blended rational interpolation of the imaginary part of the input impedance using the high-fidelity (HF) and low-fidelity (LF)
two-dimensional data. HF data are indicated by large dots, LF data by small dots, validation data by open circles, and the resulting rational
interpolant by the surface

where we put

Dn,w(x, 𝑦) =
n1−1∑
i=0

n2−1∑
𝑗=0

wi𝑗Bi,𝑗,d(x, 𝑦)

and

Nn,w(x, 𝑦) =
n1−1∑
i=0

n2−1∑
𝑗=0

wi𝑗𝑝i𝑗(x, 𝑦)Bi,𝑗,d(x, 𝑦).

An example of this blended multidimensional rational model is given in Figure 9. Here, we use the same antenna as
described previously for the frequency variations, but we also vary the geometric parameter 𝜃 ∈ [47◦, 59◦]. In this case,
we select the HF and LF data on 5 × 3 and 36 × 13 grids respectively, while the HF validation data is calculated on a 3 × 2
grid in-between the training samples. The interpolant closely follows the HF validation data. The accuracy of the blended
rational model described here will be evaluated for a range of sinuous antenna examples in the following section.

4 APPLICATION EXAMPLES

This section evaluates the accuracy and demonstrates the utility of the suggested modelling scheme. First, a collection
of the pyramidal sinuous antennas are simulated using various parameter ranges and sample densities, and the accuracy
of the blended rational interpolation is compared with several other modelling schemes. Thereafter, a design example
is presented to illustrate how the suggested method can be used to accelerate the design of an antenna in a realistic
multi-objective design context.

4.1 Modelling accuracy
To quantify the accuracy of the blended rational interpolation scheme presented here, we consider a range of
two-dimensional sinuous antenna examples with bandwidths and simulation models as in Table 1. Along with frequency,
the geometric parameters are varied along four one-dimensional slices through the centre of the hypercube defined by
𝜏 ∈ [0.75, 0.9], 𝛿∕𝛼 ∈ [0.4, 0.8], 𝛿 + 𝛼 ∈ [28◦, 44◦], and 𝜃 ∈ [47◦, 59◦]. The number of LF data points along each dimen-
sion is fixed at 31, 41, 17, 13, and 89 along frequency, 𝜏, 𝛿∕𝛼, 𝛿 + 𝛼, and 𝜃, respectively. The number of HF data is varied
on the LF grid to illustrate the effects of using coarser grids of HF data. To quantify the modelling errors, a validation set
(full HF antenna simulation) is calculated everywhere on the LF data points, and only points not included in the HF data
set are retained for error calculations.

As comparison, estimation of the input impedance is also performed using a variety of other interpolation methods.
These include 3 methods operating only on the available HF data, namely, spline, Kriging, and barycentric rational inter-
polation (see Section 3.1). In addition, co-Kriging was evaluated as a multifidelity interpolation method. For the Kriging
and co-Kriging, the implementation in the ooDACE toolbox was used with default settings.22
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For all the examples the error metrics are the Average Euclidean Error (AEE),23

AEE(𝑦, �̃�) = 1
M

M∑
i=1

|𝑦i − �̃�i| , (15)

and the maximum errors (MAX),
MAX(𝑦, �̃�) = max |𝑦i − �̃�i| i = 1, · · ·,M, (16)

with yi the verification and �̃�i the predicted response values.
The resulting error plots are shown in Figure 10.
In general, it can be seen that the blended rational interpolation scheme suggested here performs better than the other

modelling schemes—especially when the number of HF data is reduced. The mean values of the errors in Figure 10 are
summarised in Table 2.

4.2 Design example
As a design example, a pyramidal sinuous antenna geometry is sought which operates over the [350, 1050] MHz band-
width, with an input reflection coefficient smaller than −10 dB, and maximum receiving sensitivity when feeding the

FIGURE 10 Comparisons of the modelling errors for a variety of modelling schemes and geometries as a function of the total number of
HF data points. The average error is shown in the top panel and the maximum error in the bottom panel. Different modelling schemes are
indicated by different colours

TABLE 2 Mean values of all the errors in Figure 10

Data AEE MAX

Blended rational interpolant HF/LF 14.2 157
Co-Kriging HF/LF 17.8 164
Kriging HF 26.3 241
Barycentric rational interpolant HF 22.7 199
Spline HF 20.8 216

Abbreviations: AEE, Average Euclidean Error; HF, high-fidelity; LF,
low-fidelity; MAX, maximum error.
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offset Gregorian reflector system used by the SKA.7 Design parameters are limited to x = [𝜏, 𝛿∕𝛼], with 𝛿 + 𝛼 = 36◦ and
𝜃 = 53◦.

A blended rational interpolation model of the input impedance is built over the full three-dimensional design space
(including frequency) using a [22 × 22 × 5] grid of HF data points, and grids of [41 × 41 × 36] and [41 × 41 × 53] points
for the low band and high band LF models respectively (grids ordered as [𝜏, 𝛿∕𝛼, frequency]). As previously, the low band
and high band frequency ranges are [350, 525] MHz and [787.5, 1050] MHz, respectively. Using this model, the worst case
(maximum) absolute value of the input reflection coefficient is calculated across the geometric input space and plotted in
Figure 11. To test the result, a verification set was calculated using a grid of [41× 41× 176] HF models. The interpolant is
seen to follow the verification data relatively well. The region where the reflection coefficient specification (< −10 dB) is
met is plotted in Figure 12, where a good agreement between the rational interpolation model and the verification data
are observed.

FIGURE 11 Worst case reflection coefficient over the geometrical design space. The surface shows the rational interpolant and the dots
indicate a verification set

FIGURE 12 Regions where the worst case reflection coefficient is within the specification (< −10 dB) shown in light grey, with the
rational interpolation model in the left panel and the verification set in the right panel

FIGURE 13 Reflection coefficient of the optimal design into a 237 Ω reference impedance
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FIGURE 14 Receiving sensitivity of the optimal design

The receiving sensitivity is modelled as described in De Villiers DIL,13 and an objective function is defined which returns
the average receiving sensitivity in the band [650, 1050] MHz (to reduce the influence of the high galactic noise in the
lower end of the band7—see Figure 14). A simple grid search is used to maximise the objective function over the region
constrained by the acceptable reflection coefficient performance, and the optimal geometry is found to be 𝜏 = 0.874 and
𝛿∕𝛼 = 0.63. This antenna was simulated and the results are shown in Figures 13 and 14.

The final reflection coefficient is well below the −10 dB level across the band, while the average receiving sensitivity in
the band above 650 MHz is 3.71 m2/K. Note how the sensitivity drops off steeply below 650 MHz due to the increasing
sky temperature caused by galactic radiation.

5 CONCLUSION

This paper presents a strategy to efficiently model the input impedance of a sinuous antenna for use as a reflector antenna
feed. The method relies on the availability of both HF and LF data describing the input impedance of the antenna. LF
data is obtained at a significantly reduced computational cost, when compared with the HF data, by CEM simulations
of truncated versions of the antenna. Since the antenna is geometrically approximately log-periodic in nature, the trun-
cated versions provide a good estimate of the performance at the operating frequency band edges but are much faster to
simulate due to the narrower frequency bandwidth, as well as reduced electrical size. To improve the accuracy of the LF
data described above, a rational interpolation scheme is presented which interpolates a sparse set of HF data (the full
antenna simulations), while following the trends of a denser set of LF data (the truncated antenna simulations). Several
shortcomings of traditional barycentric rational interpolation formulations, including multifidelity ones, are addressed
herein. These mainly relate to relaxing constraints on the interpolation weights to allow pole-free interpolants which still
have the flexibility to follow the LF trends while interpolating the HF data with no unattainable points.

The method was applied on a variety of sinuous antennas to evaluate and compare the accuracy with a range of
other interpolation methods, with results showing improved accuracy in most of the examples considered. A design
example was also demonstrated, where an optimal design in terms of receiving sensitivity for a given reflection coefficient
constraint was delivered using a significantly reduced set of HF models when compared with direct methods.

Future work on the rational interpolation method may include reformulating it to allow for scattered data sets, since
the current formulation relies on regular grids of data which suffer from the curse of dimensionality for high dimensional
models. Using scattered data sets also allows for sequential and adaptive sampling, which in many cases significantly
reduces the number of samples required for an accurate interpolant through focussing on regions of rapid variation. Fur-
thermore, the multifidelity modelling strategy using truncated sinuous antennas may also be applied to other log-periodic
antenna structures—especially structures where the self-complementary constraint is relaxed to allow for unidirectional
radiation patterns.
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