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Abstract. Sparse interpolation or exponential analysis, is widely used and
in quite different applications and areas of science and engineering. Therefore
researchers are often not aware of similar studies going on in another field. The
current text is written as a concise tutorial, from an approximation theorist
point of view.

In Section 2 we summarize the mathematics involved in exponential anal-
ysis: structured matrices, generalized eigenvalue problems, singular value de-
composition. The section is written with the numerical computation of the
sparse interpolant in mind.

In Section 3 we outline several connections of sparse interpolation with
other mostly non-numeric subjects: computer algebra, number theory, linear
recurrences. Some problems are only solved using exact arithmetic.

In Section 4 we connect sparse interpolation to rational approximation
theory. One of the major hurdles in sparse interpolation is still the correct
detection of the number of components in the model. Here we show how to
reliably obtain the number of terms in a numeric and noisy environment.

The new insight allows to improve on existing state-of-the-art algorithms.

1. Motivation

When interpolating data fj at points xj with the values fj coming from a
function of the form f(x) = α1 + α2x

100, classical interpolation needs 101 samples
fj , j = 0, . . . , 100 despite the fact that there are only 4 unknowns involved, namely
α1, α2 and the knowledge of the two basis functions x0, x100. Let us look at the
challenge to determine these 4 unknown items from only 4 samples.

The problem statement is related to a wide range of topics in the computational
sciences and engineering, as reviewed in [16]. It is also connected to several mathe-
matical and numerical subjects such as exponential analysis, generalized eigenvalue
problems, symbolic computation, orthogonal polynomials, signal processing, mo-
ment problems, and last but not least rational approximation theory. In the sequel
we assume most of the times that the data fj are collected at equidistant points
xj = jΔ, j = 0, 1, 2, . . .

The first sparse interpolation problem was the interpolation of

(1.1) f(x) =
n

∑
i=1

αi exp(φix), αi, φi ∈ C,
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formulated in [5] and summarized in Section 2.
The multivariate polynomial sparse interpolation of

(1.2) f(x1, . . . , xd) = ∑
(i1,...,id)∈I

αi1,...,idx
i1
1 ⋯x

id
d , I ⊂ Nd,#I = n

was later investigated in [3] and is discussed in Section 3.
We build on the connection with Padé approximation theory [1] to formulate a

way to correctly detect the number of terms in (1.1) and (1.2) in a numerical and
hence noisy environment. This new approach is presented and illustrated in Section
4. The proposed method improves on the existing state-of-the-art algorithms.

2. Univariate exponential modeling

Let us consider the nonlinear interpolation problem

(2.1)
n

∑
i=1

αi exp(φixj) = fj , j = 0, . . . , 2n − 1,

where

xj = jω, ω = 2π/M, ∣I(φi)∣ <M/2.
If we denote

Ωi = exp(φiω),
then it is apparent that the data fj are structured, namely

(2.2) fj =
n

∑
i=1

αiΩ
j
i , j = 0, . . . , 2n − 1.

We now want to obtain the values Ωi, i = 1, . . . , n and αi, i = 1, . . . , n from the
2n samples fj . From Ωi the value φi can easily be deduced because ∣I(φi)ω∣ < π
and hence no periodicity problem arises. In addition to computing Ωi and αi we
indicate what is known about n. Knowledge of the latter is crucial for the success
of the algorithm and is the main subject of Section 4 and this paper. Temporarily
we assume that n is known.

Consider the polynomial

(2.3)
n

∏
i=1

(z −Ωi) = zn + βn−1z
n−1 + ⋅ ⋅ ⋅ + β1z + β0

with so far unknown coefficients βi, i = 1, . . . , n. Since the Ωi are its zeroes, we find
for k ≥ 0,

0 =
n

∑
i=1

αiΩ
k
i (Ωn

i + βn−1Ω
n−1
i + ⋅ ⋅ ⋅ + β0)

=
n

∑
i=1

αiΩ
n+k
i +

n−1

∑
j=0

βj (
n

∑
i=1

αiΩ
j+k
i )

= fk+n +
n−1

∑
j=0

βjfk+j .

In other words, we can conclude that the structured data fj are linearly generated,

(2.4)
⎛
⎜
⎝

f0 . . . fn−1
⋮ ⋰ ⋮

fn−1 . . . f2n−2

⎞
⎟
⎠

⎛
⎜
⎝

β0

⋮
βn−1

⎞
⎟
⎠
= −
⎛
⎜
⎝

fn
⋮

f2n−1

⎞
⎟
⎠
.
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This linear system allows us to compute the coefficients βi, i = 0, . . . , n − 1 and
actually compose the polynomial having Ωi, i = 1, . . . , n as its zeroes. Let us now

denote by H
(r)
n the Hankel matrix

H(r)n =
⎛
⎜
⎝

fr . . . fr+n−1
⋮ ⋰ ⋮

fr+n−1 . . . fr+2n−2

⎞
⎟
⎠

and by H
(0)
n (z) the Hankel polynomial [13, p. 625]

H(0)n (z) =

������������������

f0 . . . fn−1 fn
⋮ ⋰ ⋮ ⋮

fn−1 . . . f2n−2 f2n−1
1 . . . zn−1 zn

������������������

.

Then
n

∏
i=1

(z −Ωi) =
H
(0)
n (z)
∣H(0)n ∣

,

where ∣H(0)n ∣ denotes the determinant of H
(0)
n . From the matrix factorizations

H(0)n = VnDαV
T
n ,

H(1)n = VnDα

⎛
⎜
⎝

Ω1

⋱
Ωn

⎞
⎟
⎠
V T
n ,

where Vn and Dα respectively denote the Vandermonde matrix

Vn =
⎛
⎜⎜⎜
⎝

1 1 . . . 1
Ω1 Ω2 . . . Ωn

⋮ ⋮ ⋮
Ωn−1

1 Ωn−1
2 . . . Ωn−1

n

⎞
⎟⎟⎟
⎠

and the diagonal matrix

Dα =
⎛
⎜⎜⎜
⎝

α1

⋱

αn

⎞
⎟⎟⎟
⎠
,

it is easy to see that the polynomial zeroes Ωi can also be obtained as generalized
eigenvalues [11,14]. So the Ωi also satisfy

(2.5) det (H(1)n −ΩiH
(0)
n ) = 0, i = 1, . . . , n.

The coefficients αi in the model (1.1) can be obtained from any set of n interpolation
conditions taken from (2.2),

(2.6)
⎛
⎜
⎝

Ωj
1 . . . Ωj

n

⋮ ⋮
Ωj+n−1

1 . . . Ωj+n−1
n

⎞
⎟
⎠

⎛
⎜
⎝

α1

⋮
αn

⎞
⎟
⎠
=
⎛
⎜
⎝

fj
⋮

fj+n−1

⎞
⎟
⎠
, 0 ≤ j ≤ n.

With Ωi computed as above, the remaining equations are linearly dependent.
Now what can be said about n? Merely using some known theorems, its value

can be nailed down quite precisely, that is in an exact noisefree context. We read

in [13] and [2] that on the one hand, for N < n and r ≥ 0, ∣H(r)N ∣ is only accidentally
zero, depending on the value of ω, while on the other hand, for N > n and r ≥ 0,
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∣H(r)N ∣ is always zero, irrespective of the value of ω. Most importantly, for N = n, r ≥
0 and Ωi ≠ Ωj for i ≠ j, ∣H(r)N ∣ ≠ 0.

In order to inspect ∣H(r)N ∣ for N > n, additional samples up to fr+2N−2 need to
be provided, in other words at least the additional sample f2n (in case r = 0 and
N = n + 1). A nice discussion, based on algebraic arguments, is presented in [17].
We illustrate the above with an easy noisefree example. Consider the function

f(x) =
4

∑
i=1

αi exp(φix)

where

α1 = 1
α2 = 2.4
α3 = −2.1
α4 = 0.2

φ1 = 0
φ2 = −5 + 19.97i
φ3 = 3 + 45i
φ4 = 5.3i

and take M = 100 such that max1≤i≤4 ∣I(φi)∣ <M/2. Inspecting the singular value

decomposition of H
(0)
N with N = 6 > n = 4 reveals that the numerical rank of H

(0)
N

equals 4. We give a log-plot of the singular values, in decreasing order of magnitude,
in Figure 1: singular values of the order of magnitude of (moderately amplified)
numerical round-off errors do not contribute to the numerical rank. The use of the
numerical rank for N slightly larger than n is however numerically unreliable in the
presence of real-life measurement noise (other than floating-point round-off errors).
In Section 4 we indicate how this can be remedied.

Figure 1. H
(0)
N with N = 6 > n = 4 singular.

The method is not only useful for equidistantly sampled structured data. Other
data that obey the same structure can also be dealt with, such as for instance, the
successive derivatives of a function of the form

f(x) = α1 exp(φ1x) + α2 exp(φ2x).
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The values

f(0) = α1 + α2

f ′(0) = α1φ1 + α2φ2

f ′′(0) = α1φ
2
1 + α2φ

2
2

f ′′′(0) = α1φ
3
1 + α2φ

3
2

can be used to deduce φ1,2 and α1,2 from, in the same way as above, since the
sampled values are structured as in (2.2). In addition, it is easy to check that the

determinant ∣H(0)3 ∣ with fj = f (j)(0), j = 0, . . . , 4 is symbolically zero, indicating
that n = 2.

3. Multivariate polynomial interpolation

While generalizing to more variables, we restrict ourselves to the monomial
basis functions [3]. We consider functions f as given in (1.2),

f(x1, . . . , xd) = ∑
(i1,...,id)∈I

αi1,...,idx
i1
1 ⋯x

id
d , I ⊂ Nd,#I = n.

The issue is again to detect from a number of samples of f which monomials
are involved in its expression and then compute the coefficients in the interpolant
(1.2). To this end we now take our samples equidistantly along the unit circle [8].

We assume we have upperbounds pk for the partial degree of f in the variable
xk and we take these pk, k = 1, . . . , d mutually prime. With pk we define

ωk = exp(2πi/pk), k = 1, . . . , d.

We then evaluate f(x1, . . . , xd) in the points

(xj1, . . . , xjd) = (ωj
1, . . . , ω

j
d), j = 0, . . . , 2n − 1

on the unit circle. Let the n distinct multi-indices in I be numbered (i(1)1 , . . . , i
(1)
d ), . . . ,

(i
(n)
1 , . . . , i

(n)
d ) and denote

Ωl = ω
i
(l)
1

1 ⋯ωi
(l)
d

d , l = 1, . . . , n.

So the Ω1, . . . ,Ωn reveal the basis functions that appear in (1.2), namely the mono-
mials powered by the multi-indices in I. How can we obtain the values Ωl? Using
the same approach as in Section 2. The coefficients in the polynomial

n

∏
i=1

(z −Ωi) = zn + βn−1z
n−1 + ⋅ ⋅ ⋅ + β1z + β0

are computed from the linear system (2.4) or the Ωi are computed from the gener-
alized eigenvalue problem (2.5).

How do we extract the exponents or multi-indices (i(l)1 , . . . , i
(l)
d ) from Ωl? We

use a reverse of the Chinese remainder theorem, which we can make use of because
the pk are mutually prime [8]. Define

m =
d

∏
k=1

pk, ω = exp(2πi/m).
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Since ωk = ωm/pk , we have

Ωl = ωi(l), i(l) = i(l)1
m

p1
+⋯+ i(l)d

m

pd
, l = 1, . . . , n.

With gcd(pk,m/pk) = 1 and

i(l)mod pk = i(l)k
m

pk
mod pk, k = 1, . . . , d, l = 1, . . . , n

we can retrieve the integers i
(l)
k < pk. While the coefficients αi1,...,id are computed

as in Section 2, for the detection of n usually an alternative is used.
To find n, additional samples are required beyond the f0, . . . , f2n−1. In exact

arithmetic, the value of n is the smallest integer for which the discrepancy δj given
by the (n + 1)-term recurrence

δj = fj + βn−1fj−1 +⋯+ β0fj−n, j ≥ 2n

equals zero [19].
We illustrate the algorithm with a simple example. Consider

f(x, y) = x5y + 2.2x4y4 − 0.5xy11 + 0.1xy12

and take p1 = 6, p2 = 13 and ω1 = exp(2πi/6), ω2 = exp(2πi/13). The sequence
f0, . . . , f7, . . . is linearly generated with δ8 = 0. Hence n = 4. With m = p1p2 = 78 we
find

Ω1 = ωi(1),

Ω2 = ωi(2),

Ω3 = ωi(3),

Ω4 = ωi(4),

i(1) = 71 mod m = 5 × 13 + 1 × 6
i(2) = 76 mod m = 4 × 13 + 4 × 6
i(3) = 1 mod m = 1 × 13 + 11 × 6
i(4) = 7 mod m = 1 × 13 + 12 × 6.

So I = {(5, 1), (4, 4), (1, 11), (1, 12)} and the coefficients α5,1, α4,4, α1,11, α1,12 in
f(x, y) are obtained from the Vandermonde system (2.6).

Sometimes f(x1, . . . , xd) is sparse only after performing a shift such as in

f(x, y) = (x−3)5(y+5)+2.2(x−3)4(y+5)4−0.5(x−3)(y+5)11+0.1(x−3)(y+5)12.

The computation of such a shift is again carried out in exact arithmetic [7]. The

sparse interpolation algorithm is then performed on f(u, v) = f(x, y) with u = x−3
and v = y + 5. So when evaluating f at u = ωj

1 and v = ωj
2, we’re actually evaluating

f at x = ωj
1 + 3 and y = ωj

2 − 5.

4. Connection with Padé approximation

With fj , j = 0, 1, 2, . . . we now define the noisefree

(4.1) F (z) =
∞

∑
j=0

fjz
j .

The Padé approximant rm,n(z) of degree m in the numerator and n in the denomi-
nator is defined as the irreducible form of the rational function p(z)/q(z) satisfying

F (z)q(z) − p(z) = ∑
j≥m+n+1

cjz
j , ∂p ≤m,∂q ≤ n.
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With

p(z) =
m

∑
i=0

aiz
i,

q(z) =
n

∑
i=0

biz
i,

we find that a0, . . . , am and b0, . . . , bn need to satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f0b0 = a0
f1b0 + f0b1 = a1
⋮

fmb0 +⋯+ fm−nbn = am
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fm+1b0 +⋯ + fm−n+1bn = 0
⋮

fm+nb0 +⋯ + fmbn = 0
where we tacidly assume that fj = 0 for j < 0. Choosing b0 = 1 in the homogeneous
system (if allowed) results in

H(m+1−n)n

⎛
⎜
⎝

b1
⋮
bn

⎞
⎟
⎠
= −
⎛
⎜
⎝

fm+1
⋮

fm+n

⎞
⎟
⎠
.

Since

fj =
n

∑
i=1

αi exp(jφiω) =
n

∑
i=1

αiΩ
j
i ,

we can rewrite

(4.2) F (z) =
n

∑
i=1

αi

1 − zΩi
.

So we see that F (z) is itself a rational function of degree n−1 in the numerator and
n in the denominator, with poles 1/Ωi. Hence, from Padé approximation theory we
know (as to be expected) that rn−1,n(z) reconstructs F (z), in other words

rn−1,n(z) = F (z)
with denominator

q(z) =
n

∏
i=1

(1 − zΩi) = β0z
n + β1z

n−1 +⋯ + βn−1z + 1.

The partial fraction decomposition (4.2) is related to both the Laplace transform
and the z-transform of the exponential model (1.1), which explains why this ap-
proach is known as the Padé-Laplace method. The connection was originally noticed
in [24], but in the meantime a lot of new insight can be added.

Let us now add a white circular Gaussian noise term εj to each sample fj . In
the sequel we denote the noisy series by

F (z) + ε(z) =
∞

∑
j=0

(fj + εj)zj .

A number of very nice approximation and convergence results exist for Padé approx-
imants. They express what one would expect intuitively from such approximants:
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they are especially useful if the approximated function is meromorphic in some
substantial region of the complex plane.

The first result we mention is the convergence theorem of de Montessus de
Ballore for Padé approximants of a meromorphic function [4]. It states that if
F (z) + ε(z) is a meromorphic function in the complex region {z ∶ 0 ≤ ∣z∣ < R}
with poles of total multiplicity n in that open disc, then the sequence of Padé
approximants {rm,n(z)}m∈N converges to F (z) + ε(z) uniformly on compact sets
excluding the poles. What’s more, the poles of F (z)+ ε(z) attract poles of rm,n(z)
according to their multiplicity. Although this result is the best one can expect
for rm,n(z), it does not leave much room to model the noise: the denominator
has a fixed degree and so the only way to model the noise ε(z) separately from
the underlying signal F (z) is through the numerator. Numerical experiments have
taught us that this does not work well.

It is numerically preferable to build on another famous convergence result for
Padé approximants, which is the theorem of Nuttall, later generalized by Pom-
merenke. It states that if F (z) + ε(z) is analytic throughout the complex plane
except for a countable number of poles [20] and essential singularities [21], then
the paradiagonal sequence {rm−1,m(z)}m∈N converges to F (z)+ ε(z) in measure on
compact sets. So here no assertion is made about pointwise or uniform convergence.
Instead, the result states that for every sufficiently large m, the measure of the set
where the convergence is disrupted, so where ∣F (z)+ ε(z)− rm−1,m(z)∣ ≥ τ for some
given threshold τ , tends to zero as m tends to infinity. When applying this result
to our case, F (z) being a rational function of degree n − 1 in the numerator and n
in the denominator, the theorem leaves ample room to model the noise ε(t) in the
remaining m − n zeroes and poles of rm−1,m(z).

As a matter of fact, the pointwise convergence is disrupted by the m − n un-
wanted pole-zero combinations of the Padé approximants, also called Froissart dou-
blets [6,9,10], that are added to the n true poles and n − 1 true zeroes of F (z).
But these Froissart doublets offer a way to filter the noise ε(z) from the underlying
signal F (z). And because of the Padé convergence theorem, the true (physical)
poles can be identified as stable poles in successive rm−1,m(z), while the spurious
(nonphysical, noisy) poles are distinguished by their instability.

Because of their ability to model the noise, Froissart doublets should not be
avoided in the computation, as in [12] and [15], but should be filtered out at a later
stage in the computation. We now describe how to apply this idea to exponential

analysis. When inspecting the numerical rank of H
(0)
N , not only should N > n,

but also the Padé approximant rN−1,N(z) should have converged beyond the noise
limit ε. This can be observed from the convergence of the n poles 1/Ωi in (4.2). In
practice the Ωi, i = 1, . . . ,N are computed from the generalized eigenvalue problem

H
(1)
N vi = ΩiH

(0)
N vi, i = 1, . . . ,N

and the residues αi are obtained from the interpolation problem

n

∑
i=1

αiΩ
j
i = fj , j = 0, . . . , 2N − 1,

where the 2N interpolation conditions are now considered in the least squares sense.
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We again illustrate the above with an example. Consider

f(x) =
4

∑
i=1

αi exp(φix)

where
α1 = 1
α2 = 2
α3 = 4
α4 = 8

φ1 = 0
φ2 = −0.2 + 39.5i
φ3 = −0.5 + 40i
φ4 = −1,

with M = 100 to satisfy ∣I(φi)∣ < M/2, i = 1, . . . , 4. The noise terms εj are scaled
such that maxj ∣εj ∣ = 10−2. When inspecting the singular value decomposition of

H
(0)
N for N = 10 > n = 4, shown on a log-plot in Figure 2, one cannot easily deduce

the correct numerical rank n = 4. But from the singular value decomposition of

H
(0)
N with N = 50, shown in Figure 3, it is clear, thanks to the convergence of the

Padé approximation technique: 46 singular values are of the order of magnitude of
maxj ∣εj ∣ (slightly or moderately amplified).

Figure 2. Singular values of H
(0)
N with N = 10 > n = 4.

Figure 3. Singular values of H
(0)
N with N = 50.
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Let us compare these results to the ones obtained using on the one hand the
ESPRIT algorithm [22] and on the other hand the robust Padé approximation algo-
rithm [12]. We start with the latter.

Providing all 100 samples fj + εj , j = 0, . . . , 99 to the code computing the ro-
bust Padé approximant, leads to different estimates for n depending on the error
tolerance E that the user enters simultaneously with the data. For E = 10−2

and E = ∑99
j=0 ∣εj ∣/100 = 4.1 × 10−3 the algorithm returns n = 2. Up to E =

2.25885437964 × 10−4, the returned estimate for n is at most 3. Shrinking it more,
by just 10−15, to E = 2.25885437963 × 10−4, results in the estimate n = 5. For
E = 10−4 the estimate is n = 33. Altogether, getting n correct is very tricky.

Running ESPRIT with only 20 datapoints (as in Figure 2) results in the singular
value decomposition shown in Figure 4 for the 10 × 10 covariance matrix produced
from a 10 × 20 Hankel matrix. Running it with all 100 datapoints (as in Figure 3)
produces Figure 5. Although the order of magnitude of the third and fourth largest
singular value is the same as that of the noise, one could deduce from Figure 5 that
the number of terms in f(x) is n = 4. The remaining singular values are of the
order of max2j ∣εj ∣.

Figure 4. Rank estimation using ESPRIT with N = 10 and 20 datapoints.

Figure 5. Rank estimation using ESPRIT with N = 10 and 100 datapoints.

That the connection with Padé approximation theory is really powerful, is
illustrated in the next example, where we dig up one term of f(x) that is almost
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burried in the noise. Consider

α1 = 10−3

α2 = 2
α3 = 4
α4 = 8

φ1 = 1.5i
φ2 = 12.7i
φ3 = −0.1 + 40i
φ4 = −0.3 + 25.2i

with M = 100 as before and the noise scaled to satisfy maxj ∣εj ∣ = 2 × 10−3. The

singular value decomposition of H
(0)
N with N = 10 doesn’t provide the correct infor-

mation, but the one with N = 100 clearly does: 96 singular values are of the order
of magnitude of maxj ∣εj ∣ (slightly or moderately amplified). So n appears to equal
4. The log-plots are respectively found in the Figures 6 and 7.

Figure 6. Singular values of H
(0)
N with N = 10 > n = 4.

Figure 7. Singular values of H
(0)
N with N = 100.

A numerical comparison with [22] and [12] leads to similar conclusions as in
the previous example.

The robust Padé approximation algorithm withE = 2×10−3 or E = ∑199
j=0 ∣εj ∣/200 =

6.8×10−4 delivers n = 3. Running it with the smaller E = 2.4×10−5 (trial and error)
returns the correct n = 4.
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The results for ESPRIT are shown in the Figures 8 and 9. Using only 20 data-
points the estimate for n is clearly erroneous. Using all 200 datapoints it is still
unclear. In both figures we took N = 10 (as in the Figures 4 and 5).

Figure 8. Rank estimation using ESPRIT with N = 10 and 20 datapoints.

Figure 9. Rank estimation using ESPRIT with N = 10 and 200 datapoints.

5. Additional remarks

The assumption that the generalized eigenvalues Ωi are distinct guarantees the
existence of a solution to the exponential interpolation problem (2.1). It also entails
that the zeroes of (2.3) and the poles of (4.2) are simple. The more general case,
where confluence of the Ωi is allowed, is treated in [23] and [18].

In the former, the basis {exp(φix)}i≥1 for the generalized polynomial is enlarged
to {xj exp(φix)}i≥1,j≥0. The solution to the exponential interpolation problem then
takes the form ∑ν

i=1 pi(x) exp(φix), where the degree of pi(x) is one less than the
multiplicity of Ωi.

In the latter, the matrix pencil method is generalized to the confluent case: in
the case of poles of higher multiplicity in the Padé approximant, the generalized
eigenvalues are adjusted by a combinatorial factor. At convergence, however, they
coincide with the poles, counting multiplicities.
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Palermo, 19 (1905), 185–257.

[5] R. de Prony Essai expérimental et analytique sur les lois de la dilatabilité des fluides
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[21] Ch. Pommerenke, Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41
(1973), 775–780. MR0328090 (48 #6432)

[22] R. O. Schmidt Multiple emitter location and signal parameter estimation. IEEE Trans. An-
tennas and Propogation, 34(3): 276–280, 1986.

[23] A. Sidi, Interpolation at equidistant points by a sum of exponential functions, J. Approx. The-
ory 34 (1982), no. 2, 194–210, DOI 10.1016/0021-9045(82)90092-2. MR647263 (84d:41037)

[24] L. Weiss and R. N. McDonough, Prony’s method, Z-transforms, and Padé approximation,
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