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a b s t r a c t

Consider the black box interpolation of a τ -sparse, n-variate rational function f , where τ
is the maximum number of terms in either numerator or denominator. When numerator
and denominator are at most of degree d, then the number of possible terms in f is O(dn)
and explodes exponentially as the number of variables increases. The complexity of our
sparse rational interpolation algorithm does not depend exponentially on n anymore. It
still depends on d because we densely interpolate univariate auxiliary rational functions of
the same degree.We remove the exponent n and introduce the sparsity τ in the complexity
by reconstructing the auxiliary function’s coefficients via sparsemultivariate interpolation.

The approach is new and builds on the normalization of the rational function’s
representation. Our method can be combined with probabilistic and deterministic
components from sparse polynomial black box interpolation to suit either an exact or a
finite precision computational environment. The latter is illustratedwith several examples,
running from exact finite field arithmetic to noisy floating point evaluations. In general,
the performance of our sparse rational black box interpolation depends on the choice of
the employed sparse polynomial black box interpolation. If the early termination Ben-
Or/Tiwari algorithm is used, our method achieves rational interpolation in O(τd) black box
evaluations and thus is sensitive to the sparsity of the multivariate f .

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The sparse interpolation of a black box multivariate rational function

f (x1, . . . , xn) =
p(x1, . . . , xn)
q(x1, . . . , xn)

where p(x1, . . . , xn) and q(x1, . . . , xn) are multivariate polynomials of at most total degree d, is to reconstruct f in a cost
that is sensitive to its sparsity, namely the number of non-zero terms in p and q in the power basis, instead of its dense
representation size O(dn), which explodes exponentially in the number of variables n. The black box representation of f
outputs the evaluation of f for any given input.

Although univariate rational interpolation has been extensively studied, its multivariate counterpart dates from the last
decades and is relatively new. Moreover, most of the work has been done with respect to dense interpolation, where it
is assumed that all terms up to a certain degree are present in the numerator and denominator polynomial. With respect
to so-called multivariate sparse rational interpolation, few results have been obtained in a handful of papers [13,11,10,5,
19,20]. Especially in the context of floating point arithmetic, where the presence of round-off errors complicates matters,

∗ Corresponding author.
E-mail addresses: annie.cuyt@ua.ac.be (A. Cuyt), wen-shin.lee@ua.ac.be (W.-s. Lee).
URLs: http://www.cant.ua.ac.be (A. Cuyt), http://www.wen-shin.com (W.-s. Lee).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.11.050

http://dx.doi.org/10.1016/j.tcs.2010.11.050
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:annie.cuyt@ua.ac.be
mailto:wen-shin.lee@ua.ac.be
http://www.cant.ua.ac.be
http://www.cant.ua.ac.be
http://www.cant.ua.ac.be
http://www.cant.ua.ac.be
http://www.cant.ua.ac.be
http://www.cant.ua.ac.be
http://www.wen-shin.com
http://www.wen-shin.com
http://www.wen-shin.com
http://www.wen-shin.com
http://dx.doi.org/10.1016/j.tcs.2010.11.050


1446 A. Cuyt, W.-s. Lee / Theoretical Computer Science 412 (2011) 1445–1456

multivariate sparse rational interpolation can be improved. We summarize the state of the art implementations in both
exact and floating point arithmetic.

In [15,18] a method is developed to separately evaluate the numerator and denominator of a black box rational function.
Then in [19] a probabilistic approach for sparse multivariate rational interpolation is outlined from a combination of [18]
with the sparse interpolation algorithms in [16,8] to simultaneously interpolate numerator and denominator from their
evaluations. However, it fails numerically on large degree inputs [19, Section 6]. An alternative is to use the extension of
Zippel’s probabilistic sparse interpolation to multivariate rational functions [20], which proceeds with one variable at a
time and interpolates densely.

We introduce a new approach which makes use of the normalization [1,3] of the form in which the multivariate rational
function is represented: one of the coefficients in numerator or denominator can be fixed to make the representation in
a certain basis unique. From the multivariate rational function a set of auxiliary univariate rational functions is obtained
and interpolated densely. The sparsity of the multivariate function is preserved in the coefficients of the auxiliary functions.
We combine this with a choice of techniques from sparse polynomial interpolation, making our algorithm applicable in
either exact or floating point arithmetic depending on the chosen technique. The multivariate rational function is then
reconstructed from the coefficients of the auxiliary functions through sparse interpolation. Hencewe can exploit the sparsity
in the coefficients as in [19] and maintain sufficient numerical robustness as in [20].

The number of black box probes required for interpolation in ourmethod still depends on the total degree d because each
auxiliary univariate function is interpolated densely. But by using multivariate sparse polynomial interpolation to recover
the coefficients of the auxiliary function, we are able to bring down the O(dn) complexity of the dense case and exploit the
sparsity of the rational function in the multivariate case.

The overall performance of our rational interpolation depends on the choice of sparse polynomial interpolation plugged
in. For example, ifweuse the early terminationBen-Or/Tiwari algorithm [16] or its symbolic-numeric variant [9], our rational
interpolation requires O(τd) black box evaluations. On the other hand, if Zippel’s variable by variable interpolation [26] or
its numerical variant [20] is chosen, then O(nτd2) evaluations are needed for the multivariate rational interpolation.

In Section 2 we present the basic idea, first for a special case and then in general. In Section 3 we illustrate the
implementation in either exact or floating point arithmetic. The illustrations range from exact finite field arithmetic to
noisy floating point evaluations.

2. Multivariate sparse rational interpolation

If a given black boxmultivariate rational function is defined at (0, . . . , 0), its constant term in the denominator is known
to be non-zero and can be normalized to 1. In such a case our approach to sparse multivariate rational interpolation is fairly
straightforward. We explain it in Section 2.1.

In general, a black box multivariate rational function may not be defined at (0, . . . , 0). But one can always choose a
shifted power basis such that the rational function has a non-zero constant in the denominator. However, the sparsity of the
original multivariate rational function may be lost in this representation. In Section 2.2 we extend the sparse interpolation
algorithm of Section 2.1 to a shifted power basis representation, such that it remains sensitive to the original multivariate
sparsity.

All the discussions are stated for a general field K, as in a polynomial ring K[x1, . . . , xn] or a rational field K(x1, . . . , xn).
The implementations and corresponding issues arising in various arithmetic environments, including exact and floating
point, are addressed in Section 3.

2.1. Normalized multivariate rational functions

Suppose a black box multivariate rational function f , expressed in the multinomial basis, is defined at (0, . . . , 0). Since
the denominator’s constant term is non-zero, f can be normalized such that the constant in its denominator is 1. In other
words, f can be written as

f (x1, . . . , xn) =

p(x1,...,xn)  
a1x

d1,1
1 · · · x

d1,n
n + · · · + asx

ds,1
1 · · · x

ds,n
n

1+ b2x
e2,1
1 · · · x

e2,n
n + · · · + btx

et,1
1 · · · x

et,n
n  

q(x1,...,xn)

, (1)

where ak ≠ 0, bℓ ≠ 0 and p(x1, . . . , xn), q(x1, . . . , xn) ∈ K[x1, . . . , xn]. We further require p and q to be relatively prime.
By introducing the homogenizing variable z to f as in [7,17], we form an auxiliary rational function F(z, x1, . . . , xn),

F(z, x1, . . . , xn) = f (x1z, . . . , xnz) =

P(z)∈K[x1,...,xn][z]  
A0(x1, . . . , xn) · z0 + A1(x1, . . . , xn) · z + · · · + Aν(x1, . . . , xn) · zν

1+ B1(x1, . . . , xn) · z + · · · + Bδ(x1, . . . , xn) · zδ  
Q (z)∈K[x1,...,xn][z]

. (2)



A. Cuyt, W.-s. Lee / Theoretical Computer Science 412 (2011) 1445–1456 1447

In (2) terms are collected with respect to the homogenizing variable z. The numerator and denominator, denoted by P(z)
and Q (z) respectively, are regarded as univariate polynomials in z with coefficients from K[x1, . . . , xn]. The degrees of P(z)
and Q (z) are ν and δ. They are also the respective total degrees of p(x1, . . . , xn) and q(x1, . . . , xn) in f given in (1).

The coefficients in P(z) and Q (z) are multivariate polynomials

Ak(x1, . . . , xn) =
−

dj,1+···+dj,n=k

ajx
dj,1
1 · · · x

dj,n
n , 0 ≤ k ≤ ν,

B0 = 1, Bℓ(x1, . . . , xn) =
−

ej,1+···+ej,n=ℓ

bjx
ej,1
1 · · · x

ej,n
n , 1 ≤ ℓ ≤ δ,

and together these coefficients Ak and Bℓ collect all the non-zero terms in p and q,

p(x1, . . . , xn) =
ν−

k=0

Ak(x1, . . . , xn), q(x1, . . . , xn) =
δ−

ℓ=0

Bℓ(x1, . . . , xn). (3)

If we interpolate Ak for 0 ≤ k ≤ ν and Bℓ for 1 ≤ ℓ ≤ δ, then both p and q and hence f = p/q can be determined.
To interpolate Ak and Bℓ, we need to evaluate them at some chosen points (ω

(i)
1 , . . . , ω

(i)
n ). Assume that the total degrees ν

and δ are given. For a fixed (ω1, . . . , ωn), we consider the interpolation of F(z, ω1, . . . , ωn)= f (ω1z, . . . , ωnz) as a function
of z. The function F(z, ω1, . . . , ωn) can be revealed by a (dense) univariate rational interpolation from its evaluation at
distinct values ζ0, ζ1, . . . , ζν+δ for z,

f (ω1ζ0, . . . , ωnζ0), f (ω1ζ1, . . . , ωnζ1), . . . , f (ω1ζν+δ, . . . , ωnζν+δ).

Once F(z, ω1, . . . , ωn) is interpolated, we simultaneously have at our disposal the evaluations (ω1, . . . , ωn) of the
coefficients Ak and Bℓ in

F(z, ω1, . . . , ωn) =
A0(ω1, . . . , ωn) · z0 + · · · + Aν(ω1, . . . , ωn) · zν

1+ B1(ω1, . . . , ωn) · z + · · · + Bδ(ω1, . . . , ωn) · zδ
. (4)

Hence Ak and Bℓ can be interpolated in parallel. If we use an early termination sparse algorithm [17,16], each of the
simultaneous interpolations of Ak and Bℓ is correct with high probability and reflects the sparsity of the corresponding
Ak or Bℓ. Since each of the Ak and Bℓ collects a part of the non-zero terms in p and q as in (3), its sparsity is bounded by
the overall sparsity of either p or q. The choice of evaluation points (ω

(0)
1 , . . . , ω

(0)
n ), (ω

(1)
1 , . . . , ω

(1)
n ), . . . for (ω1, . . . , ωn)

depends on the interpolation algorithm employed, e.g. Zippel’s probabilistic interpolation [26] or the early termination
Ben-Or/Tiwari algorithm [17]. In the case of floating point arithmetic, we recommend a qd-scheme for the sparse polynomial
interpolation [4].

Algorithm: Sparse Rational Interpolation <normalized>
Input: I f (x1, . . . , xn): a multivariate black box rational function.

I ν and δ: total degrees of the numerator p and denominator q.
I η: a positive integer (or default to 1), the threshold required by the early termination strategy [16].

Output: I ak, bℓ, (dk,1, . . . , dk,n), (eℓ,1, . . . , eℓ,n):

f (x1, . . . , xn) =

s∑
k=1

akx
dk,1
1 · · · x

dk,n
n

1+
t∑

ℓ=2
bjx

eℓ,1
1 · · · x

eℓ,n
n

with high probability,

or an error message if the procedure fails to complete [16].
Steps:

1. [Homogenization.]
For i = 0, 1, 2, . . .:

Generate (ω
(i)
1 , . . . , ω

(i)
n ). The choice of (ω

(i)
1 , . . . , ω

(i)
n ) depends on the sparse polynomial interpolation

algorithm to be employed.
2. [Dense univariate rational interpolation.]

Pick distinct ζ0, ζ1, . . . , ζν+δ and evaluate f (ω(i)
1 ζj, . . . , ω

(i)
n ζj) for 0 ≤ j ≤ ν+δ. From the ν+δ+1 evaluations

interpolate

F(z, ω(i)
1 , . . . , ω(i)

n ) = f (ω(i)
1 z, . . . , ω(i)

n z)

=
A0(ω

(i)
1 , . . . , ω

(i)
n ) · z0 + · · · + Aν(ω

(i)
1 , . . . , ω

(i)
n ) · zν

1+ B1(ω
(i)
1 , . . . , ω

(i)
n ) · z + · · · + Bδ(ω

(i)
1 , . . . , ω

(i)
n ) · zδ

. (5)
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3. [Simultaneous sparse multivariate polynomial interpolations.]
The coefficients in (5) are the evaluations

A0(ω
(i)
1 , . . . , ω(i)

n ), A1(ω
(i)
1 , . . . , ω(i)

n ), . . . , Aν(ω
(i)
1 , . . . , ω(i)

n ),

B1(ω
(i)
1 , . . . , ω(i)

n ), . . . , Bδ(ω
(i)
1 , . . . , ω(i)

n ).

Use the early termination sparse algorithm to continue the simultaneous interpolations of Ak and Bℓ for
0 ≤ k ≤ ν and 1 ≤ ℓ ≤ δ.

If all Ak and Bℓ are interpolated via early termination, then break out of the i loop.

For each i, the univariate (dense) rational interpolation of F(z, ω(i)
1 , . . . , ω

(i)
n ) in (5) needs O(ν + δ) evaluations. Each

coefficient polynomial Ak or Bℓ, collects a subset of terms in p or q. Its sparsity is bounded by the overall sparsity of p or q,
which also bounds the i loop via the early termination of the employed sparse interpolation algorithm.

2.2. General multivariate rational functions

In Section 2.1, we require the multivariate rational function to have a non-zero constant in the denominator. That
condition cannot be assumed in general. The purpose of the non-zero constant is to guarantee an a priori normalization
of f . We can choose another non-zero term in f for normalization, but we still need the knowledge of such a non-zero term
beforehand.

By shifting the power basis, we can always impose a non-zero constant in the denominator. However, a sparse polynomial
or rational function representationmay become dense after the basis is shifted. Herewe demonstrate a shifting strategy that
can preserve the sparse interpolation of f .

From here on we do not impose any restriction on the constant term of q in f = p/q. The numerator and denominator of
f are denoted by

p(x1, . . . , xn) =
s−

k=1

akx
dk,1
1 · · · x

dk,n
n , ak ≠ 0,

q(x1, . . . , xn) =
t−

ℓ=1

bℓx
eℓ,1
1 · · · x

eℓ,n
n , bℓ ≠ 0. (6)

Let us introduce a shifted homogenization of f and form another auxiliary function Γ (z, x1, . . . , xn). Recall that in
Section 2.1, the normalization of f directly leads to the normalization of the auxiliary function F . Now we normalize the
shifted auxiliary function Γ instead of f .

For any (σ1, . . . , σn)where f = p/q is defined, q(σ1, . . . , σn) ≠ 0. Sowe define the (σ1, . . . , σn)-shifted homogenization
of f and the auxiliary function

Γ (z, x1, . . . , xn) = f (x1z + σ1, x2z + σ2, . . . , xnz + σn)

=

P̃(z)∈K[x1,...,xn][z]  
α̃0(x1, . . . , xn) · z0 + α̃1(x1, . . . , xn) · z + · · · + α̃ν(x1, . . . , xn) · zν

β̃0(x1, . . . , xn) · z0 + β̃1(x1, . . . , xn) · z + · · · + β̃δ(x1, . . . , xn) · zδ  
Q̃ (z)∈K[x1,...,xn][z]

. (7)

In (7) terms are collected with respect to the homogenizing variable z. The coefficients α̃0, . . . , α̃ν, β̃0, . . . , β̃δ in P̃(z) and
Q̃ (z) are multivariate polynomials in K[x1, . . . , xn].

By the definition of the (σ1, . . . , σn)-shifted homogenization,

Q̃ (z) = c̃ · q(x1z + σ1, . . . , xnz + σn)

= c̃ ·


t−

ℓ=1

bℓ(x1z + σ1)
eℓ,1 · · · (xnz + σn)

eℓ,n


for a c̃ ≠ 0. The constant term β̃0 can be obtained by evaluating Q̃ (z) at 0,

Q̃ (0) = β̃0(x1, . . . , xn) = c̃ ·
t−

ℓ=1

bℓσ
eℓ,1
1 · · · σ

eℓ,n
n = c̃ · q(σ1, . . . , σn) ≠ 0.

Hence we find that β̃0(x1, . . . , xn) is a non-zero value. Note that Section 2.1 represents the special case (σ1, . . . , σn) =
(0, . . . , 0).
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Since β̃0 is a non-zero value, the auxiliary univariate function Γ can be normalized such that the non-zero constant in
the denominator is 1,

Γ (z, x1, . . . , xn) = f (x1z + σ1, x2z + σ2, . . . , xnz + σn)

=

P(z)∈K[x1,...,xn][z]  
α0(x1, . . . , xn)+ · · · + αν(x1, . . . , xn) · zν

1+ β1(x1, . . . , xn) · z + · · · + βδ(x1, . . . , xn) · zδ  
Q (z)∈K[x1,...,xn][z]

. (8)

Similar to Section 2.1, if we choose (x1, . . . , xn) at (ω1, . . . , ωn), then by a (dense) univariate rational interpolation of
Γ (z, ω1, . . . , ωn), we obtain the evaluations of α0, . . . , αν, β1, . . . , βδ at (ω1, . . . , ωn) from the coefficients in

Γ (z, ω1, . . . , ωn) = f (ω1z + σ1, ω2z + σ2, . . . , ωnz + σn)

=
α0(ω1, . . . , ωn)+ · · · + αν(ω1, . . . , ωn) · zν

1+ β1(ω1, . . . , ωn) · z + · · · + βδ(ω1, . . . , ωn) · zδ
. (9)

But unlike Section 2.1, now the polynomial coefficients αk and βℓ also collect terms due to the expansions of the shift
(σ1, . . . , σn). So if we proceed with the simultaneous interpolation of αk and βℓ from their evaluations, eventually we can
recover p and q in f = p/q, except that such interpolation does not reflect the sparsity of the rational function in its given
representation. In order to recover the sparsity, these coefficients need to be adjusted.

Note that a shift affects neither the total degrees ν and δ nor the coefficients αν(x1, . . . , xn) and βδ(x1, . . . , xn) of the
highest degree terms in P(z) and Q (z). Moreover, only terms from the expansion of

c ·

 −
dk,1+···+dk,n=ν

ak(x1z + σ1)
dk,1 · · · (xnz + σn)

dk,n


can contribute to αν(x1, . . . , xn), and similarly for βδ(x1, . . . , xn). Hence

αν(x1, . . . , xn) = c ·

 −
dk,1+···+dk,n=ν

akx
dk,1
1 · · · x

dk,n
n

 ,

βδ(x1, . . . , xn) = c ·

 −
eℓ,1+···+eℓ,n=δ

bℓx
eℓ,1
1 · · · x

eℓ,n
n

 .

In (6), the polynomials p and q are not required to be normalized. However, for a fixed shift (σ1, . . . , σn) we can require
that the coefficients in p and q be normalized such that c = 1 and

αν(x1, . . . , xn) =
−

dk,1+···+dk,n=ν

akx
dk,1
1 · · · x

dk,n
n ,

βδ(x1, . . . , xn) =
−

eℓ,1+···+eℓ,n=δ

bℓx
eℓ,1
1 · · · x

eℓ,n
n . (10)

From now on, our discussions assume the representations in (10).
We start with the (early termination) sparse interpolation of only the highest degree coefficients αν and βδ . The required

evaluationsαν(ω
(i)
1 , . . . , ω

(i)
n ) andβδ(ω

(i)
1 , . . . , ω

(i)
n ) are obtained through repeated (dense) univariate rational interpolations

of (9). Other evaluations ofαk(ω
(i)
1 , . . . , ω

(i)
n ) andβℓ(ω

(i)
1 , . . . , ω

(i)
n ) for 0 ≤ k < ν and 1 ≤ ℓ < δ (coefficients of lower degree

terms) are recorded for later interpolations.
Once both αν and βδ are interpolated, we move to the next coefficients αν−1 and βδ−1. Note that the expansion of a

shifted lower degree term can never affect the representation of higher degrees. Hence to αν−1, which by definition collects
the coefficient of zν−1 in the expansion of

P(z) =
s−

k=1

ak(x1z + σ1)
dk,1 · · · (xnz + σn)

dk,n

=

ν−
r=0

 −
dk,1+···+dk,n=r

ak(x1z + σ1)
dk,1 · · · (xnz + σn)

dk,n

 , (11)
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only (12) and (13) can contribute,−
dk,1+···+dk,n=ν

ak(x1z + σ1)
dk,1 · · · (xnz + σn)

dk,n , (12)−
dk,1+···+dk,n=ν−1

ak(x1z + σ1)
dk,1 · · · (xnz + σn)

dk,n . (13)

Since αν is already interpolated and the shift is known, the contribution to αν−1 from (12) can be obtained as the
coefficient u(ν)

ν−1(x1, . . . , xn) in the expansion of

αν(x1z + σ1, . . . , xnz + σn) =
−

dk,1+···+dk,n=ν

ak(x1z + σ1)
dk,1 · · · (xnz + σn)

dk,n

= u(ν)
ν (x1, . . . , xn) · zν

+ u(ν)
ν−1(x1, . . . , xn) · z

ν−1
+ · · · + u(ν)

0 (x1, . . . , xn).

Wecan remove the effect of the shift in the onebut highest degree termaccordingly. Let ᾱν−1 = αν−1−u
(ν)
ν−1, the contribution

from (13) to αν−1. By comparing the highest degree terms in (13), we conclude that

ᾱν−1(x1, . . . , xn) =
−

dk,1+···+dk,n=ν−1

akx
dk,1
1 · · · x

dk,n
n ,

which now has a structure identical to that of Aν−1(x1, . . . , xn) in Section 2.1.
We proceedwith the (early termination) sparse interpolation of ᾱν−1. The evaluations ᾱν−1(ω

(i)
1 , . . . , ω

(i)
n ) are computed

by a similar adjustment of the stored αν−1(ω
(i)
1 , . . . , ω

(i)
n ),

ᾱν−1(ω
(i)
1 , . . . , ω(i)

n ) = αν−1(ω
(i)
1 , . . . , ω(i)

n )− u(ν)
ν−1(ω

(i)
1 , . . . , ω(i)

n ).

At this stage, the number of the stored αν−1(ω
(i)
1 , . . . , ω

(i)
n ) is sufficient for the earlier interpolations of ᾱν and β̄δ , the

coefficients of the higher degree terms. If the number of stored evaluations αν−1(ω
(i)
1 , . . . , ω

(i)
n ) does not produce enough

ᾱν−1(ω
(i)
1 , . . . , ω

(i)
n ) for the current interpolation of ᾱν−1, more evaluations of αν−1 can be added through new univariate

rational interpolations of Γ (z, ω
(i)
1 , . . . , ω

(i)
n ) at additional i as in (9).

Instead of interpolating the A0, . . . , Aν in parallel as in Section 2.1, our shifting strategy interpolates the adjusted
ᾱν, ᾱν−1, . . . , ᾱ0 sequentially. We start from the highest degree term ᾱν = αν and interpolate ᾱν . For r = 0, . . . , ν − 1,
after interpolating

ᾱν−r(x1, . . . , xn) =
−

dk,1+···+dk,n=ν−r

akx
dk,1
1 · · · x

dk,n
n ,

the u(ν−r)
0 , u(ν−r)

1 , . . . , u(ν−r)
ν−r−1 are computed from the expansion

ᾱν−r(x1z + σ1, . . . , xnz + σn) =
−

dk,1+···+dk,n=ν−r

ak(x1z + σn)
dk,1 · · · (xnz + σn)

dk,n

= u(ν−r)
ν−r (x1, . . . , xn) · zν−r

+ u(ν−r)
ν−r−1(x1, . . . , xn) · z

ν−r−1
+ · · · + u(ν−r)

0 (x1, . . . , xn).

For r = 1, . . . , ν, the adjusted ᾱν−r is obtained by removing from αν−r the contribution denoted by Uν−r ,

ᾱν−r = αν−r −
−

j=0,...,r−1

u(ν−j)
ν−r  

Uν−r

. (14)

From the evaluations of (14), ᾱν−r can be interpolated and then included in the adjustment for the next ᾱν−r−1. We
interpolate every newly adjusted ᾱν−r until all ᾱk are interpolated. Then

p =
ν−

r=0

ᾱν−r

is known.
The interpolation of q can be carried out in parallel. We start with β̄δ = βδ and interpolate β̄δ . For r = 0, . . . , δ− 1, each

time β̄δ−r(x1, . . . , xn) is interpolated, the v
(δ−r)
0 , v

(δ−r)
1 , . . . , v

(δ−r)
δ−r−1 are computed from the expansion of β̄δ−r(x1z + σ1, . . . ,

xnz + σn), −
eℓ,1+···+eℓ,n=δ−r

bℓ(x1z + σn)
eℓ,1 · · · (xnz + σn)

eℓ,n = v
(δ−r)
δ−r (x1, . . . , xn) · zδ−r

+ · · · + v
(δ−r)
0 (x1, . . . , xn).
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For r = 1, . . . , δ, removing from βδ−r the contribution denoted by Vδ−r gives

β̄δ−r = βδ−r −
−

j=0,...,r−1

v
(δ−j)
δ−r  

Vδ−r

. (15)

From the evaluations of (15), β̄δ−r can be interpolated and included in the adjustment for the next β̄δ−r−1. When all β̄ℓ are
interpolated, then

q =
δ−

r=0

β̄δ−r

is known.
An attractive feature of the sparse polynomial interpolation of the adjusted ᾱk and β̄ℓ is that it reflects the original sparsity

of p and q in f = p/q. Hence our overall interpolation method is sensitive to the sparsity of the rational function in its
originally given multinomial representation.

Algorithm: Sparse Rational Interpolation <general>
Input: I f (x1, . . . , xn): a multivariate black box rational function.

I ν and δ: total degrees of the numerator p and denominator q.
I η: a positive integer (or default to 1), the threshold required by the early termination strategy [16].

Output: I ak, bℓ, (dk,1, . . . , dk,n), (eℓ,1, . . . , eℓ,n):

f (x1, . . . , xn) =

s∑
k=1

akx
dk,1
1 · · · x

dk,n
n

t∑
ℓ=1

bℓx
eℓ,1
1 · · · x

eℓ,n
n

with high probability,

or an error message if the procedure fails to complete [16].
Steps:

1. [Shift.]
If f (σ1, . . . , σn) is defined, (σ1, . . . , σn) can be chosen as a shift.

2. [Shifted homogenization.]
For i = 0, 1, 2, . . .:

Generate (ω
(i)
1 , . . . , ω

(i)
n ) as dictated by the chosen sparse polynomial interpolation algorithm.

3. [Dense univariate rational interpolation.]
Pick distinct ζ0, ζ1, . . . , ζν+δ and evaluate f (ω(i)

1 ζj+σ1, . . . , ω
(i)
n ζj+σn) for 0 ≤ j ≤ ν+δ. From the ν+δ+1

evaluations interpolate

Γ (z, ω(i)
1 , . . . , ω(i)

n ) = f (ω(i)
1 z + σ1, . . . , ω

(i)
n z + σn)

=
α0(ω

(i)
1 , . . . , ω

(i)
n ) · z0 + · · · + αν(ω

(i)
1 , . . . , ω

(i)
n ) · zν

1+ β1(ω
(i)
1 , . . . , ω

(i)
n ) · z + · · · + βδ(ω

(i)
1 , . . . , ω

(i)
n ) · zδ

. (16)

The values of αν−1(ω
(i)
1 , . . . , ω

(i)
n ), . . . , α0(ω

(i)
1 , . . . , ω

(i)
n ), βδ−1(ω

(i)
1 , . . . , ω

(i)
n ), . . ., β1(ω

(i)
1 , . . . , ω

(i)
n ) are

stored for later interpolations.
4. [Initialize and interpolate ᾱν and β̄δ .]

Use the early termination sparse interpolation to continue the interpolations of ᾱν = αν and β̄δ = βδ from
evaluations of αν(ω

(i)
1 , . . . , ω

(i)
n ) and βδ(ω

(i)
1 , . . . , ω

(i)
n ).

If both ᾱν and β̄δ are interpolated, then break out of the i loop.
5. [Update ᾱν−r and β̄δ−r .]

Initialize Uν−1 = Uν−2 = · · · = U0 = 0 and Vδ−1 = Vδ−2 = · · · = V1 = 0.
For r = 1, . . . ,max(ν, δ):

At this stage both ᾱν+1−r and β̄δ+1−r are interpolated and we have

ᾱν+1−r(x1z + σ1, . . . , xnz + σn) =

ν+1−r−
j=0

u(ν+1−r)
j (x1, . . . , xn) · z j,

β̄δ+1−r(x1z + σ1, . . . , xnz + σn) =

δ+1−r−
j=0

v
(δ+1−r)
j (x1, . . . , xn) · z j.
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For j = r, . . . ,max(ν, δ − 1):
Uν−j ←− Uν−j + u(ν+1−r)

ν−j and Vδ−j ←− Vδ−j + v
(δ+1−r)
δ−j

End of j.
6. [Interpolate ᾱν−r and β̄δ−r .]

Use the early termination sparse interpolation to interpolate ᾱν−r and β̄δ−r from the evaluations

ᾱν−r(ω
(i)
1 , . . . , ω(i)

n ) = αν−r(ω
(i)
1 , . . . , ω(i)

n )− Uν−r(ω
(i)
1 , . . . , ω(i)

n ),

β̄δ−r(ω
(i)
1 , . . . , ω(i)

n ) = βδ−r(ω
(i)
1 , . . . , ω(i)

n )− Vδ−r(ω
(i)
1 , . . . , ω(i)

n ).

If both ᾱν−r and β̄δ−r are interpolated, then increase r .
If the stored values αν−r(ω

(i)
1 , . . . , ω

(i)
n ) or βδ−r(ω

(i)
1 , . . . , ω

(i)
n ) are not sufficient for interpolating either ᾱν−r

or β̄δ−r , then
continue with the i loop stopped earlier for continuing the interpolation of ᾱν−r and/or β̄δ−r . If both
ᾱν−r and β̄δ−r are interpolated, then break out of the i loop and increase r .

End of r .

The number of required black box evaluations is similar to Section 2.1. Each interpolation of Γ (z, ω
(i)
1 , . . . , ω

(i)
n ) needs

O(ν + δ) evaluations. We perform a sparse interpolation of ᾱk and β̄ℓ (comparable to Ak and Bℓ in Section 2.1) of which the
number of terms is bounded by the sparsity of p and q. Hence the overall i loop is bounded by the sparsity of either p or q
in f = p/q with respect to its given representation. Adjusting αk to ᾱk and βℓ to β̄ℓ may introduce additional operations
such as the polynomial expansions in Step 5 and the evaluations of Uν−r and Vδ−r in Step 6, but does not require additional
evaluations of the multivariate rational function f .

3. Implementations and illustrated examples

The combination of different (dense) algorithms for univariate rational interpolation and sparse polynomial interpolation
leads to a class of sparse multivariate rational interpolation algorithms.

In Section 3.1, we discuss implementations in exact arithmetic. Section 3.2 reports on our approach in floating point
arithmetic. The effectiveness and practicality of our method are illustrated in several examples.

3.1. Exact arithmetic

Let K be a field. We comment on the combination of (dense) univariate rational interpolation and sparse polynomial
interpolation algorithms in our method.

3.1.1. Dense univariate rational interpolation
Our auxiliary univariate functions are interpolated densely. The classical problem of univariate rational interpolation

determines the coefficients αk and βℓ in

Γ (z) =

P(z)  
α0 + α1z + · · · + ανzν

1+ β1z + · · · + βδzδ  
Q (z)

∈ K(z)

from the evaluations Γ (ζ0), Γ (ζ1), . . . , Γ (ζν+δ). Suppose deg(P) = ν and Q (z) = δ are given and that all the evaluations
of Γ (ζj) are defined, which implies Q (ζj) ≠ 0 for 0 ≤ j ≤ ν + δ. It is well-known that the interpolation problem can be
solved from the linear system of equations,

Γ (ζj)Q (ζj)− P(ζj) = 0, j = 0, 1, . . . , ν + δ. (17)

On the other hand, by the Chinese Remainder Theorem, the above problem can also be formulated as

P(z) ≡ Q (z)Γ (z), mod(z − ζ0)(z − ζ1) · · · (z − ζν+δ) (18)

in which P(z) and Q (z) can be computed by the extended Euclidean algorithm [25]. As for recovering the coefficients in
P(z) and Q (z) when K = Zρ and ρ is a prime, the fast Euclidean algorithm can be modified for fast rational function
reconstruction [21]. When K = Q, modular arithmetic can be combined with rational vector recovery to simultaneously
recover the common denominator of rational coefficients [22,19,23].

3.1.2. Sparse multivariate polynomial interpolation
The coefficients of each auxiliary univariate rational function require sparse multivariate polynomial interpolation

algorithms.
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Without the sparsity supplied as input, we can employ the early termination Ben-Or/Tiwari algorithm [17,16] or Zippel’s
interpolation [26]. Both algorithms are sensitive to the sparsity of the target polynomial and deliver results that are correct
with high probability.

As for interpolating over a small finite field, without an extension of the ground field an exponential lower bound
Ω(nlog τ ) where τ = max(s, t) for the number of black box queries is established in [2]. In [12] an efficient algorithm
is obtained through a slight field extension. On the other hand, [16, Section 5.2] shows that without field extension a
sparse multivariate polynomial can be interpolated from O(nτ) black box evaluations with high probability. With respect
to the exponential lower bound for multivariate sparse interpolation given in [2], this should be interpreted as performing
probabilistic univariate sparse interpolation in a variable-by-variable manner. Similarly, with high probability, the parallel
algorithm in [14] also achieves sparse interpolation from O(nτ) evaluations because it uses variable-by-variable evaluations
in a bipartite graph matching.

A sparse algorithm is less efficient when interpolating a dense polynomial. Hence, the racing algorithm [17,16] is
developed to run a dense against a sparse interpolation on a same set of evaluations. In general, the overall racing algorithm
is superior because it terminates as soon as any of the racer algorithms terminates and requires no additional evaluations
in comparison to a single algorithm.

3.1.3. An exact example in finite field arithmetic
Consider the reconstruction of

f (x1, x2, x3) =
p(x1, x2, x3)
q(x1, x2, x3)

=
x41 + 3x52 + x23
2x1x2x23 + 3x2

mod 3137 (19)

with its total degrees deg(p) = 5, deg(q) = 4 given. In general, there are 56 possible terms in the numerator and 35 in the
denominator. Even with normalization, classical rational interpolation requires at least 56 + 35 − 1 = 90 evaluations to
recover f (x1, x2, x3).

We illustrate our sparse method. The function f (x1, x2, x3) is not defined at (0, 0, 0), so we pick a shift, say (2, 1, 1) and
consider the interpolation of Γ (x1z + 2, x2z + 1, x3z + 1). We evaluate (x1, x2, x3) at (2i, 3i, 5i) for i = 1, 2, . . .. For each i,
we interpolate Γ (2iz + 2, 3iz + 1, 5iz + 1) at z = 1, . . . , 10. Our interpolation result agrees with f in Z3137,

2689x41 + 1793x52 + 2689x23
2241x1x2x23 + 1793x2

≡
x41 + 3x52 + x23
2x1x2x23 + 3x2

= f (x1, x2, x3) mod 3137.

EachΓ (2iz+2, 3iz+1, 5iz+1) is interpolated from 10 black box evaluations. Using the early termination Ben-Or/Tiwari
algorithm, with high probability, each adjusted coefficient in Γ can be interpolated after 3 evaluations. The multivariate
rational function f in (19) can thus be interpolated from 30 black box evaluations in total.

A fine analysis shows that this number of 30 probes can be brought down a bit more. By normalizing the denominator’s
non-zero constant to 1, the interpolation of Γ (2z + 2, 3z + 1, 5z + 1) requires (ν + δ + 1) evaluations. Note that the
constant in the numerator remains fixed for all Γ (2iz+ 2, 3iz+ 1, 5iz+ 1). Once Γ (2z+ 2, 3z+ 1, 5z+ 1) is interpolated,
the numerator’s constant is also known and each interpolation of Γ (2iz + 2, 3iz + 1, 5iz + 1) can be achieved from ν + δ,
instead of ν+δ+1, evaluations. So our example can actually be interpolated after 10+9+9 = 28 black box evaluations of f .

3.1.4. Comparison and remarks
The overall performance of our rational interpolation reflects the choice of the sparse interpolation algorithms employed,

e.g., the early termination version of the Ben-Or/Tiwari algorithm, Zippel’s algorithm, or the racing algorithm that races
Ben-Or/Tiwari against Zippel [16].

We compare our method with the exact multivariate sparse rational interpolation in [19]. Both are probabilistic
algorithms,whichmeans the results are correctwith highprobability. Both use the racing algorithm that races Ben-Or/Tiwari
against Zippel [16]. If we use the early termination version of the Ben-Or/Tiwari algorithm with threshold η, our algorithm
requires nomore than (ν+δ+1)+(2max(s, t)+ η) (ν+δ) black box probes (see the last line in Section 3.1.3 to understand
this count). To our knowledge this yields an efficient algorithm that at this moment best reflects and exploits the sparsity
of the rational function in terms of the number of evaluations.

Fig. 1 reports some comparisons on the number of black box probes required by the Sparse Rational Function
Interpolation (KY) in [19] and our method employing the racing algorithm in [16] (CL).

As shown in Fig. 1, in some cases our method requires only a fraction of the number of black box probes required by
[19]. This is because our method does not directly interpolate the numerator and denominator polynomials but rather the
coefficients in the univariate auxiliary function. These coefficients are possibly even sparser polynomials, which is a gain
obtained for free from performing a dense rational interpolation in the homogenizing variable z.

3.2. Floating point arithmetic

Several numerical challenges are encountered when attempting to implement a sparse interpolation method in floating
point arithmetic. That is, when both the inputs and outputs of the black box rational function have some errors, and all
numbers are represented in fixed precision arithmetic.
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Ex. Coeff. Range ν, δ n s, t mod KY CL

1 [−10, 10] (3, 3) 2 6, 6 503 221 85

2 [−10, 10] (5, 2) 4 6, 3 1009 339 211

3 [−20, 20] (2, 4) 6 2, 5 120011 357 133

4 [−20, 20] (1, 6) 8 4, 8 8009 777 659

5 [−30, 30] (10, 5) 10 7, 4 4001 2246 1471

6 [−10, 10] (15, 15) 15 15, 15 50021 17120 8191

7 [−10, 10] (20, 20) 20 20, 20 50021 38682 18281

8 [−30, 30] (30, 15) 5 20, 10 10007 12896 2071

10 [−50, 50] (50, 50) 50 50, 50 1000003 603638 330901

11 [−10, 10] (2, 8) 90 10, 50 1000003 75082 61791

Fig. 1. Comparing the number of black box evaluations on benchmarks from [19].

Withorwithout a shift, ourmethod always normalizes a non-zero constant in thedenominator. But in a numerical setting,
a non-zero constant may be very small hence can be regarded as numerically zero. Normalizing such a small constant value
can introduce ill-conditioning. Moreover, an introduced shift is powered along the degree of each monomial in both the
numerator and denominator, which can also skew the scale of the original function.

We present an approach that allows evaluations and computations over the complex field and explores a random shift
on the unit circle. Our approach leads to a heuristic for stable normalization that preserves the scale of the original rational
function.

3.2.1. Stable normalization in the univariate rational interpolation
If the given rational function is defined at (0, . . . , 0), we follow Section 2.1 and proceed with the interpolation by

normalizing the non-zero constant in the denominator. If not, Section 2.2 shows that a non-zero constant can be enforced
through a shift (σ1, . . . , σn), where the given function is defined.

In a finite precision environment, the constant in the denominator can be very small, even numerically regarded as zero.
If we proceed with normalizing a small or numerically zero constant, we may lose the sparsity by treating a numerically
zero term as non-zero. Moreover, numerical instabilities, due to scaling a very small value (zero) to one, can be introduced
at the same time.

However, there exist shifts that can lead to a numerically non-zero constant for a stable normalization. Recall that
in Section 2.2 we introduce the (σ1, . . . , σn)-shifted homogenization Γ (z, x1, . . . , xn) of the given multivariate rational
function f = p/q,

Γ (z, x1, . . . , xn) = f (x1z + σ1, . . . , xnz + σn) =
p(x1z + σ1, . . . , xnz + σn)

q(x1z + σ1, . . . , xnz + σn)

=
α̃0(x1, . . . , xn)+ α̃1(x1, . . . , xn) · z + · · · + α̃ν(x1, . . . , xn) · zν

β̃0(x1, . . . , xn)+ β̃1(x1, . . . , xn) · z + · · · + β̃δ(x1, . . . , xn) · zδ
,

and that β̃0(x1, . . . , xn) = c · q(σ1, . . . , σn) is a constant value.
Now let f = p̂/q̂with the polynomials p̂, q̂ ∈ Z[i][x1, . . . , xn]. In otherwords, the coefficients of p̂, q̂ are all on the integer

lattice of the complex plane, which can always be achieved in a finite precision environment. The value of q̂(σ1, . . . , σn)
corresponds to the constant in the denominator of Γ (z, x1, . . . , xn). By a numeric Zippel–Schwartz lemma [20, Lemma 3.1],
at certain random points, such evaluation can be expected to be bounded away from 0 guaranteeing a numerically non-zero
constant. In [20], this numerical Zippel–Schwartz lemma is used as a (partially) mathematical justification for the heuristics
of deciding whether a polynomial is identically zero from its evaluations.

Lemma (Numerical Zippel–Schwartz [20, Lemma 3.1]). Let 0 ≢ q̂(x1, . . . , xn) ∈ Z[i][x1, . . . , xn] and for 1 ≤ j ≤ n let
σj = exp(2πi/ρj) ∈ C with ρj ∈ Z≥3 distinct prime numbers. Suppose q̂(σ1, . . . , σn) ≠ 0. Then for random integers θj with
1 ≤ θj < ρj the expected value

E{|q̂(σ θ1
1 , . . . , σ θn

n )|} ≥ 1.

By the Zippel–Schwartz lemma [6,26,24], through randomization, the premise of q̂(σ1, . . . , σn) ≠ 0 can be obtainedwith
high probability. The lemmaasserts,with high probability, a non-zero constant q̂(σ θ1

1 , . . . , σ θn
n ) in the (σ

θ1
1 , . . . , σ θn

n )-shifted
homogenization, in which both (σ1, . . . , σn) and (θ1, . . . , θn) are randomized.
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Once a (stable) normalization is achieved, we can proceed with the interpolation of the auxiliary univariate rational
function as in (17). This problem has been studied extensively in a numerical setting.

3.2.2. Numerical sparse multivariate polynomial interpolation
After a set of auxiliary univariate rational functions are interpolated, we proceed with the interpolation of their

coefficients that are multivariate polynomials.
In floating point arithmetic, without the knowledge of the sparsity, an iterative algorithm based on the qd-scheme, can

interpolate all the variables at once. It is still sensitive to the sparsity of the target polynomial [4] which it detects while
running. A heuristic analogue to Zippel’s variable-by-variable sparse algorithm can also recover polynomials from noisy
evaluations [20].

The numerical sparse polynomial interpolation algorithms in [8,9] require the sparsity to be supplied as input. But it was
noticed in [9, Section 4.7] that the sparsity can be reflected in the conditioning of the associated Hankel systems and all their
leading minors, which leads to a heuristic of probabilistically detecting sparsity in a numerical setting.

3.2.3. An example with noisy evaluations
In floating point arithmetic, we consider the same black box rational function as in (19)

f (x1, x2, x3) =
p(x1, x2, x3)
q(x1, x2, x3)

=
x41 + 3x52 + x23
2x1x2x23 + 3x2

,

with the total degrees deg(p) = ν = 5 and deg(q) = δ = 4 given.
We test our method in Maple. We set Digits to 15 and add random noise between 10−3 and 10−5 to each black box

evaluation of f .
The function f (x1, x2, x3) is not defined at the origin. A shift (σ1, σ2, σ3) is picked at which f is defined

σ1 = exp(2πi/3), σ2 = exp(4πi/3), σ3 = exp(4πi/3).

Now the normalization of the (σ1, σ2, σ3)-shifted homogenization Γ can be achieved. For each i, we interpolate

Γ (exp(2πi/5)iz + σ1, exp(2πi/7)iz + σ2, exp(2πi/3)iz + σ3)

from the evaluations at z = exp(2jπi/10) for j = 1, . . . , 10.
Using the numerical sparse polynomial interpolation in [8,9] we determine each adjusted coefficient in Γ after 4

evaluations. Let f = p/q = p̄/q̄ such that p̄, q̄ are polynomials normalized with respect to the non-zero constant in the
denominator of Γ (x1z + σ1, x2z + σ2, x3z + σ3). After 40 black box evaluations we obtain an interpolant f̃ = p̃/q̃ with a
relative error of the magnitude of the noise:

‖p̃− p̄‖22 + ‖q̃− q̄‖22
‖p̄‖22 + ‖q̄‖

2
2

= 0.00131 . . . .

Note that in order to correctly recover x1, x2, x3 at once, we need enough precision to distinguish powers of exp(2πi/m)
wherem = 5× 7× 3. Clearly, higher degrees of the primitive roots of unity require a higher precision in the computations.
In the multivariate case, such problem can be traded off for interpolating fewer variables at a time. We also mention that in
[9] it is shown that the conditioning can be improved through randomization.

3.2.4. Comparison and future research
The numerical behavior of our overall interpolationmethod depends on the performance of the interpolation algorithms

employed for univariate rational functions and multivariate polynomials. Sections 3.2.1 and 3.2.2 show that it is possible to
achieve reasonable numerical robustness through randomization over complex values. We demonstrate some prospects of
our approach through examples and describe some key issues under investigation.

Our method interpolates the numerical example in Section 3.2.3 from 40 black box probes. The numerical algorithm
ZNIPR [20] interpolates the same example after 98 black box probes. ZNIPR can use oversampling to achieve better
conditioning. But for comparison we set the oversampling for this example to 0 and the noise range somewhat smaller
between 10−4 and 10−6. Then the returned interpolant is in the same error range.

We further test ZNIPRwithout oversampling against our approach, alsowithout oversampling, on the first three examples
in Table 2 of [20, Section 4.3]. Employing the sparse polynomial interpolation in [9], our approach delivers comparable results
in fewer black box probes. All the relative errors of the interpolants are of the same magnitude as that of the noise, which is
as good as one can expect (see Fig. 2).

As indicated earlier, the conditioning of the interpolation problem can be improved through randomization. This is
currently under investigation. In addition, a probability analysis of the shift strategy needs to be performed as well.

To conclude, we point out that in many applications one seeks to fit high dimensional data with a (preferably sparse)
rational model. As the number of possible terms explodes exponentially in the number of variables n, the possible size of
the interpolation problem can be huge even when the total degree is not high. Our multivariate sparse method seems to be
very suitable for such a scenario. We are therefore planning to explore different and specific applications.
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ZNIPR Our approach

Ex. ν, δ s, t n random noise probes random noise probes

1 1,1 2,2 2 10−5 ∼ 10−3 28 10−5 ∼ 10−3 12

2 2,2 3,3 2 10−4 ∼ 10−6 40 10−5 ∼ 10−3 25

3 1,4 2,4 3 10−4 ∼ 10−6 73 10−6 ∼ 10−8 60

Fig. 2. Some numerical tests for sparse multivariate rational interpolation.
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