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Abstract The problemofmultivariate exponential analysis or sparse interpolation has
received a lot of attention, especially with respect to the number of samples required to
solve it unambiguously. In this paper we show how to bring the number of samples
down to the absoluteminimumof (d+1)nwhere d is the dimension of the problemand
n is the number of exponential terms. To this end we present a fundamentally differ-
ent approach for the multivariate problem statement. We combine a one-dimensional
exponential analysis method such as ESPRIT, MUSIC, the matrix pencil or any
Prony-like method, with some linear systems of equations because the multivariate
exponents are inner products and thus linear expressions in the parameters.
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1 Introduction

Multivariate exponential analysis is a classical problem at the basis of many appli-
cation domains (such as, for instance, [13, 14, 25, 27]) that recently has gained a lot
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of attention. The problem statement is that of recovering the vectors φj ∈ C
d , j =

1, . . . , n and the coefficients αj ∈ C, j = 1, . . . , n in the d-variate n-sparse sum

f (x) := f (x1, . . . , xd) =
n∑

j=1

αj exp
(〈φj , x〉) ,

x = (x1, . . . , xd), φj = (φj1, . . . , φjd), 〈φj , x〉 =
d∑

i=1

φjixi,

from (d + 1)n samples of f (x1, . . . , xd), which is the minimal number of samples
because it equals the number of parameters in the problem statement.

When d = 1 then the problem can be solved using a variety of Prony-based algo-
rithms [2, 10, 20, 23], in which the identification of the φj and αj is separated and
taken care of in two stages. The frequencies φj , j = 1, . . . , n are obtained from a
generalized eigenvalue or polynomial rooting problem, while the linear coefficients
αj , j = 1, . . . , n are computed from a Vandermonde system of linear equations
[8, pp. 378–382]. Input to these algorithms are 2n samples of f (x) at some equidis-
tant points f (s�), s = 0, . . . , 2n − 1. This number of samples is minimal if n is
known. Otherwise at least one more sample is required to identify the sparsity n. For
more details on the latter we refer to [5, 11].

Several computational methods were developed to solve the problem also when
d > 1, from straightforward generalizations to more sophisticated approaches, all of
them using more than a minimum of (d + 1)n samples though. It should be obvi-
ous to the reader that the challenge is not to recover inner products 〈φj , x〉 and
the associated coefficients αj for j = 1, . . . , n, from 2n equidistant samples in
higher-dimensional space. Under modest conditions this can be achieved using the
univariate techniques mentioned above. Instead, the challenge is to recover the indi-
vidual φji, j = 1, . . . , n, i = 1, . . . , d and the coefficients αj . We describe the state
of the art in multivariate exponential analysis and explain how our approach differs
from it.

The one-dimensional matrix pencil method was generalized to the 2-dimensio-
nal matrix enhancement and matrix pencil method (MEMP) [9] and can be extended
to higher dimensions in a straightforward manner. It uses a Hankel-block-Hankel
matrix to decompose the 2-dimensional problem into two one-dimensional problems
reflecting each dimension. This decomposition introduces an additional challenge
though, namely that of matching or pairing the information computed from the one-
dimensional problems [19]. Moreover, when constructing a uniform d-dimensional
grid of sample points, the amount of information is O(nd).

Solving the problem along some one-dimensional subspace, in other words com-
puting some projection such as in [17, 18] requires only O(n) samples. Using an
adaptive sampling scheme and under some mild condition on the coefficients, this
remains valid in the 2-dimensional case [26]. However, in [6] is shown that there is
no finite set of (independently of f ) predefined lines for which the bivariate recon-
struction problem has a unique solution. A lower bound for the number of samples
in the reconstruction when d = 2 is O(n2). In order to solve the pairing problem,
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[6] reformulates the problem as a non-convex optimization problem, which is not
computationally feasible for practical purposes.

Rather than projecting on one-dimensional subspaces, a symbolic approach based
on [22] is developed in [21] making use of constructive ideal theory and multivariate
polynomial interpolation. The largest number of required samples in this setting is
estimated to be O((d + 1)n2 log2d−2 n). In the same corner one finds [12] and [16]
which obtain the multivariate exponents as common roots of a finite system of d-
variate polynomials. Still making use of O(nd) samples however, algebraic geometry
theory now guarantees the correct pairing and recovery.

The method we propose differs significantly from all of the above, not only in
its informational usage which can be as low as (d + 1)n, but also in its approach
which only makes use of a 1-dimensional Prony technique combined with some lin-
ear systems of equations because the individual φji appear linearly in the 〈φj , x〉. The
presented multivariate exponential analysis technique results from ideas that were
initially formulated in [3, 4]: a so-called identification shift in the sampling strategy
allows to overcome any ambiguity in the exponential analysis.

After this state of the art of the literature, Sections 2 and 3 deal with the ideal case
where some mild assumptions are verified and only (d + 1)n evaluations are neces-
sary, thus generalizing Prony’s result where 2n samples solve a univariate exponential
analysis problem. In Section 4 the most general case is detailed, requiring slightly
more samples because the assumptions do not hold. An analysis of the worst case
scenario and an algorithm for the detection of n is presented in Section 5. Finally, the
new algorithm is illustrated with an example in Section 6.

2 Multivariate exponential analysis

As surveyed in the introduction, up to now computational methods require more sam-
ples than the minimal number, for one or other reason. We now explain how the
problem statement can also be solved in the multivariate setting using the minimal
number (d + 1)n of samples. The trick to achieve this is to split the set of samples in
two subsets, namely 2n equidistant samples and another (d − 1)n samples that may
but need not be equidistant in the higher-dimensional space (they cannot be entirely
unstructured though). We discuss the use of the 2n equidistant samples in this section
and that of the additional (d − 1)n samples in Section 3. For now we assume in the
multivariate setting that the value of n is known. How to detect n is further discussed
in Section 5.

Let � = (�1, . . . , �d) �= (0, . . . , 0) and |�φji | < π/|�i |, j = 1, . . . , n, i =
1, . . . , d [15, 24], where the function i returns the imaginary part of a complex
number. Let us sample f (x1, . . . , xd) at the points s�, s = 0, . . . , 2n − 1:

Fs := f (s�1, . . . , s�d), s = 0, . . . , 2n − 1. (1)

For the time being, we also assume that the sampling direction � is such that the
values exp(〈φj , �〉), j = 1, . . . , n are mutually distinct. How to deal with collisions
in these values is described in Section 4.
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Following the univariate scheme [8, pp. 378–382] the coefficients βi, i = 0, . . .,
n − 1 of the polynomial

B(z) =
n∏

j=1

(
z − exp

(〈φj , �〉)) = zn + βn−1z
n−1 + . . . + β0 (2)

can be obtained from the n × n Hankel system of linear equations
⎛

⎜⎜⎜⎝

F0 F1 · · · Fn−1
F1 · · · Fn

...
...

Fn−1 Fn · · · F2n−2

⎞

⎟⎟⎟⎠

⎛

⎜⎝
β0
...

βn−1

⎞

⎟⎠ = −
⎛

⎜⎝
Fn

...

F2n−1

⎞

⎟⎠ , (3)

or the roots exp(〈φj , �〉), j = 1, . . . , n of B(z) can be found as the generalized
eigenvalues λ of the problem

⎛

⎜⎜⎜⎝

F1 F2 · · · Fn

F2 · · · Fn+1
...

...

Fn Fn+1 · · · F2n−1

⎞

⎟⎟⎟⎠ v = λ

⎛

⎜⎜⎜⎝

F0 F1 · · · Fn−1
F1 · · · Fn

...
...

Fn−1 Fn · · · F2n−2

⎞

⎟⎟⎟⎠ v, v ∈ C
n. (4)

So we can recover the expressions exp(�j ) where

�j = 〈φj , �〉, j = 1, . . . , n. (5)

Although we have not yet identified the individual φji, j = 1, . . . , n, i =
1, . . . , d , nothing prevents us from already computing the linear coefficients αj from
one of the n × n Vandermonde systems

⎛

⎜⎝
exp(k�1) exp(k�2) · · · exp(k�n)

...
...

exp((k + n − 1)�1) exp((k + n − 1)�2) · · · exp((k + n − 1)�n)

⎞

⎟⎠

⎛

⎜⎝
α1
...

αn

⎞

⎟⎠

=
⎛

⎜⎝
Fk

...

Fk+n−1

⎞

⎟⎠ , 0 ≤ k ≤ n. (6)

The latter can also be replaced by the 2n × n Vandermonde system involving all
samples, which is then solved in the least squares sense, as recommended in the case
of real-life and hence noisy data.

3 Identification shifts

In order to extract the φji, j = 1, . . . , n, i = 1, . . . , d from the �j, j = 1, . . . , n,
still under the assumption that the values exp(�j ), j = 1, . . . , n are mutually
distinct, some additional samples are required. For this purpose we choose a set
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{�, δ1, . . . , δd−1} of d linearly independent vectors in C
d . The additional samples

are taken along a linear combination of � and some δi, i = 1, . . . , d − 1:

F
i := f (κ
i� + δi) = f (κ
i�1 + δi1, . . . , κ
i�d + δid),


 = 1, . . . , n, i = 1, . . . , d − 1 (7)

where the κ
i, 
 = 1, . . . , n for fixed i are taken to be mutually distinct. A simple
choice for κ
i for all i is κ
i = 
 − 1. Then the additional samples are taken equidis-
tantly along independent shifts δi with respect to the original vector �, in other words
F
i = f ((
 − 1)� + δi). At the same time we assume that

|�〈φj , δi/||δi ||〉| < π/||δi ||, j = 1, . . . , n, i = 1, . . . , d

in order to comply with the Shannon-Nyquist conditions formulated in [15, 24]. We
call these vectors δi, i = 1, . . . , d − 1 identification shifts for reasons that will
become apparent: they allow to identify the individual φji from the computed �j .
For this identification we exploit the fact that the φji appear linearly in the �j and
hence we turn our attention to systems of linear equations rather than to multivariate
polynomial root solving or structured generalized eigenvalue problems.

Consider for fixed i = 1, . . . , d − 1, meaning for a chosen linearly independent
shift vector δi , the following Vandermonde-like system of linear equations:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

exp(κ1i�1) exp(κ1i�2) · · · exp(κ1i�n)

exp(κ2i�1) · · · exp(κ2i�n)
...

...

exp(κni�1) · · · exp(κni�n))

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
A1i
...

Ani

⎞

⎟⎠ =
⎛

⎜⎝
F1i
...

Fni

⎞

⎟⎠ . (8)

Since we know exp(�j ), j = 1, . . . , n and have chosen κ
i, 
 = 1, . . . , n, with i

fixed, the Vandermonde-like coefficient matrix can easily be composed. Note that for
the choice κ
i = 
 − 1 the Vandermonde-like coefficient matrix coincides with that
of (6) where k = 0. The unknowns Aji, j = 1, . . . , n come from a reinterpretation
of the samples F
i as

F
i = f (κ
i� + δi) =
n∑

j=1

αj exp
(〈φj , δi〉)

)
exp

(〈φj , κ
i�〉) , 
 = 1, . . . , n

with
Aji = αj exp

(〈φj , δi〉)
)
, j = 1, . . . , n

and
exp(κ
i�j ) = exp

(〈φj , κ
i�〉) , 
, j = 1, . . . , n.

The values Aji/αj equal

Aji

αj

= exp
(〈φj , δi〉

)
, j = 1, . . . , n,

which we denote by

exp(�ji) := exp
(〈φj , δi〉

)
, j = 1, . . . , n.



992 A. Cuyt, W.-s. Lee

Here the index i is still fixed. Note that we have no problem to pair the �ji to the
�j , j = 1, . . . , n since for each i the Aji are paired to the αj , j = 1, . . . , n through
the Vandermonde-like systems (6) and (8).

By setting up (8) for each i = 1, . . . , d − 1 and pairing its solution with �j in (5),
we obtain for fixed j = 1, . . . , n the linear system of equations

⎛

⎜⎜⎜⎝

�1 · · · �d

δ11 · · · δ1d
...

...

δd−1,1 · · · δd−1,d

⎞

⎟⎟⎟⎠

⎛

⎜⎝
φj1
...

φjd

⎞

⎟⎠ =

⎛

⎜⎜⎜⎝

�j

�j1
...

�j,d−1

⎞

⎟⎟⎟⎠ . (9)

Since the vectors � and δi, i = 1, . . . , d − 1 are linearly independent, the coef-
ficient matrix of (9) is regular and so the individual φji, j = 1, . . . , n, i = 1, . . . , d
can be computed, at the expense of 2n evaluations Fs in (1) and (d − 1)n evaluations
F
i in (7).

Before we continue we point out that (as is clear from the semantics of the
formulas) we can also denote � as δ0, Fs as Fs0 and �j as �j0.

4 Disentangling collisions

We now turn our attention to the situation in which the first batch of samples Fs

at multiples of the vector � does not reveal all individual terms because some
values exp(�j ), j = 1 . . . , n collide and the exponential sum shrinks to ν < n

terms. For ease of notation, but without loss of generality, we take the colliding
terms to be successive, for instance: exp(�1) = . . . = exp(�h1), exp(�h1+1) =
. . . = exp(�h2), . . . , exp(�hν−1+1) = . . . = exp(�n). Assume that with 0 ≤ s ≤
2ν − 1, ν ≤ n the exponential samples break down into

Fs =
ν∑

j=1

(
αhj−1+1 + . . . + αhj

)
exp

(〈φhj
, s�〉) , h0=0, hj < hj+1, hν =n

(10)
because

exp(�hj−1+1) = . . . = exp(�hj
), j = 1, . . . , ν.

Since |�φji | < π/|�i |, j = 1, . . . , n, i = 1, . . . , d , we actually have

�hj−1+1 = · · · = �hj
, j = 1, . . . , ν.

The Vandermonde system (6) now becomes
⎛

⎜⎝
exp(k�h1) · · · exp(k�hν )

...
...

exp((k + ν − 1)�h1) · · · exp((k + ν − 1)�hν )

⎞

⎟⎠

⎛

⎜⎝
α1 + . . . + αh1

...

αhν−1+1 + . . . + αhν

⎞

⎟⎠

=
⎛

⎜⎝
Fk

...

Fk+ν−1

⎞

⎟⎠ , 0 ≤ k ≤ ν. (11)
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Note that at the same time, the degree of the polynomial B(z) in (2) is only ν.
How this is detected and how the true n is revealed is discussed in the next section.
To proceed we denote

Aj := αhj−1+1 + . . . + αhj
, j = 1, . . . , ν. (12)

To disentangle the collisions in the exponential sum, we need additional evalua-
tions besides the minimal number (d + 1)n. At the end of Section 5 we also explain
how these additional evaluations allow to deal with the situation where some Aj = 0.

We start with i = 1 and the identification shift vector δ1. First we point out how
the Vandermonde-like system (8) of Section 3 looks like in case of such collisions: in
the coefficient matrix the value n is replaced by ν and in �j the index j is replaced
by hj . With the collisions in (10), the unknowns Aj1, j = 1, . . . , ν take the form

Aj1 = αhj−1+1 exp
(〈φhj−1+1, δ1〉

) + . . . + αhj
exp

(〈φhj
, δ1〉

)
, j = 1, . . . , ν.

In the sequel we denote from here on the additional evaluations F
1 mentioned in
Section 3 by

F1
1 := F
1 = f (κ
1� + δ1), 
 = 1, . . . , ν

and we add, still with i = 1, the samples

Fs
1 := f (κ
1�+sδ1), s = 2, 3, . . . , 2 max
1≤j≤ν

(hj −hj−1), 
 = 1, . . . , ν, i = 1.

The triple index expresses the shift vector multiple in the index s, the collision into
ν piles of the �j in the index 
, and the identification level in i (which is i = 1 here).

Since the values of hj are actually unknown, the addition of samples is done fur-
ther and interlaced with singularity checks of some Hankel matrices, as we explain
now. The checks are performed for each collision or pile hj and later repeated for
each i. Collisions in the space spanned by � may not be fully disentangled in the
space spanned by � and δ1, but they are gradually being disentangled as we add inde-
pendent vectors δi until we span the whole space. At the last stage, when dealing with
the full basis �, δ1, . . . , δd−1, the true n is revealed because in the end all collisions
are taken apart, given enough additional samples. For the moment we continue with
i = 1.

For each s separately, we set up in analogy with (8), the Vandermonde-like system
⎛

⎜⎜⎜⎜⎜⎜⎜⎝

exp(κh11�h1) exp(κh11�h2) · · · exp(κh11�hν )

exp(κh21�h1) · · · exp(κh21�hν )
...

...

exp(κhν1�h1) · · · exp(κhν1�hν )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
As11

...

Asν1

⎞

⎟⎠ =
⎛

⎜⎝
Fs11

...

Fsν1

⎞

⎟⎠ (13)

where

Asj1 = αhj−1+1 exp
(〈φhj−1+1, sδ1〉

)+. . .+αhj
exp

(〈φhj
, sδ1〉

)
, j = 1, . . . , ν.

(14)
Note that the coefficient matrix is independent of s. Also, the former unknowns

Aj and Aj1 can as well be indexed as A0j1 and A1j1 respectively, and so (13) and
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(14) remain valid for s = 0, 1, which is important for the sequel. The values Aj from
(12) and Asj1, s ≥ 1 from (14) are actually equidistant samples of the function

Aj1(x) = Aj1(x1, . . . , xd)=αhj−1+1 exp
(〈φhj−1+1, x〉)+ . . . + αhj

exp
(〈φhj

, x〉) ,

j = 1, . . . , ν, (15)

taken at x = sδ1, s ≥ 0. For each fixed j = 1, . . . , ν we now put together the Hankel
matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0j1 A1j1 A2j1 A3j1 . . .

A1j1 A2j1 A3j1 . . .

A2j1 A3j1 A4j1 . . .

A3j1
...

...
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

Note that in order to enlarge (16) with one row and column for a particular j , one
needs to solve (13) for two additional values of s, thereby obtaining the additional
Asj1 for all 1 ≤ j ≤ ν.

It is known that the rank of any (hj − hj−1 + t) × (hj − hj−1 + t) submatrix
for finite t ≥ 0 is bounded by hj − hj−1 [5, 11] since hj − hj−1 equals the number
of terms in each of the evaluations Aj , Asj1, s ≥ 1. The actual rank rj of the (hj −
hj−1) × (hj − hj−1) submatrix with Aj in the top left corner tells us (with high
probability [11]) how many of the hj −hj−1 terms in Aj(x) can indeed be separated
at the current level (i = 1) where identification shift δ1 is brought into the picture.
The value of rj is discovered as one adds samples Fs
1, solves (13) and enlarges
(16) step by step. This explains why we need to add samples Fs
1 until s reaches
2maxj (hj − hj−1) or until for all j the rank rj is known. How do we proceed to
extract the coefficients and exponential parameters from (15) and disentangle the
collisions?

For j fixed, rj of the individual terms

αhj−1+k exp(〈φhj−1+k, δ1〉), k = 1, . . . , hj − hj−1, 1 ≤ rj ≤ hj − hj−1

of Aj1(x) can be deduced from the samples Aj , Asj1, s ≥ 1 of Aj1(x) using one
of the Prony-like methods [2, 10, 20, 23] which were already mentioned to solve
for (5) from (3) or (4) and compute the coefficients from (6). We remark that when
rj < hj − hj−1 then some collisions in Aj1(x) still remain indistinguishable in the
space spanned by � and δ1.

For the sake of completeness we explicitly give the generalized eigenvalue
problems that lead to the identification of 1 ≤ rj ≤ hj − hj−1 terms in Aj(x):

⎛

⎜⎜⎜⎝

A1j1 A2j1 · · · Arj ,j1

A2j1 A3j1 · · · Arj +1,j1
...

...

Arj ,j1 Arj +1,j1 · · · A2rj −1,j1

⎞

⎟⎟⎟⎠ v = λ

⎛

⎜⎜⎜⎝

A0j1 A1j1 · · · Arj −1,j1

A1j1 A2j1 · · · Arj ,j1
...

...

Arj −1,j1 Arj ,j1 · · · A2rj −2,j1

⎞

⎟⎟⎟⎠ v,

v ∈ C
rj .
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After disentangling at i = 1, at least partially, some of the collisions, we can
update the number of terms in the exponential model from ν to μ ≥ ν and reduce the
collisions to

Fs =
μ∑

j=1

(
αgj−1+1 + . . . + αgj

)
exp

(〈φgj
, s�〉) , g0=0, gj < gj+1, gμ =n.

It is clear that the previous indices hj , j = 1, . . . , ν are among the gk, k =
1, . . . , μ but remember that we don’t know the values hj or gk explicitly. We only
know that for some j a collision from index hj−1 + 1 to hj , 1 ≤ j ≤ ν may have
split into separate piles indexed by some gk and gk+1, 1 ≤ k ≤ μ. At this moment in
the procedure, namely at the completion of step i = 1, we have computed

exp(�gk1), �gk1 := 〈φgk
, δ1〉, k = 1, . . . , μ.

Because |�〈φj , δ1/||δ1||〉| < π/||δ1||, j = 1, . . . , n we in fact obtained all the
values

�gk−1+1,1 = · · · = �gk,1, k = 1, . . . , μ, g0 = 0, , gμ = n

which we need later on in combination with the

�hj−1+1 = · · · = �hj
, j = 1, . . . , ν ≤ μ

to identify the individual φji as in (9).
We now explain how to move from i to i + 1. The first thing is to find proper

locations for the samples involving the next identification shift δ2. Some care needs
to be taken with respect to the regularity of the Vandermonde matrices involved. For
i = 2 we collect

Fs
2 := f (κ
2(� + δ1) + sδ2),

s = 1, . . . , 2 max
1≤j≤μ

(gj − gj−1), 
 = 1, . . . , μ, i = 2. (17)

Let us denote
gj 1 := �gj

+ �gj 1, j = 1, . . . , μ.

Note that the sum is a direct consequence of the choice � + δ1 in (17), which is
briefly discussed below. Similarly to (13) we write down, for each s separately,

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

exp(κg12g11) exp(κg12g21) · · · exp(κg12gμ1)

exp(κg22g11) · · · exp(κg22gμ1)
...

...

exp(κgμ2g11) · · · exp(κgμ2gμ1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
As12

...

Asμ2

⎞

⎟⎠ =
⎛

⎜⎝
Fs12

...

Fsμ2

⎞

⎟⎠ (18)

where

Asj2 = αgj−1+1 exp
(〈φgj−1+1, sδ2〉

)+. . .+αgj
exp

(〈φgj
, sδ2〉

)
, j = 1, . . . , μ.

(19)
From here it is clear how to finalize the i = 2 phase and how to proceed to the

next value of i. We point out that instead of the linear combination � + δ1 in (17),
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any linear combination c� + eδ1 with ce �= 0 that guarantees the regularity of the
coefficient matrix in (18) can be used (then the definition of gj

also needs to be
adapted). This option may be useful as it allows to control the location of the sample
points for numeric purposes or so.

To round up this section, we summarize the algorithm that recovers the vectors φj

and coefficients αj for j = 1, . . . , n in case of possible collisions of inner products
with the chosen directional vectors �, δi, i = 1, . . . , d − 1. Before we proceed, we
further adapt our notation. Let

δ0 := �,

ν−1 := 0,

ν0 := ν,

ν1 := μ

Our first aim is to identify all the inner products �ji = 〈φj , δi〉, j = 1, . . . , n, i =
0, . . . , d−1, including possible collisions. This is done by making use of successively
collected samples, namely

Fs
i = f (κ
i(δ0 + . . . + δi−1) + sδi) ,

s = 0, 1, 2, . . . 
 = 1, 2, . . . , νi−1, i = 0, . . . , d − 1,

where we assume that empty sums equal zero and values in an empty range need not
be specified. The samples are collected by fixing the indices from the right to the
left: at identification level i, collision or pile 
 is being sparsely interpolated using the
samples collected at shift multiples s. Here νi indicates the number of non-coinciding
inner products at identification level i. Remember that s is running up to twice the
number of terms in expression A
i(x) at level i (for i = 1 this is given in (15)
and it is straightforward to imagine how it looks like for general i). We remind the
reader that only the evaluation at multiples of δi, i ≥ 0 needs to follow an equidistant
scheme. The values κ
i need not be like that. We also mentioned earlier that the sum
δ0 + . . . + δi−1 can be replaced by another linear combination. The only crucial
element is that the δi, i ≥ 0 are linearly independent. The latter will precisely allow
us to identify the vector components φji, j = 1, . . . , n, i = 1, . . . , d from the inner
products 〈φj , δi〉, j = 1, . . . , n, i = 0, . . . , d − 1 as in (9).

5 Detecting the sparsity

The minimal number of (d + 1)n samples only delivers the parameters αj , φji, j =
1, . . . , n, i = 1, . . . , d if the value of n is somehow known a priori and no collision
of values exp(�j ), j = 1, . . . , n occurs. In the previous section we described how
to deal with eventual collisions. Here we detail how to detect the value of n should
it not be given. In addition, we analyze how many samples are needed in the worst
case when neither n is known nor the projections are collision free.

While collecting the samples Fs = f (s�) and building the Hankel matrices in (3)
or (4), the rank of the Hankel matrix reveals (with high probability [11]) the number
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ν of terms that do not collide when evaluating in the space spanned by the vector �.
To this end we need at least 2ν+1 values so that we can compose the (ν+1)×(ν+1)
Hankel matrix ⎛

⎜⎝
F0 . . . Fν

...
...

Fν . . . F2ν

⎞

⎟⎠

and conclude that it is singular [1, 7, 11].
From ν and (3) or (4) we proceed to collect the samples F1
1 (s = 1) and F2
1

(s = 2), another 2ν in total (
 = 1, 2, . . . , ν). If all 2 × 2 Hankel matrices of the
form (16) are singular, then every collision remains indistinguishable (unless the zero
determinant was an unfortunate coincidence [11]) also in the space spanned by � and
δ1. However, if for some j the 2 × 2 matrix (16) is regular, then we have to proceed
to the next values for s (s = 3, 4), collect another 2ν values in total, and find out how
many terms actually can be revealed in the space spanned by � and δ1. We proceed
until we find no larger matrices of the form (16) that are regular. Only after working
ourselves through all regular matrices of the form (16) with δ1 (i = 1) we can update
ν to μ ≥ ν.

And then we bring the next identification shift vector δ2 in the picture. We collect
the samples Fs
2 (s = 1, 2) as in (17) and compose matrices similar to (16) but now
with the last index in the Asj1 replaced by i = 2 and with Asj2 defined as in (19).
The inspection of the Hankel matrices containing the values computed for Asj2 is
identical to the procedure described in the previous paragraph for i = 1. If required,
as before, we add more samples for larger values of s.

Finally, by the time we reach i = d − 1 we can update the number of terms to the
true value for n. Now how many samples has this cost us? When n is known a priori
and we do not run into collisions or cancelations, which with high probability do not
occur, the algorithm presented in Section 3 uses only

(d + 1)n

samples. Next, we look at the situation where collisions occur and Section 4 is put to
work (how to deal with possible cancelations is dealt with at the end of this section).
Also the sparsity n is not given. The Aj and �hj

with j = 1, . . . , ν in (10) are
retrieved from O(ν) samples where ν ≤ n. In Aj , 1 ≤ j ≤ ν there are hj − hj−1
terms colliding, where each hj − hj−1 ≤ n − ν + 1. To disentangle the terms in Aj

we need O(hj − hj−1) samples and so we need at most O(ν(n − ν + 1)) samples to
disentangle all Aj , j = 1, . . . , ν. Note that we have overestimated each hj − hj−1
by n − ν + 1, while if one hj − hj−1 = n − ν + 1, all others equal 1. The procedure
is repeated when working with the identifications shifts δ1, . . . , δd−1, leading us to a
grand total of

O

(
(d + 1) max

1≤ν≤n
ν(n − ν + 1)

)
. (20)

Remains to discuss the issue of a vanishing Asji . For simplicity, but without loss
of generality, we discuss the situation where one of the coefficients Aj given by (12)
vanishes, in other words Aj = Aj1(0) = 0 with Aj1(x) given by (15). So besides
encountering a collision, the result of the collision is now also zero.
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If some Aj = 0 then the rank of the matrices in (4) is less than ν and will not
reveal the correct value for ν. Of course, the accidental cancelation of a coefficient
Aj happens only with very small probability. It suffices either to probe f (x1, . . . , xd)

along another (random) choice for the vector � [11, 28], or if one absolutely wants to
extract the information 〈φj , �〉 for the originally chosen �, to probe f (x1, . . . , xd)

along one or more (random) parallel shifts of �, as in

Fs := f (s�1 + kε, . . . , s�d + kε), s = 0, . . . , n, k = 1, 2, . . . (21)

Such a shift affects the coefficient Aj in that it changes from Aj(0) to

Aj(kε) = αhj−1+1 exp
(〈φhj−1+1, kε〉) + . . . + αhj

exp
(〈φhj

, kε〉) .

The rank of the matrices in (4) when filled with the values in (21) either confirms
the already computed rank ν or reveals a higher and more probably correct rank ν.
The random probing or parallel translation can be added to every step i = 0, . . . , d−1
in the procedure when selecting δ0 = �, δ1, . . . , δd−1 without impacting our data
usage analysis in (20).

All the above is now illustratedwith an example inwhichwe take the reader through
the entire process, first collision-free, then including collision disentanglement.

6 Numerical illustration

We take d = 2, write u := x1, v := x2, x = (u, v)t and consider the exponential sum

f (u, v) =
4∑

j=1

αj exp(〈φj , x〉)

with

φ1 = (−0.5, 1 + i2π × 0.5),

φ2 = (0.1 + i2π × 3.4, 1.5 + i2π × 5.2),

φ3 = (0.1 + i2π × 3.4, −0.5 + i2π × 12.6),

φ4 = (−2.5 + i2π × 23.2, −10 + i2π × 82.3),

α1 = 1.7 exp(i2π/10),

α2 = 1.1 exp(i2π/20),

α3 = 0.9,

α4 = 9.2 exp(i2π/2).

When outputting numerical results for this small scale example, we round all val-
ues to 4 significant digits (all relative errors are less than 5 × 10−4). The numerical
effect of the choice of the vectors � and δi throughout the process, and that of the
underlying one-dimensional Prony-like method in use, is beyond the scope of this
paper and will be the subject of further investigations.

First we show the simple case described in the Sections 2 and 3, where the number
of terms n = 4 is known up front and no collisions of the inner products in the
samples occur. Of course, the latter is hard to predict in practice.
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We take � = (0.01, 0.01) and δ1 = (−0.01, 0.01). Using 8 equidistant evalua-
tions at x = s�, s = 0, . . . , 7, we obtain from (4) the values of exp(�j ) and can
deduce the �j , j = 1, . . . , 4 because |�φji | < π/|�i |:

�1 =< φ1, � >≈ 0.005000 + 0.03142i,

�2 =< φ2, � >≈ 0.01600 + 0.5404i,

�3 =< φ3, � >≈ −0.004000 + 1.005i,

�4 =< φ4, � >≈ −0.1250 + 0.3456i.

We obtain the coefficients αj , j = 1, . . . , 4 from (6):

α1 ≈ 1.700 exp(i2π × 0.1000),

α2 ≈ 1.100 exp(i2π × 0.05000),

α3 ≈ 0.9000

α4 ≈ 9.200 exp(i2π × 0.5000).

From 4 additional evaluations along the identification shift δ1, we obtain the val-
ues of exp(�11), exp(�21), exp(�31), exp(�41) from (8). Their exponents are the
projections of the vectors φj along δ1:

�11 =< φ1, δ1 >≈ 0.01500 + 0.03142i,

�21 =< φ2, δ1 >≈ 0.01400 + 0.1131i,

�31 =< φ3, δ1 >≈ −0.006000 + 0.5781i,

�41 =< φ4, δ1 >≈ −0.07500 + 3.713i.

We finally obtain the values of φj = (φj1, φj2)
t by solving for each j = 1, . . . , 4

(
�1 �2
δ11 δ12

)(
φj1
φj2

)
=

(
�j

�j1

)
.

This leads to the following numerical approximations for the φj :

φ1 ≈ (−0.5000, 1.000 + i2π × 0.5000),

φ2 ≈ (0.1000 + i2π × 3.400, 1.500 + i2π × 5.200),

φ3 ≈ (0.1000 + i2π × 3.400, −0.5000 + i2π × 12.60),

φ4 ≈ (−2.500 + i2π × 23.20, −10.00 + i2π × 82.30).

So far we have used 12 samples in total, which indeed equals (d + 1)n. Next
we deal with the situation in which neither n is known, nor the assumption of the
non-collision holds.

One additional evaluation in the first batch, at x = 8�, would ideally (meaning
that the numerical rank is easy to detect) and with high probability (meaning that we
don’t accidentally hit a root of the determinant) have revealed that n = 4, still under
the assumption that no collisions occur at the inner products. But let us instead move
to other directions � and δ1 that get us in trouble because of colliding inner products.

Take � = (0.03, 0) and δ1 = (0, 0.01). The projections of φ2 and φ3 along �

clearly coincide. After 7 evaluations at x = s�, s = 0, . . . , 6 we found that ν0 = 3
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and we obtain from (11) that (without actually knowing the values of the hj which
we list only to help the reader follow the example):

�h1 =< φ1, � >≈ −0.01500,

�h2 =< φ3, � >≈ 0.003000 + 0.6409i,

�h3 =< φ4, � >≈ −0.07500 + 4.373i.

We proceed without knowing n and without knowing whether and where some
collisions have occurred. But we know, since d = 2, that after adding an independent
shift vector δ1, all terms will have revealed themselves.

So we add evaluations Fs
1 = f (κ
1� + sδ1) with 
 = 1, 2, 3 and s = 1, 2, . . .
For simplicity we choose κ
1 = 
 − 1. With 
 = 1 and s = 1, 2 we find that the
matrix (

A1 A111
A111 A211

)
,

where the Asji are computed from (14), has rank 1 and so h1 = 1 = g1. With 
 = 2
and s = 1, 2, 3, 4 we find that the matrix

⎛

⎝
A2 A121 A221

A121 A221 A321
A221 A321 A421

⎞

⎠

has rank 2. This indicates with high probability that there are 2 terms coinciding
at �h2 (hence h2 = 3 and g2 = 2, g3 = 3). Remember that in order to obtain
As21, 1 ≤ s ≤ 4, we need to solve (13) which involves the samples Fsj1, 1 ≤ j ≤ 3.
Hence, continuing the sampling for 
 = 2 drags along 
 = 1, 3 at the same time. In
other words, we are now spending 3 × 4 samples for 
 = 1, 2, 3 rather than only 4
samples for 
 = 2.

We now reveal 〈φ2, δ1〉 and 〈φ3, δ1〉 by solving the generalized eigenvalue problem
(

A121 A221
A221 A321

)
v = λ

(
A2 A121

A121 A221

)
v.

With 
 = 3 and s = 1, 2 we find the same conclusion as with 
 = 1, now for
(

A3 A131
A131 A231

)
,

and so ν1 = 4 with h3 = 4, g4 = 4.
At the expense of a total of (2 × 3 + 1) + 3 × 4 = 19 evaluations, we find that

n = 4 and we can identify all φji and αj for j = 1, . . . , 4 and i = 1, 2.

7 Conclusion

In 1795 the French scientist G. de Prony showed that a univariate linear combination
of n exponential terms with unknown real but mutually distinct exponents could be
fitted uniquely to 2n data samples. His result solves the d = 1 case of this paper.
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The current paper is the first of its kind where this result is proven to hold for general
d > 1: a multivariate linear combination of n exponential terms with unknown inner
product exponents can, under mild conditions, be fitted using only (d + 1)n data.
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