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AbstractÐClosed Markovian networks of queues with multiclass customers and having a product form equilibrium state probability

distribution are useful in the performance evaluation and design of computer and telecommunication systems. Therefore, the efficient

computation of the normalizing function, the key element of the solution in product form, has attracted considerable effort. We consider

a network that consists of one infinite-server (IS) station and one processor-sharing (PS) or FCFS single-server station. We use

multivariate Newton-PadeÂ approximants computed from data for small numbers of customers in each class, to estimate the

normalizing function for a larger population in the network. The effectiveness and tremendous gain in computing time of this procedure

are illustrated through various numerical experiments.

Index TermsÐNormalizing function, stationary probability distribution, multivariate, Newton-PadeÂ approximation, partial PadeÂ

approximation, convolution algorithm.
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1 INTRODUCTION

IN the past two decades, closed Markovian queuing
networks have emerged as one of the most important

tools for modeling computer systems, computer commu-
nication systems, online computer networks, and other real-
time computer-based systems, and for analyzing their
performance measures. This was because of the discovery
of an important class of such networks known as ªproduct-
form networksº [16]. In these networks, the equilibrium
state probability distribution of the network is the product
of the distributions of each queue analyzed in isolation from
the network subject to a ªnormalizing functionº or ªparti-
tion functionº (function of the population size). Interest-
ingly, most of the performance measures of a closed
queuing network can be obtained from the knowledge of
the normalizing function associated with the network [19].

The algorithms to compute the normalizing function of a

closed queuing network with a single class of customers are

rather simple. Moreover, the case of single-class queuing
networks is of little interest because of its simplicity and

limited usefulness. Multiclass closed queuing networks,

which have a product-form equilibrium state probability

distribution [3], are of much more interest and are widely
used [22], [26], [21]. The evaluation of the normalizing

function for such large networks is a well-known and

difficult problem. The complexity of the algorithms for

the calculation of the normalizing function in queuing

networks with different classes of customers increases
rapidly. The principal computational difficulty associated

with these networks is that a simple closed-form

expression for the normalizing function of the distribution

is not known. In general, a direct determination of the

normalizing function by a straightforward summation is
computationally intractable.

In the past, several algorithms for the normalizing
function have been constructed, usually based on the
classical ªconvolution algorithm.º But, all these algorithms
share the common problem of long computing times. Even
when the network contains only a moderate number of
nodes, computing time already gets out of hand. In fact, the
time complexity grows exponentially with the number of
classes and polynomially with the number of customers in
the network. See Bruel and Balbo [8], Conway and
Georganas [11], and Lavenberg [22] for an overview. A
standard way to address the computing time problem is to
carry out an approximate computation based on simulation.

Recently, another approach has become available, based
on the use of rational approximation techniques to compute
the normalizing function [18]. The motivation behind this
approach is that it is often possible to study interesting
properties such as monotonicity, convexity, boundedness,
and asymptotic behavior of the normalizing function (see,
for example, [17], [20], [23]). For rational approximation
techniques, such properties are a vital piece of information
and lead to qualitative results.

It turns out that rational approximation methods are
very promising for closed queuing networks with both
single-class and multiclass customers. In [18], Gong and
Yang have used rational approximants of some one-
dimensional projections of the normalizing function in a
multiclass network. This, of course, imposes restrictions on
the parameters under investigation. Our objective is to
generalize their result to the evaluation of the true multi-
variate (nonprojected) normalizing function. To this end,
we will use the multivariate rational approximation
technique developed in [14] and [1].

In this paper, we further analyze the closed queuing
network with multiclass customers discussed in [18]. The
normalizing function of this network is a multidimensional
nonnegative integer valued function. When the number of
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customers in each class is small, its values can be computed

within a reasonable time, using a convolution algorithm.

These values will then be used to extrapolate the function

for a larger population by means of multivariate Newton-

PadeÂ approximation techniques. It is well-known from the

literature that many successful extrapolation techniques are

based on the use of rational functions. Algorithms to

reliably compute these rational approximants (PadeÂ, inter-

polation, Newton-PadeÂ) can be found in [10] and [4].

2 MULTICLASS CLOSED QUEUEING NETWORK

We consider a multiclass product-form closed queuing

network having two nodes: one infinite-server (IS) node and

one processor-sharing (PS) or FCFS single-server node and

a total of Kc customers in class c, for c � 1; 2; . . . ; � . We

assume that there are no class transitions. This type of

network essentially depicts a central server system with two

nodes: One is an infinite-server node, called a ªthink node,º

and the other is a process-sharing node (single-server),

called a ªCPU nodeº (see [23] for details). The service times

at node i for class c customers are exponentially distributed

with rates

�ni�c� � n�1�c�; i � 1;
�2�c�; i � 2;

�
for c � 1; 2; . . . ; � , when there are n customers at node i. A

class c customer upon receiving service at node i will

proceed to node j with probability pij�c� or leave the

network at node i with probability pi0�c� � 1ÿP2
j�1 pij�c�.

Let

�n � �n11; n21; . . . ; n�1;n12; n22; . . . ; n�2�
be the state vector of the entire network, where nci denotes

the number of class c customers at node i. The state space of

the network is given by

S � �n � �n11; n21; . . . ; n�1;n12; n22; . . . ; n�2� jf
nc1 � nc2 � Kc; c � 1; 2; . . . ; �g:

Let �ci be the relative traffic intensities of class c

customers at node i obtained by solving

�ci�i�c� � �c1�1�c�p1i�c� � �c2�2�c�p2i�c�;
i � 1; 2; c � 1; 2; . . . ; �;

which is a system of homogeneous equations and, hence,

the quantities �ci can be scaled.
Then, the queue length distribution [3] equals

P ��n� � 1

G�K1; . . . ; K��
Y2

i�1

fi�n1i; n2i; . . . ; n�i�; �n 2 S; �1�

where

fi�n1i; n2i; . . . ; n�i� �
n1

n11 n21 . . .n�1

� �Y�
c�1

�nc1c1

n1! ; i � 1;

n2

n12 n22 . . .n�2

� �Y�
c�1

�nc2c2 ; i � 2;

8>>>>><>>>>>:
�2�

and the normalizing function

G�K1; . . . ; K� � �XK�

m��0

. . .
XK1

m1�0

Y�
c�1

�
�Kcÿmc�
c1

�Kc ÿmc�!

 ! X�
c�1

mc

 !
!
Y�
c�1

�mc

c2

mc!

 !( )
:

�3�
Using Euler's integral

n! �
Z 1

0

exp�ÿt�tndt;

(3) can be written as

G�K1; K2; . . . ; K�� �
Z 1

0

exp�ÿt�
Y�
c�1

��c1 � �c2t�Kc

Kc!
dt: �4�

Let us now take a closer look at the function G when

having only two classes of customers (� � 2). We denote K1

and K2, respectively, by K and L. From (4), we have,

G�K;L� �
Z 1

0

exp�ÿt� ��11 � �12t�K
K!

��21 � �22t�L
L!

dt: �5�

We recall that the quantities �11; �12 and �21; �22 are the

relative traffic intensities of class 1 and class 2 customers,

respectively, in node 1 and node 2 and are inversely

proportional to the respective service rates of the servers for

class 1 and class 2 customers at node 1 and node 2.
Using the fact that for any constant a 2 IR and integer K,

aK

K!
< ea;

it can be shown, under the condition that �12 � �22 < 1, that

G�K;L� is bounded:

8K;L � 0 : G�K;L� < e��11��21�

1ÿ �12 ÿ �22
: �6�

Hence, we classify our analysis and discussion into the

cases:

1. G is bounded; �12 � �22 < 1 and

a. �11 < 1; �21 < 1.
b. �11 < 1; �21 � 1.
c. �11 � 1; �21 < 1.
d. �11 � 1; �21 � 1.

2. G is unbounded.

The condition that �12 � �22 < 1 implies that we are

allowing less traffic (ªLight trafficº) in the central proces-

sing unit (CPU) of the network. This can be achieved by

increasing the capacity of the CPU.
When �12 � �22 < 1, the function G�K;L� attains its

maximum in the neighborhood of the point ��11; �21�,
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depending on the values of �12 and �22. Also, G�K;L�
decreases and tends to zero as K and L increase. In the
following sections, we study the behavior of G for different
ranges of �11 and �21 using the convolution algorithm [11].

2.1 Case 1

Depending on the values for �11 and �21, the function
G�K;L� relocates its maximum. Cases 1a, 1b, 1c, and 1d,
respectively, correspond to Figs. 1, 2, 3 and 4.

Case 1a arises when the service rates in the think node
for class 1 and class 2 customers are large enough to make
the respective traffic intensities, �11 and �21, less than one
(ªLight trafficº at the think node).

Case 1b occurs when the service rates for class 2
customers are large enough to make the corresponding
traffic intensity 0 < �21 < 1, whereas the service rates for
class 1 customers are small enough to make the correspond-
ing traffic intensity �11 � 1 (ªHeavy trafficº with respect to

class 1 customers and ªLight trafficº with respect to class 2
customers at the think node).

Case 1c corresponds to the situation where the service
rates of the servers for class 1 customers are large enough to
make the corresponding traffic intensity 0 < �11 < 1,
whereas, for class 2 customers, the service rates are small
enough to make the corresponding traffic intensity �21 � 1
(ªLight trafficº with respect to class 1 customers and
ªHeavy trafficº with respect to class 2 customers at the
think node).

Finally, Case 1d corresponds to the situation where the
service rates of the servers for class 1 and class 2 customers
are small enough to make the respective traffic intensities
�11 and �21 greater than or equal to one (ªHeavy trafficº at
the think node).

From the four given graphs of G, we observe that the
bell-shaped structure in the surface moves further away
from the origin as �11 and �21 increase.
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Fig. 1. Normalizing function for a two-class closed queuing network for �11 � 0:9, �12 � 0:5, �21 � 0:7, and �22 � 0:4 (using convolution algorithm).

Fig. 2. Normalizing function for a two-class closed queuing network for �11 � 10, �12 � 0:4, �21 � 0:5, and �22 � 0:5 (using convolution algorithm).



2.2 Case 2

In this case, we relax the condition �12 � �22 < 1 and then it

can be observed that the function G increases with K and L.

The function log�G� behaves approximately linearly when

either K or L is fixed (see Fig. 5).
Based on all the above observations, different multi-

variate Newton-PadeÂ approximants must be chosen to

model the behavior of the function G�K;L�, depending on

the value of the parameters in play. This is explained in the

next sections.

3 GENERAL ORDER PARTIAL MULTIVARIATE

NEWTON-PAD�E APPROXIMATION

Consider two sequences of real values fxigi2IN and fyjgj2IN
and let coalescent values (if any) get consecutive indices.

For a bivariate function G�x; y� known in the tuples �xi; yj�,

divided differences (with possible coalescence of coordi-

nates) can be defined [14] by

G�x0��y0�
� G�x0; y0�
G�x0��y0; . . . ; yk�

� G�x0��y1; . . . ; yk� ÿG�x0��y0; . . . ; ykÿ1�
yk ÿ y0

G�x0; . . . ; xk��y0�

� G�x1; . . . ; xk��y0� ÿG�x0; . . . ; xkÿ1��y0�
xk ÿ x0

G�x0; . . . ; xk��y0; . . . ; yl�

� G�x0; . . . ; xk��y1; . . . ; yl� ÿG�x0; . . . ; xk��y0; . . . ; ylÿ1�
yl ÿ y0

� G�x1; . . . ; xk��y0; . . . ; yl� ÿG�x0; . . . ; xkÿ1��y0; . . . ; yl�
xk ÿ x0

:
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Fig. 3. Normalizing function for a two-class closed queuing network for �11 � 0:3, �12 � 0:7, �21 � 10, and �22 � 0:2 (using convolution algorithm).

Fig. 4. Normalizing function for a two-class closed queuing network for �11 � 6, �12 � 0:3, �21 � 6, and �22 � 0:4 (using convolution algorithm).



Let us also use the following basis functions for the real-

valued polynomials in two variables:

Bij�x; y� �
Yiÿ1

k�0

�xÿ xk�
Yjÿ1

l�0

�yÿ yl�; �7�

which are bivariate polynomials of degree i� j.
The notion of partial PadeÂ approximant was introduced

by Brezinski [7] for univariate functions G�x�: Some of the

PadeÂ approximation conditions were dropped in exchange

for some information on poles or zeros of G�x�. Let the

polynomials vk�x� and wl�x�, respectively, represent k zeros

and l poles of G. The partial PadeÂ approximation problem

for G then consists of finding polynomials p�x� and q�x�,
respectively, of degree n and m and satisfying

�Gqwl ÿ pvk��x� � O�xn�m�1�: �8�
The rational function �pvk�=�qwl� is called the partial PadeÂ

approximant to G of order �n� k;m� l�. It is easy to see

that, if vk�0� 6� 0, the rational function p=q is the PadeÂ

approximant of order �n;m� to Gwl=vk [7]. The concept has

been generalized to the multivariate case as follows [1]:
Let the polynomials Vk�x; y� and Wl�x; y�, respectively,

represent some knowledge about the zeros and poles of

G�x; y�,

Vk�x; y� �
X
�i;j�2S

vijBij�x; y�

#S � k� 1

Wl�x; y� �
X
�i;j�2T

wijBij�x; y�

#T � l� 1;

and consider the following approximation problem. Let the

finite subset I � IN2 index those data points �xi; yj� that will

be used as interpolation points. The knowledge of G�x; y� in

these interpolation points �xi; yj� enables us to write a

formal Newton series development for G,

G�x; y� �
X

�i;j�2IN2

cijBij�x; y�;

cij � G�x0; . . . ; xi��y0; . . . ; yj�:

To generalize (8) we look for polynomials P and Q,

respectively, indexed by finite index sets N (from

ªNumeratorº) and D (from ªDenominatorº),

P �x; y� �
X
�i;j�2N

aijBij�x; y�

Q�x; y� �
X
�i;j�2D

bijBij�x; y�;

and satisfying

�GQWl ÿ PVk��x; y� �
X

�i;j�2IN2nI
dijBij�x; y�: �9�

The index sets N and D also satisfy

N � I
#�I nN� � #Dÿ 1

�i; j� 2 I�)0 � k � i; 0 � l � j : �k; l� 2 I:

Assuming that Vk�xi; yj� 6� 0, condition (9) implies that

GWl

Vk
Qÿ P

� �
�x; y� �

X
�i;j�2IN2nI

eijBij�x; y�:

Here,

GWl

Vk

� �
�x; y� �

X
�i;j�2IN2

~cijBij�x; y�; �10�

with the coefficients, ~cij, being given by
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Fig. 5. Normalizing function for a two-class closed queuing network for �11 � 10, �12 � 12, �21 � 7, and �22 � 10 (using convolution algorithm).



ij � GWl

Vk

� �
Vk

� �
�x0; . . . ; xi��y0; . . . ; yj�

�
Xi
��0

Xj
��0

~c��Vk�x�; . . . ; xi��y�; . . . ; yj�

and

ij � �GWl��x0; . . . ; xi��y0; . . . ; yj�
�
X
�t;u�2T

Wl�x0; . . . ; xt��y0; . . . ; yu�G�xt; . . . ; xi��yu; . . . ; yj�

�
X
�t;u�2T

wtuG�xt; . . . ; xi��yu; . . . ; yj�:

From (10), P=Q appears to be the Newton-PadeÂ approx-

imant to �GWl=Vk��x; y�. If the Newton-PadeÂ approximant

P=Q is denoted by �N=D�GWl=Vk
I , then we introduce the

notation fN;S=D; TgGI for the partial Newton-PadeÂ approx-

imant �PVk�=�QWl� to G�x; y�.
Using known results for general order multivariate

Newton-PadeÂ approximants, the partial Newton-PadeÂ

approximant fN;S=D; TgGI can be expressed as a ratio of

determinants involving the coefficients ~cij from the formal

Newton series expansion (10) for �GWl=Vk��x; y�. Let us

number the indices in D by �d0; e0�; �d1; e1�; . . . ; �dm; em� and

the indices in I nN by �h1; k1�; . . . ; �hm; km�. If the rank of

the coefficient matrix of the linear conditions arising from

(9) is maximal, then Q�x; y� and P �x; y� are given by

Q�x; y� �
Bd0e0

�x; y� � � � Bdmem�x; y�
~cd0h1;e0k1

� � � ~cdmh1;emk1

..

. ..
.

~cd0hm;e0km � � � ~cdmhm;emkm

���������

���������; �11�

P �x; y� �P
�i;j�2N ~cd0i;e0jBij�x; y� � � �

P
�i;j�2N ~cdmi;emjBij�x; y�

~cd0h1;e0k1
� � � ~cdmh1;emk1

..

. ..
.

~cd0hm;e0km � � � ~cdmhm;emkm

����������

����������
;

�12�
and can be computed using the E-algorithm [12].

4 RESULTS FROM THE RATIONAL EXTRAPOLATION

TECHNIQUE

The polynomials Vk�x; y� and Wl�x; y� introduced in the

previous section will be chosen appropriately, depending

on the cases we distinguished in the behavior of G�K;L�.
4.1 Light Traffic in the Think Node

Let us first consider the situation where there is light traffic

at the think node for at least one class of customers. This

corresponds to Cases 1a, 1b, and 1c. In these cases, we can

choose Vk � 1 �Wl and the simplest Newton-PadeÂ approx-

imant to model G correctly is simply �N=D�GI with

N � f�0; 0�g
D � I:

Since Newton-PadeÂ approximants satisfy the reciprocal

covariance property [1], the approximant �N=D�GI equals the

inverse of the polynomial interpolant �D=N�1=GI .
In Fig. 6, one can find the result for the parameter values

�11 � 0:5, �12 � 0:2, �21 � 8, and �22 � 0:1: The dotted line

represents the Newton-PadeÂ approximant, the full line still

represents the function G computed via the convolution

algorithm, and the circled entries have been used as

interpolation points and, hence, depict I. Here,

I � �0; . . . ; 4� � �0; . . . ; 19�. Because of the choice made for

�N=D�GI , the circled entries also depict D.
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Fig. 6. Normalizing function for a two-class closed queuing network for �11 � 0:5, �12 � 0:2, �21 � 8, �22 � 0:1 (using Newton-PadeÂ approximation).



4.2 Heavy Traffic in the Think Node

This corresponds to Case 1d, which needs different partial
Newton-PadeÂ models depending on the values of �11 and
�21. In case �11 and �21 are small, the bell-shaped structure is
still sufficiently close to the origin to make use of full
Newton-PadeÂ approximation. Computing the function
values at the interpolation points is the most expensive
part of the algorithm. If a sufficiently small number of
interpolation points can pick up most of the surface
structure, then a general order Newton-PadeÂ approximant
with Vk � 1 �Wl does the job.

For instance, for �11 � 5, �12 � 0:5, �21 � 5, and �22 � 0:4,
Fig. 7 shows both the function G computed using the
convolution algorithm (full line) and the Newton-PadeÂ

approximant �N=D�GI (dotted line) with

N � f�i; j� j 0 � i� j � 10g
D � f�i; j� j 0 � i� j � 12g
I � f�i; j� j 0 � i � 12; 0 � j � 12gn
f�9; 11�; �9; 12�; �10; 10�; �10; 11�; �10; 12�; �11; 9�; . . . ;

�11; 12�; �12; 9�; . . . ; �12; 12�g:
It is not at all difficult to get a good estimate of how N , D,
and I should be chosen, based on the information that a
univariate bell-shaped function (take, for instance, the
normal distribution) is nicely approximated by a Newton-
PadeÂ approximant of degree n in the numerator and n� 2
in the denominator. The set I is constructed such that it is as
symmetric as possible and such that it satisfies the
conditions (10). In Table 1, some values of G and computing
times can be compared. How one can obtain equally good
numerical results with even fewer data points is explained
further on.

When �11 and �21 are large, then the previous approach
also works, provided one is willing to compute enough
interpolation points, in other words, function values of
G�K;L� to pick up the structure of the surface. Of course,
one would prefer to only compute values G�K;L� for small
K and L and this would not be sufficient for the full

Newton-PadeÂ approximation technique since the bell-shape

is further away from the origin. Consequently, the

advantages offered by the partial Newton-PadeÂ approxima-

tion technique come into play.
If we choose, for instance,

Vk�K;L� � �4�2
11�

2
21

Wl�K;L� � �K ÿ �11�2 � ���11�2
h i

�Lÿ �21�2 � ���21�2
h i

1� �K ÿ �11� � 2�Lÿ �21�� �
with

� � 3=4

 � 1=1000;

then a full Newton-PadeÂ approximant can be computed for

the function GWl=Vk, which is equivalent to a partial

Newton-PadeÂ approximant for G, and it will suffice to

sample GWl=Vk only for small values of K and L, as can be

seen in Fig. 8 and Table 2. For larger values of K and L, the

approximant is accurate enough and the convolution

algorithm does not have to be used.
Let us briefly discuss the choice of the factor Wl�K;L�.

In view of the bell-shaped curve for G, we introduce a

quadratic factor with complex zeros in the denominator

CUYT AND LENIN: MULTIVARIATE RATIONAL APPROXIMANTS FOR MULTICLASS CLOSED QUEUING NETWORKS 1285

Fig. 7. Normalizing function for a two-class closed queuing network for �11 � 5, �12 � 0:5, �21 � 5, and �22 � 0:4 (using Netwon-PadeÂ approximation).

TABLE 1
Comparison of Values of G�K;L� and �N=D�GI

for Larger K and L

Total CPU time in seconds including computation of function values at
interpolation points.



of the Newton-PadeÂ approximant. The parameter �

somehow determines the ªwidthº of the bell-shape. When

increasing �, the bell-shape becomes ªfatterº and the

values of G for larger K and L are overestimated. When

decreasing �, the bell-shape becomes ªthinnerº and the

values of G for larger K and L are underestimated. The

parameter  was introduced because, without the extra

factor 1� �K ÿ �11� � 2�Lÿ �21�� �, the values of G at the

top of the bell-shape were overestimated. So, we reduced

the values of the approximant by introducing a factor just

slightly larger than 1 in the denominator.
Fig. 8 displays both the partial Newton-PadeÂ approx-

imant fN;S=D; TgGI � �N=D�GWl=Vk
I (dotted line) and the

function G�K;L� (full line) computed using the convolution

algorithm for �11 � 20, �12 � 0:2, �21 � 20, and �22 � 0:1. The
index sets are given by

N � f�i; j� j 0 � i� j � 12g
D � f�i; j� j 0 � i� j � 10g
I � f�i; j� j 0 � i; j � 15g n f�i; j� j 12 � i; j � 15g:

4.3 Heavy Traffic in the Network

In Case 2, where the function G�K;L� is unbounded, it is
not a matter of getting an approximation to G that is correct
within a few significant digits, but it is important to get the
magnitude of G estimated correctly. Therefore, one is
usually interested in log�G�K;L�� rather than G�K;L� itself.
Since one can show that log�G�K;L�� behaves linearly for
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Fig. 8. Normalizing function for a two-class closed queuing network for �11 � 20, �12 � 0:2, �21 � 20, and �22 � 0:1 (using partial Newton-PadeÂ

approximation).

TABLE 2
Comparison of Values of G�K;L� and fN; S=D; TgGI �K;L� for Larger K and L

Total CPU time in seconds including computation of function values at interpolation points.

TABLE 3
Comparison of Values of log�G�K;L�� and �N=D�log�G�

I for Larger K and L

Total CPU time in seconds including computation of function values at interpolation points.



large values of K and L, it is easy to approximate it by a

rational function which is of total degree n� 1 in the

numerator and n in the denominator.
In Fig. 9, both the function log�G�K;L�� and its Newton-

PadeÂ approximant �N=D�GI are shown for �11 � 2, �12 � 25,

�21 � 4, and �22 � 30. In Table 3, some values and

computing times can be compared. The index sets are

given by

N � f�i; j� j 0 � i� j � 5g
D � f�i; j� j 0 � i� j � 4g
I � f�i; j� j 0 � i; j � 5g n f�5; 5�g:

5 CONCLUSION AND FUTURE WORK

We have thoroughly examined the network under con-

sideration in the event of light and heavy traffic in the think

node and in the event of heavy traffic in the network. In all

cases, the approximation method can provide a high quality

result provided that a sensible choice is made for the

(partial) Newton-PadeÂ approximant.
When an improper choice is made for the (partial)

Newton-PadeÂ approximant, the occurrence of unwanted

poles in the multivariate approximating rational function

can disturb the quality of the output. Therefore, future work

will include the study of pole-free regions.
At the same time, we want to study the optimal

placement of the sample points (circled entries), as in [6],

[5], and automate this procedure in order to achieve high

quality results with low degree approximants. Results on

this problem are in preparation.
Also, in [20], the asymptotic behavior of the normalizing

function G is studied for closed BCMP networks with

single-server nodes and no infinite-server nodes. Instead of

projecting the multidimensional function G onto a one-

dimensional subspace, as in [20], we propose approximat-

ing G using the same technique as introduced here.

In the meantime, the rational approximation procedure
has also proven effective [13] in the estimation of the cell
loss probablity in finite M/G/1-type queues [24]. In that
case, the gain in computing time was tremendous while the
numerical output remained highly reliable.

REFERENCES

[1] J. Abouir and A. Cuyt, ªMultivariate Partial Newton-PadeÂ and
Newton-PadeÂ Type Approximants,º J. Approximation Theory,
vol. 72, pp. 301-316, 1993.

[2] J.G.A. Baker and P. Graves-Morris, PadeÂ Approximants, second ed.
Cambridge Univ. Press, 1996.

[3] F. Baskett, K.M. Chandy, R.R. Muntz, and F. Palacios, ªOpen,
Closed and Mixed Networks of Queues with Different Classes of
Customers,º J. ACM, vol. 22, pp. 248-260, 1975.

[4] S. Becuwe and A. Cuyt, ªMultivariate PadeÂ Approximants:
Homogeneous or Not, That's the Question,º Int'l Assoc. Math.
and Computers in Simulation (IMACS) 2000 Proc., M. Deville and
R. Owens, eds., 2000.

[5] J.-P. Berrut and H.D. Mittelmann, ªRational Interpolation through
the Optimal Attachment of Poles to the Interpolating Polynomial,º
Numerical Algorithms, vol. 23, pp. 315-328, 2000.

[6] J.-P. Berrut and H.D. Mittelmann, ªThe Linear Rational Colloca-
tion Method with Iteratively Optimized Poles for Two-Point
Boundary Value Problems,º submitted for publication, 2000.

[7] C. Brezinski, ªPartial PadeÂ Approximation,º J. Computers and
Applied Math., vol. 54, pp. 210-233, 1988.

[8] S.C. Bruel and G. Balbo, Computational Algorithms for Closed
Queueing Networks. Elsevier, 1980.

[9] J.P. Buzen, ªComputational Algorithms for Closed Queueing
Networks with Exponential Servers,º Comm. ACM, vol. 16, pp. 527-
531, 1973.

[10] S. Cabay and R. Meleshko, ªA Weakly Stable Algorithm for PadeÂ
Approximants and the Inversion of Hankel Matrices,º SIAM J.
Matrix Analysis and Applications, vol. 14, pp. 735-765, 1993.

[11] A.E. Conway and N.D. Georganas, Queueing NetworksÐExact
Computational Algorithms. MIT Press, 1989.

[12] A. Cuyt, ªA Recursive Computation Scheme for Multivariate
Rational Interpolants,º SIAM J. Numerical Analysis, vol. 24, pp. 228-
239, 1987.

[13] A. Cuyt, R.B. Lenin, G. Willems, C. Blondia, and P. Rousseeuw,
ªRational Approximation Techniques to Compute Cell Loss
Probabilities in Multiplexer Models,º in preparation.

[14] A. Cuyt and B. Verdonk, ªGeneral Order Newton-PadeÂ Approx-
imants for Multivariate Functions,º Numerische Mathematika,
vol. 43, pp. 293-307, 1984.

CUYT AND LENIN: MULTIVARIATE RATIONAL APPROXIMANTS FOR MULTICLASS CLOSED QUEUING NETWORKS 1287

Fig. 9. Normalizing function for a two-class closed queuing network for �11 � 2, �12 � 25, �21 � 4, and �22 � 30 (using Newton-PadeÂ approximation).



[15] A. Cuyt and B. Verdonk, ªDifferent Techniques for the Construc-
tion of Multivariate Rational Interpolants,º MIA, Nonlinear
Numerical Methods and Rational Approximation, A. Cuyt, ed.,
Holland: Reidel, 1988.

[16] N.M. van Dijk, Queueing Networks and Product Forms: A Systems
Approach. Wiley, 1993.

[17] P. Glasserman and D. Yao, Monotone Structure in Discrete-Event
Systems. Wiley, 1994.

[18] W.B. Gong and H. Yang, ªRational Approximants for Some
Performance Analysis Problems,º IEEE Trans. Computers, vol. 44,
pp. 1394-1404, 1995.

[19] P.G. Harrison and N.M. Patel, Performance Modelling of Commu-
nication Networks and Computer Architectures. Addison-Wesley,
1993.

[20] C. Knessl and C. Tier, ªAsymptotic Expansions for Large Closed
Queuing Networks with Multiple Job Classes,º IEEE Trans.
Computers, vol. 41, pp. 480-488, 1992.

[21] S.S. Lam and J.W. Wong, ªQueueing Network Models of Packet
Switching Networks. Part-2: Networks with Population Size
Constraints,º Performance Evaluation, vol. 3, pp. 161-180, 1982.

[22] Computer Performance Modeling Handbook, S.S. Lavenberg, ed.
Academic Press, 1983.

[23] J. McKenna, D. Mitra, and K.J. Ramakrishnan, ªA Class of Closed
Markovian Queuing Networks: Integral Representations, Asymp-
totic Expansions, and Generalizations,º Bell Systems Technical J.,
vol. 60, pp. 599-641, 1981.

[24] M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their
Applications. New York: Marcel Dekker, 1989.

[25] M. Reiser and H. Kobayashi, ªQueueing Networks with Multiple
Closed Chains: Theory and Computational Algorithms,º IBM J.
Research and Development, vol. 19, pp. 283-294, 1975.

[26] C.H. Sauer and K.M. Chandy, Computer Systems Performance
Modeling. Englewood Cliffs, N.J.: Prentice Hall, 1981.

Annie Cuyt received the Doctor Scientiae
degree in 1982 from the University of Antwerp
(UIA), Belgium, where she now teaches several
computing courses. She is also the research
director of the FWO-Vlaanderen, the Flemish
Science Foundation. She is the author of more
than 90 publications in international journals and
conference proceedings and the author or editor
of several books. Her current interests are in
reliable computing and rational approximation

theory. She is an editorial board member of the journal Reliable
Computing. Since 1997, she has also served as a member of the
scientific committee of the Flemish Science Foundation.

R.B. Lenin received the BSc degree in mathe-
matics from madras University, Chennai, India,
in 1992. He received the MSc and PhD degrees
in mathematics from the Indian Institute of
Technology Madras, Chennai, India, in 1994
and 1998, respectively. He worked as a post-
doctoral fellow at the University of Twente, The
Netherlands, during 1998-1999 on the project
ªStochastic Networksº sponsored by NWO, The
Netherlands. Since 1999, he has worked as a

postdoctoral fellow at the University of Antwerp, Belgium, on the project
ªComputational Methods for Performance Evaluation and Simulation of
Complex Technical Systems,º funded by FWO (Flemish Division),
Belgium. His recent research interests include extrapolation methods
and the computation of rational interpolants with prescribed poles with
applications to computer systems and communication networks.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

1288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 11, NOVEMBER 2001


