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Sampling a signal below the Shannon–Nyquist rate causes aliasing, meaning different 
frequencies to become indistinguishable. It is also well-known that recovering 
spectral information from a signal using a parametric method can be ill-posed or 
ill-conditioned and therefore should be done with caution.
We present an exponential analysis method to retrieve high-resolution information 
from coarse-scale measurements, using uniform downsampling. We exploit rather 
than avoid aliasing. While we loose the unicity of the solution by the downsampling, 
it allows to recondition the problem statement and increase the resolution.
Our technique can be combined with different existing implementations of 
multi-exponential analysis (matrix pencil, MUSIC, ESPRIT, APM, generalized 
overdetermined eigenvalue solver, simultaneous QR factorization, . . .) and so is very 
versatile. It seems to be especially useful in the presence of clusters of frequencies 
that are difficult to distinguish from one another.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Estimating the fine scale spectral information of an exponential sum plays an important role in many sig-
nal processing applications. The problem of superresolution [1,2] has therefore recently received considerable 
attention.

Despite its computational efficiency and wide applicability, the often used Fourier transform (FT) has 
some well-known limitations, such as its limited resolution and the leakage in the frequency domain. These 
restrictions complicate the analysis of signals falling exponentially with time. Fourier analysis, which rep-
resents a signal as a sum of periodic functions, is not very well suited for the decomposition of aperiodic 
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signals, such as exponentially decaying ones. The damping causes a broadening of the spectral peaks, which 
in its turn leads to the peaks overlapping and masking the smaller amplitude peaks. The latter are important 
for the fine level signal classification.

Signals that fall exponentially with time appear, for instance, in transient detection, motor fault diagnosis, 
electrophysiology, magnetic resonance and infrared spectroscopy, vibration and seismic data analysis, music 
signal processing, corrosion rate and crack initiation modelling, electronic odour recognition, typed keystroke 
recognition, nuclear science, liquid explosives identification, direction of arrival estimation, and so on.

A different approach to spectral analysis is offered, among others, by parametric methods. However, 
parametric methods often suffer from ill-posedness and ill-conditioning particularly in the case of clustered 
frequencies [3–5]. In general, parametric methods also require prior knowledge of the model order. Widely 
used parametric methods assuming a multi-exponential model include MUSIC [6], ESPRIT [7], the matrix 
pencil algorithm [8], simultaneous QR factorization [9] or a generalized overdetermined eigenvalue solver 
[10] and the approximate Prony method APM [11–13].

In general, parametric methods as well as the FT, sample at a rate dictated by the Shannon–Nyquist 
theorem [14,15]. It states that the sampling rate needs to be at least twice the maximum frequency present in 
the signal. A coarser time grid causes aliasing, identifying higher frequencies with lower frequencies without 
being able to distinguish between them. Conventional measurement systems, as used in modern consumer 
electronics, biomedical monitoring and medical imaging devices, are all based on this theorem.

In the past decade, alternative approaches have proved that signal reconstruction is also possible from 
sub-Nyquist measurements, if additional information on the structure of the signal is known, such as its 
sparsity. Many signals are indeed sparse in some domain such as time, frequency or space, meaning that 
most of the samples of either the signal or its transform in another domain can be regarded as zero. Among 
others, we refer to compressed sensing [16,17], finite rate of innovation [18], the use of coprime arrays in 
DOA [19,20].

The ultimate goal is to retrieve fine-scale information directly from coarse-scale measurements acquired 
at a slower information rate, in function of the sparsity and not the bandwidth of the signal. We offer a 
technique that allows to overcome the Shannon–Nyquist sampling rate limitation and at the same time may 
improve the conditioning of the numerical linear algebra problems involved. The technique is exploiting 
aliasing rather than avoiding it and maintains a regular sampling scheme [21,22]. It relies on the concept of 
what we call identification shift [22,21], which is the additional sampling at locations shifted with respect 
to the original locations, in order to overcome any ambiguity in the analysis arising from periodicity issues 
and in order to solve other identification problems occurring in coprime array approaches.

The paper is organized as follows. Exponential analysis following Shannon–Nyquist sampling is repeated 
in Section 2 and generalized to sub-Nyquist sampling in Section 3. Since a sub-Nyquist rate can cause terms 
to collide at the time of the sampling, we explain how to unravel collisions in Section 4. Such collisions 
are very unlikely to happen in practice of course. In Section 5 numerical examples illustrate both the 
collision-free situation and the case in which the collision of terms happens. The numerical examples at the 
same time illustrate:

• how the method reconditions a problem statement that is numerically ill-conditioned because of the 
presence of frequency clusters,

• that it can be combined with an existing implementation of a multi-exponential spectral analysis (we 
used ESPRIT [7] and oeig [10]).

2. The multi-exponential model

In order to proceed we introduce some notations. Let the real parameters ψi, ωi, βi and γi respectively 
denote the damping, frequency, amplitude and phase in each component of the signal
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φ(t) =
n∑

i=1
αi exp(φit), αi = βi exp(iγi), φi = ψi + i2πωi. (1)

For the moment, we assume that the frequency content is limited by [14,15]

|�(φi)|/(2π) = |ωi| < Ω/2, i = 1, . . . , n,

and we sample φ(t) at the equidistant points tj = jΔ for j = 0, 1, . . . , 2n − 1, . . . with Δ ≤ 1/Ω. In the 
sequel we denote

fj := φ(tj), j = 0, 1, . . . , 2n− 1, . . .

The aim is to find the model order n, and the parameters φ1, . . . , φn and α1, . . . , αn from the measurements 
f0, . . . , f2n, . . . We further denote

λi := exp(φiΔ), i = 1, . . . , n.

With

H(k)
n :=

⎛
⎝ fk . . . fk+n−1

...
...

...
fk+n−1 . . . fk+2n−2

⎞
⎠ , k ≥ 0, n ≥ 1,

the λi are retrieved [8,9,23] as the generalized eigenvalues of the problem

H(1)
n vi = λiH

(0)
n vi, i = 1, . . . , n, (2)

where vi are the generalized right eigenvectors. From the values λi, the complex numbers φi can be retrieved 
uniquely because of the restriction |�(φiΔ)| < π.

In the absence of noise, the exact value for n can be deduced from [24, p. 603], because we have for any 
single value of k that (for a detailed discussion also see [25])

detH(k)
ν = 0 only accidentally, k ≥ 0,

detH(k)
n �= 0, k ≥ 0

detH(k)
ν = 0, ν > n, k ≥ 0.

(3)

The way (3) is checked is usually by computing the numerical rank of a Hankel matrix H(k)
ν or a rectangular 

(μ − ν) × ν version of it with μ ≥ 2ν, ν ≥ n, from its singular value decomposition [23]. In the presence of 
noise and/or clusters of eigenvalues, this technique may not be reliable though, but then some convergence 
property can be used instead [26]. Note that hitting a zero value for detH(0)

ν accidentally, meaning while 
1 ≤ ν < n, can only happen a finite number of times in a row, namely n − 1 times (which is extremely 
unlikely), while the true value of n is confirmed an infinite number of times when overshooting it with 
any ν > n. Therefore the output of (3) is always probabilistic of nature. In Section 4.2 a similar result is 
presented in the context of sub-Nyquist sampling where one may loose the mutual distinctiveness of the 
generalized eigenvalues which is at the basis of (3).

Finally, the αi are computed from the interpolation conditions

n∑
αi exp(φitj) = fj , j = 0, . . . , 2n− 1, (4)
i=1
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either by solving the system in the least squares sense, in the presence of noise, or by solving a subset of n
(consecutive) interpolation conditions in case of a noisefree φ(t). Also, n can everywhere be replaced by 
N > n, in order to model noise on the data by means of some additional N − n noise terms in (1). Note 
that

exp(φitj) = λj
i

and that the coefficient matrix of (4) is therefore a Vandermonde matrix. It is well-known that the condi-
tioning of structured matrices is something that needs to be monitored [27,28].

Without loss of generality, we assume in the sequel that 0 ≤ ωi < Ω ∈ N, i = 1, . . . , n instead of 
|ωi| < Ω/2, i = 1, . . . , n. Also we assume in Section 3 that n is known or correctly detected as indicated 
in [26]. In Section 4 we explain how to detect n concurrently with the computation of the φi and αi from 
sub-Nyquist data.

3. Sub-Nyquist multi-exponential analysis

Some basic result is first deduced for n = 1. Afterwards this result is made use of for general n. The 
latter however, demands additional developments.

3.1. Dealing with a single frequency (n = 1)

At first we deal with some simple mathematical results, without caring about computational issues. When

φ(t) = α exp(ψt + i2πωt), 0 ≤ ω < Ω,

and φ(t) is sampled at tj = 0, Δ, 2Δ, . . ., with for simplicity Δ = 1/Ω, then ω can uniquely be determined 
in [0, Ω) from the samples. No periodicity problem occurs since ωΔ < 1 in the generalized eigenvalue

λ = exp(ψΔ) exp(i2πωΔ).

When φ(t) is sampled at multiples tr1j = 0, r1Δ, 2r1Δ, . . . with 1 < r1 ∈ N, then there exist r1 solutions 
for ω in [0, Ω) since 0 ≤ 2πωr1Δ < 2r1π. If φ(t) is also sampled at tr2j = 0, r2Δ, 2r2Δ, . . . with 0 <
r2 ∈ N, then one obtains another set containing r2 solutions for ω. Each solution set is extracted from 
the respective generalized eigenvalues exp(ψrmΔ) exp(i2πωrmΔ), m = 1, 2 satisfying (2) where the first 
generalized eigenvalue problem is set up with the samples fr1j = φ(0), φ(r1Δ), φ(2r1Δ), . . . and the second 
generalized eigenvalue problem with the samples fr2j = φ(0), φ(r2Δ), φ(2r2Δ), . . . In our write-up we have 
chosen not to add an index r to the notation of the Hankel matrices H(0)

n and H(1)
n when they are filled 

with samples taken at multiples trj = jrΔ in order to not overload the notation. From the context it is 
always clear which sequence of samples is meant.

It is easy to show that, if in addition gcd(r1, r2) = 1, then ω is the unique intersection of the two solution 
sets.

Lemma 1. Let 0 ≤ ω < Ω and Ω, r1, r2 be nonzero positive integers. If gcd(r1, r2) = 1 and if Δ = 1/Ω, then 
from the values exp(i2πωr1Δ) and exp(i2πωr2Δ), the frequency ω can uniquely be recovered in [0, Ω).

Proof. From the generalized eigenvalue λr1 = exp(ψr1Δ) exp(i2πr1Δ) we extract r1 solutions for ω:

ω = ω(1) + k
Ω
, 0 ≤ ω(1) <

Ω
, k = 0, . . . , r1 − 1. (5)
r1 r1
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From the value λr2 = exp(ψr2Δ) exp(i2πr2Δ) we extract r2 solutions for ω:

ω = ω(2) + �
Ω
r2

, 0 ≤ ω(2) <
Ω
r2

, � = 0, . . . , r2 − 1. (6)

Note that the frequency ω we are trying to identify satisfies both (5) and (6). Remains to show that the 
common solution to (5) and (6) is unique. Suppose we have two distinct values for ω that both satisfy (5)
and (6). This implies that there exist two distinct 0 ≤ k1, k2 < r1 such that

ω(1) + k1
Ω
r1

= ω(2) + �1
Ω
r2

,

ω(1) + k2
Ω
r1

= ω(2) + �2
Ω
r2

,

(7)

with 0 ≤ �1, �2 < r2 and �1 �= �2 because k1 �= k2. From (7) we deduce

k1 − k2 = (�1 − �2)r1
r2

�= 0.

Hence r2 divides �1 − �2 because gcd(r1, r2) = 1. Since �1 − �2 is bounded in absolute value by r2 − 1, this 
is a contradiction. �

Furthermore, the element ω in the intersection can be obtained from the Euclidean algorithm.

Lemma 2. Let 0 ≤ ω < Ω and Ω, r1, r2 be nonzero positive integers. If gcd(r1, r2) = 1 and if Δ = 1/Ω, then 
from the values exp(i2πωr1Δ) and exp(i2πωr2Δ), the frequency ω ∈ [0, Ω) is obtained as

(
p1

Log(exp(i2πωr1Δ))
i2π + p2

Log(exp(i2πωr2Δ))
i2π

)
Ω = ω + hΩ, h ∈ Z, (8)

where p1r1 + p2r2 = 1 mod Ω with p1, p2 ∈ Z and Log(·) denotes the principal branch of the complex 
logarithm.

Proof. We use the same notation as in the proof of Lemma 1. So we have

ω = ω(1) + k
Ω
r1

, 0 ≤ ω(1) <
Ω
r1

,

ω = ω(2) + �
Ω
r2

, 0 ≤ ω(2) <
Ω
r2

.

Then

Ω
r1

Log (exp(i2πωr1Δ))
i2π = ω(1),

Ω
r2

Log (exp(i2πωr2Δ))
i2π = ω(2),

and (
p1

Log (exp(i2πωr1Δ))
i2π + p2

Log (exp(i2πωr2Δ))
i2π

)
Ω = (p1r1 + p2r2)ω − (p1k + p2�)Ω

= ω − (p1k + p2�)Ω,

in which p1k + p2� is an integer. �



A. Cuyt, W.-s. Lee / Appl. Comput. Harmon. Anal. 48 (2020) 1066–1087 1071
When the integers p1 and p2 are small this method is very useful. Otherwise one has to be careful about 
the numerical stability of (8). One can of course experiment with different r1 and r2 values to ensure small 
p1 and p2 values.

3.2. Dealing with several terms (n > 1)

When φ(t) contains several terms, then we obtain n solution sets for the ωi, i = 1, . . . , n from the first 
batch of evaluations at multiples of r1Δ and another n solution sets for these frequencies from the second 
batch of samples at multiples of r2Δ. But now we are facing the problem of correctly matching the solution 
set from the first batch to the solution set from the second batch that refer to the same ωi. Of course, we 
want to avoid such combinatorial steps in our algorithm. To solve this problem we are going to choose the 
second batch of sampling points in a smarter way.

Before we proceed we assume that we don’t have exp(φkrΔ) = exp(φ�rΔ) for distinct k and � with 
1 ≤ k, � ≤ n. In Section 4 we explain how to deal with the collision of terms, which we exclude in the sequel 
of this section.

The sampling strategy that we propose is the following. Sampling at trj = jrΔ with fixed 1 < r ∈ N, 
gives us only aliased values for ωi, obtained from Log(exp(i2πωrΔ)). This aliasing can be fixed at the 
expense of the following additional samples. In what follows n can also everywhere be replaced by N > n

when using N − n additional terms in (1) to model the noise.
To fix the aliasing, we add n samples to the already collected f0, fr, . . . , f(2n−1)r, namely at the shifted 

points

trj+ρ = jrΔ + ρΔ, r, ρ fixed,

j = h, . . . , h + n− 1, 0 ≤ h ≤ n.

An easy choice for ρ is a number mutually prime with r. For the most general choice allowed, we refer 
to [29]. An easy practical generalization is when r and ρ are rational numbers r/s and ρ/σ respectively 
with r, s, σ ∈ N and ρ ∈ Z. In that case the condition gcd(r, ρ) = 1 is replaced by gcd(r, ρ) = 1 where 
r/s = r/τ, ρ/σ = ρ/τ with τ = lcm(s, σ). Also, the indices of the shifted points need not be consecutive, 
but for ease of notation we assume this for now.

From the samples f0, fr, . . . , f(2n−1)r we first compute the generalized eigenvalues λr
i = exp (φirΔ) and 

the coefficients αi going with λr
i in the model

φ(jrΔ) =
n∑

i=1
αi exp(φijrΔ)

=
n∑

i=1
αiλ

jr
i , j = 0, . . . , 2n− 1.

(9)

So we know which coefficient αi goes with which generalized eigenvalue λr
i , but we just cannot identify the 

correct �(φi) from λr
i . The samples fjr+ρ at the additional points trj+ρ satisfy

φ(jrΔ + ρΔ) =
n∑

i=1
αi exp (φi(jr + ρ)Δ)

=
n∑

i=1
(αiλ

ρ
i )λ

jr
i ,

j = h, . . . , h + n− 1, 0 ≤ h ≤ n,

(10)
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which can be interpreted as a linear system with the same coefficient matrix entries as (9), but now with 
a new left hand side and unknowns α1λ

ρ
1, . . . , αnλ

ρ
n instead of α1, . . . , αn. And again we can associate each 

computed coefficient αiλ
ρ
i with the proper generalized eigenvalue λr

i . Then by dividing the αiλ
ρ
i computed 

from (10) by the αi computed from (9), for i = 1, . . . , n, we obtain from λρ
i a second set of ρ plausible 

values for ωi. Because of the fact that we choose ρ and r relatively prime, the two sets of plausible values 
for ωi have only one value in their intersection, as explicited in Lemma 1 and 2. Thus the aliasing problem 
is solved.

4. When aliasing causes terms to collide

When exp(φkrΔ) = exp(φ�rΔ) with k �= �, then different exponential terms in (9) collide into one term as 
a consequence of the undersampling and the aliasing effect. Note that then for the moduli of the exponential 
terms holds that exp(ψkrΔ) = exp(ψ�rΔ) and consequently ψk = ψ�. As long as ψk �= ψ�, exponential terms 
can be distinguished on the basis of their modulus. So our focus is on the situation where

φk = ψk + i2πωk �= φ� = ψ� + i2πω�, ψk = ψ�, rωk = rω� + hΩ, h ∈ Z.

Since terms can collide when subsampling, their correct number n may not be revealed when sampling at 
multiples of rΔ, in other words, when sampling at the rate Ω/r instead of Ω. Let us assume that (3), or its 
practical implementation in [26] on N × N Hankel matrices with N > n, reveals a total of n0 terms after 
the first batch of evaluations at trj = jrΔ with fixed r. We call λ(0)

i the n0 generalized eigenvalues of (2)
computed from the fjr as in Section 3. Since some of the terms in (9) may have collided, we have

φ(trj) =
n0∑
i=1

α
(0)
i exp(φ(0)

i trj) (11)

with

λ
(0)
i = exp(φ(0)

i rΔ), i = 1, . . . , n0,

and some of the α(0)
i being sums of the αi from (9). In Section 4.1 we assume that all α(0)

i are nonzero. The 
case where some of the collisions have disappeared because of cancellations in the coefficients, meaning that 
some of the α(0)

i , i = 1, . . . , n0 are zero, is dealt with in Section 4.2.
It should be clear that the value of n0 depends on r, as can be seen in the following simple example 

(nevertheless we do not want to burden the notation n0 with this evidence). Consider the function φ(t)
given by

φ(t) = ei2πt − ei2π21t + ei2π41t − ei2π61t + ei2π11t − ei2π31t + ei2π51t.

With Δ = 1/100 and r = 5 we find that in the evaluations φ(jrΔ) the first 4 terms cancel each other and 
the last 3 terms collide into

f5j = ei2π55j/100, n0 = 2. (12)

With Δ = 1/100 and r = 12 the fourth and the fifth term cancel each other and the first and the last term 
collide, giving

f12j = 2ei2π12j/100 − ei2π52j/100 + ei2π92j/100 − ei2π72j/100, n0 = 4.
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4.1. Collision without cancellation

We remark that n0 ≤ n and that the φ(0)
i are definitely among the n parameters φi in (9). Without loss 

of generality we assume that the colliding terms are successive,

⎛
⎜⎝
α

(0)
1
...

α
(0)
n0

⎞
⎟⎠ =

⎛
⎜⎝

αh1 + · · · + αh2−1
...

αhn0
+ · · · + αhn0+1−1

⎞
⎟⎠ , h1 = 1, hi ≤ hi+1, 1 ≤ i ≤ n0, hn0+1 = n + 1.

In brief, when collisions occur, the computations return the results

α
(0)
i =

hi+1−1∑
�=hi

α�, i = 1, . . . , n0

λ
(0)
i = λr

hi
= . . . = λr

hi+1−1, i = 1, . . . , n0.

(13)

Note that only the nonzero α(0)
i and the distinct λ(0)

i are revealed, without any knowledge about the 
hi, 1 ≤ i ≤ n0. In Section 4.2 we explain how to deal with the additional problem where some of the αi

cancel each other and therefore some of the λ(0)
i have gone missing in the samples φ(trj).

For the sake of completeness we explicit the linear system that delivered the α(0)
i , namely

⎛
⎜⎜⎜⎝

1 . . . 1
λ

(0)
1 . . . λ

(0)
n0

...
...

(λ(0)
1 )n0−1 . . . (λ(0)

n0 )n0−1

⎞
⎟⎟⎟⎠

⎛
⎜⎝
α

(0)
1
...

α
(0)
n0

⎞
⎟⎠ =

⎛
⎜⎜⎝

f0
fr
...

f(n0−1)r

⎞
⎟⎟⎠ (14)

or, as is most often the case, an overdetermined version of it. We now explain how to disentangle the 
collisions, again making use of some additional samples at shifted locations. Let r and ρ be fixed as before 
with gcd(r, ρ) = 1. If gcd(r, ρ) > 1 for some reason or because of a practical constraint, then the procedure 
may be an iterative one, as we indicate further below.

Let us sample φ(t) at the shifted locations trj+ρk = (jr + kρ)Δ, j = 0, . . . , n0 − 1, k ≥ 1. These sample 
values equal

fjr+kρ :=
n0∑
i=1

⎛
⎝hi+1−1∑

�=hi

α� exp(φ�kρΔ)

⎞
⎠ exp(φ(0)

i jrΔ). (15)

In (15) we abbreviate

α
(1)
i (k) :=

hi+1−1∑
�=hi

α� exp(φ�kρΔ), i = 1, . . . , n0. (16)

For k = 0 we have α(1)
i (0) = α

(0)
i , i = 1, . . . , n0. For fixed k > 0 the values α(1)

i (k), i = 1, . . . , n0 are obtained 
from (15) and

⎛
⎜⎜⎜⎝

1 . . . 1
λ

(0)
1 . . . λ

(0)
n0

...
...

(0) n0−1 (0) n0−1

⎞
⎟⎟⎟⎠

⎛
⎜⎝
α

(1)
1 (k)

...
α

(1)
n0 (k)

⎞
⎟⎠ =

⎛
⎜⎜⎝

fkρ
fr+kρ

...
f(n −1)r+kρ

⎞
⎟⎟⎠ (17)
(λ1 ) . . . (λn0 ) 0
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or its least squares version. The Vandermonde coefficient matrix of (17) is the same as the one used to 
compute α(0)

i , i = 1, . . . , n0 in (14) from the samples fjr, which is the case k = 0. So the Vandermonde 
matrix is reused as it is independent of the index k appearing in the right hand side and in the vector of 
unknowns.

When collecting in this way, for each 1 ≤ i ≤ n0, the values α(1)
i (0), α(1)

i (1), α(1)
i (2), . . . we have a 

separate exponential analysis problem per i, namely to identify the number of terms in α(1)
i (k) in (16). Note 

that the sampling rate used to collect the α(1)
i (k) is Ω/ρ.

Now we fix 1 ≤ i ≤ n0 and proceed. When the samples α(1)
i (k) take the place of the values fk in (2) and 

(4) and hi+1 − hi that of n, then:

• the generalized eigenvalue problem (2) delivers the components λ(1)
� = exp(φ�ρΔ) in (16),

• and the respective Vandermonde system (4) delivers the α� for � = hi, . . ., hi+1 − 1.

Both can again be set up in a least squares sense, in a similar way as for the determination of the λ(0)
i and 

α
(0)
i . As shown in Lemma 1, the exponential sums α(1)

i (k) are fully disentangled and all n terms in (1) are 
identified when gcd(r, ρ) = 1, which is what we try to achieve in practice.

With

λ
(1)
� = exp(φ�ρΔ) = λρ

� , � = hi, . . . , hi+1 − 1, i = 1, . . . , n0, (18)

and

λ
(0)
i = exp(φhi

rΔ) = λr
� , � = hi, . . . , hi+1 − 1, i = 1, . . . , n0,

we have what we need in order to identify the φi, i = 1, . . . , n using Lemma 2, since

n =
n0∑
i=1

(hi+1 − hi).

An illustration of the procedure above is presented in Section 5.2.
When for one or other reason gcd(r, ρ) = s �= 1 then the above procedure needs to be repeated with r

replaced by s and ρ replaced by a suitable σ. Then again additional samples are collected at shifted locations 
tsj+σk = (js + kσ)Δ, namely

fjs+kσ := φ ((js + kσ)Δ) ,

and the procedure is repeated from (15) on. When gcd(r, ρ, σ) = 1 the procedure ends, otherwise it continues 
as described.

4.2. Collision with cancellation

To complete the method, we discuss the special situation where some of the terms αi exp(φijrΔ) cancel 
each other when evaluating (1) at the trj , a situation which is illustrated in Section 5.3.

So at the first batch of evaluations fjr, in addition to collision, one encounters cancellation for one or 
more indices i, 1 ≤ i ≤ n0, meaning that one or more α(0)

i = α
(1)
i (0) = 0. The fundamental question is 

whether the α(1)
i (k) can continue to evaluate to zero for all k in the second shifted batch of evaluations 

fjr+kρ when gcd(r, ρ) = 1? The answer is no, not even when the φ� in (16) have the same decay rate, as 
becomes clear from the Lemmas 3 and 4 below.
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Lemma 3. Let for φk �= φ� and r �= 0 hold that exp(φkrΔ) = exp(φ�rΔ). If gcd(r, ρ) = 1 then

exp(φkρΔ) �= exp(φ�ρΔ).

Proof. As pointed out it is sufficient to deal with the imaginary parts of φk and φ�. We use a similar notation 
as in Lemma 1. The proof is by contraposition. From exp(φkrΔ) = exp(φ�rΔ) and exp(φkρΔ) = exp(φ�ρΔ)
we find that there exist integers pk, p�, qk, q� such that

ωk = ω(1) + pk
Ω
r
, 0 ≤ pk ≤ r − 1

ω� = ω(1) + p�
Ω
r
, 0 ≤ p� ≤ r − 1

ωk = ω(2) + qk
Ω
ρ
, 0 ≤ pk ≤ ρ− 1

ω� = ω(2) + q�
Ω
ρ
, 0 ≤ pk ≤ ρ− 1.

Then

ωk − ω� = (pk − p�)
Ω
r

= (qk − q�)
Ω
ρ

or

pk − p� = qk − q�
ρ

r,

which is a contradiction since the left hand side is an integer and qk−q� in the right hand side is in absolute 
value bounded by ρ − 1. �
Lemma 4. Let α(1)

i (k) be given by (16). Then ∀ 1 ≤ i ≤ n0, ∃ 0 ≤ k ≤ hi+1 − hi : α(1)
i (k) �= 0.

Proof. We consider the following square Vandermonde system which is obtained from (16) for fixed i and 
with k increased from 0 to hi+1 − hi,

⎛
⎜⎜⎝

1 . . . 1
exp(φhi

ρΔ) . . . exp(φhi+1−1ρΔ)
...

...
exp(φhi

(hi+1 − hi)ρΔ) . . . exp(φhi+1−1(hi+1 − hi)ρΔ)

⎞
⎟⎟⎠

⎛
⎝ αhi

...
αhi+1−1

⎞
⎠ =

⎛
⎜⎝

α
(1)
i (0)

...
α

(1)
i (hi+1 − hi)

⎞
⎟⎠ . (19)

From Lemma 3 we know that this (hi+1 − hi) × (hi+1 − hi) Vandermonde matrix is regular. If the right 
hand side of this small linear system consists of all zeroes, then we must therefore conclude incorrectly that

αhi
= · · · = αhi+1−1 = 0.

So from this we know that the evaluation of α(1)
i (k) to zero cannot persist up to and including k =

hi+1 − hi. �
The important conclusion here is that in a finite number of steps the true value of n0, which represents 

the number of distinct generalized eigenvalues existing at the sampling rate rΔ, is always revealed. The 
evaluations at the shifted sample points (jr + kρ)Δ with k �= 0 serve the purpose to provide a different 
view on the coefficients, namely the values α(1)

i (k) for k �= 0. These additional evaluations do not alter or 
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touch the generalized eigenvalues λ(0)
i . That is why a shift is so helpful. And Lemma 4 confirms, that even 

if initially some α(1)
i (0) are zero, eventually all α(1)

i (k) must become visible. This fact is entirely similar to 
the conclusion in (3), but with the function φ(t) replaced by α(1)

i (k) for some fixed i and with the matrix 
H

(0)
ν replaced by the matrix

⎛
⎜⎝

α
(1)
i (0) . . . α

(1)
i (κ− 1)

...
...

α
(1)
i (κ− 1) . . . α

(1)
i (2κ− 2)

⎞
⎟⎠

of increasing size κ × κ.
To illustrate this we return to (12). While only one of the n0 = 2 terms is visible when evaluating at jrΔ

when r = 5, the evaluations f5j+12k with ρ = 12, give us

f5j+12k =
(
ei2π12k/100 − ei2π52k/100 + ei2π92k/100 − ei2π32k/100

)
ei2π5j/100+(

ei2π32k/100 − ei2π72k/100 + ei2π12k/100
)
ei2π55j/100

= α
(1)
h1

(k)ei2π5j/100 + α
(1)
h2

(k)ei2π55j/100.

For k ≥ 1 and ν ≥ 2 we find that the rank of

H(12k)
ν

⎛
⎜⎜⎝

f12k fr+12k . . . f(ν−1)r+12k
fr+12k

...
...

f(ν−1)r+12k . . .

⎞
⎟⎟⎠

equals n0 = 2.

5. Numerical illustration

We illustrate the working of (9) and (10) from Section 3 and that of (14) and (17) from Section 4 on two 
examples in the respective Sections 5.1 and 5.2. In the former numerical example the undersampling will not 
cause collisions, while in the latter illustration it will. In addition, in Section 5.3, we show the detection of 
terms that have not only collided but entirely vanished in the first sampling at multiples of rΔ. We conclude 
in Section 5.4 with pseudocode for the full-blown algorithm, which is most easy to understand after going 
through the examples. The pseudocode deals with all possible combinations of situations and is therefore 
even more general than the example in Section 5.3.

5.1. Collision-free example

For our first example the αi and φi are given in Table 1. We take Ω = 1000 and Δ = 1/Ω. The n = 20
frequencies ωi form 5 clusters, as is apparent from the FT, computed from 1000 samples and shown in 
Fig. 1. For completeness we graph the signal in Fig. 2. In Fig. 3 we show the generalized eigenvalues 
λi = exp(φiΔ), i = 1, . . . , 20 computed from the noisefree samples, to illustrate the ill-conditioning of the 
problem as a result of the clustering of the frequencies.

To (1) we add white Gaussian noise with SNR = 32 dB. For comparison with our new method, we show 
in Fig. 4 the (ωi, βi) results computed by means of ESPRIT using 240 samples, namely f0, . . . , f239. A signal 
space of dimension 20 and a noise space of dimension 40, so a total dimension N = 60, produced a typical 
ESPRIT result, from a size 180 × 60 problem. The true (ωi, βi) couples from Table 1 are indicated using 
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Table 1
Collision-free example.

i αi φi

1 6.5 exp(0.15i) −0.19 − i2π453.1
2 6.8 −0.132 − i2π452.19
3 6.8 exp(0.3i) −0.183 − i2π451.02
4 6.4 exp(0.9i) −0.11 − i2π450.21
5 7.1 exp(0.7i) −0.21 − i2π448.39

6 4.71 exp(0.12i) −0.106 − i2π132.5
7 3.9 exp(0.1i) −0.129 − i2π131.4
8 7.2 exp(−0.234i) −0.203 − i2π130.01
9 7.43 exp(0.2i) −0.16 − i2π129.17
10 4.4 exp(−0.52i) −0.19 − i2π128.39

11 3 exp(0.21i) −0.101 + i2π9.1
12 3 exp(−0.8i) −0.127 + i2π11.81

13 7.2 exp(−0.106i) −0.21 + i2π126.01
14 6.53 exp(0.2i) −0.15 + i2π127.62
15 6.7 exp(−0.3i) −0.173 + i2π128.98

16 6.8 exp(−0.15i) −0.11 + i2π334.01
17 6 exp(0.26i) −0.12 + i2π335.18
18 7.1 exp(−0.2i) −0.157 + i2π336.01
19 7.1 −0.120 + i2π337.91
20 6 exp(−0.1i) −0.18 + i2π339.61

Fig. 1. Real (top) and imaginary (bottom) part of the FT.

circles. The ESPRIT output is indicated using bullets. So ideally every circle should be hit by a bullet. The 
ill-conditioning has clearly created a serious problem in identifying the individual input frequencies and 
amplitudes.

Next we choose r = 11 and ρ = 5. The originally clustered eigenvalues are now much better separated. 
To illustrate this we show in Fig. 5 the noisefree generalized eigenvalues λr

i , i = 1, . . . , 20 of the r-fold 
undersampled exponential analysis problem.

With the noisy samples, we again take N = 60 > n = 20 and set up a 120 × 60 generalized eigenvalue 
problem (2) with the samples fjr, j = 0, . . . , 179 and the 120 ×60 Vandermonde system (9) that respectively 
deliver the λr

i and the αi for i = 1, . . . , N . With the samples fjr+ρ, j = 0, . . . , 59 we set up the 60 × 60
linear system (10) from which we compute the αiλ

ρ
i , i = 1, . . . , 60 and subsequently the λρ

i . This brings our 
total number of samples used also to 240, comparable to the ESPRIT procedure. An advantage for ESPRIT 
is that the signal has less decayed in the first 240 samples, compared to the 240 samples used here. Using 
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Fig. 2. Real (top) and imaginary (bottom) part of the signal.

Fig. 3. Generalized eigenvalues λi for (1) with data from Table 1.

Fig. 4. ESPRIT output (ωi, βi), i = 1, . . . , 20 computed from f0, . . . , f239.
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Fig. 5. Generalized eigenvalues λr
i for (1) with data from Table 1 and r = 11.

Fig. 6. Output (ωi, βi), i = 1, . . . , 20 computed from 240 samples fjr+ρ, r = 11, ρ = 5.

the Euclidean algorithm, as explicited in Lemma 2, we recover from λr
i and λρ

i the true frequencies ωi with 
p1 = 1, p2 = −2 and p1r + p2ρ = 1. With the new method we find the (ωi, βi) couples shown as bullets 
in Fig. 6. In Fig. 6 the reader can even clearly count the number of frequencies retrieved in each cluster, 
which is the correct number when comparing to the input values in Table 1. Clearly Fig. 6 is a tremendous 
improvement over Fig. 4.

5.2. Example where collisions occur without cancellation

In Table 2 we list the αi and φi of an exponential model, chosen in such a way that the aliasing causes 
terms to collide. This enables us to illustrate the workings of the technique explained in Section 4.

The bandwidth is again Ω = 1000 and we take Δ = 1/Ω and r = 100. We add white Gaussian noise to 
the samples with SNR = 20 dB and start our computations. When subsampling, the 6 terms collide into 3, 
as indicated in Fig. 7 by the singular value decomposition of H(0)

N with N = 30, which reveals its numerical 
rank. Actually

φ(trj) = (α1 + α2 + α3) exp(φ1jrΔ) + α4 exp(φ4jrΔ) + (α5 + α6) exp(φ5jrΔ).

We recall that H(0)
N is filled with the samples fjr, j = 0, . . . , 59 and not with the samples fj , j = 0, . . . , 59.
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Table 2
Example where collisions occur.

i αi φi

1 18 i2π191.9
2 −20 i2π291.9
3 20 i2π391.9

4 5 i2π526.2

5 5 i2π858.1
6 11 i2π958.1

Fig. 7. SVD of H
(0)
30 for (1) with data from Table 2 and r = 100.

We set up the 30 × 30 generalized eigenvalue problem (2) with the samples fjr, j = 0, . . . , 59 which we 
solve using oeig, and the 60 × 30 Vandermonde system (9) that respectively deliver the λr

i and the αi for 
i = 1, . . . , N . When retaining the components with largest |αi|, we find

λ
(0)
1 ≈ 0.36845 + 0.93042i

λ
(0)
2 ≈ 0.36745 − 0.92977i

λ
(0)
3 ≈ −0.72761 − 0.68801i

and

α
(0)
1 = α1 + α2 + α3 ≈ 17.718 + 0.25273i

α
(0)
2 = α4 ≈ 16.126 + 0.057118i

α
(0)
3 = α5 + α6 ≈ 4.5732 − 0.53331i

(20)

At this point we have not yet been able to recover the correct λi and αi for the signal defined by the 
parameters in Table 2 (we have unearthed only 3 terms instead of 6) because of two reasons. First, the 
subsampling creates an aliasing effect and second the aliasing causes frequencies to collide. As explained 
in Section 4, we can disentangle the information in the collisions from more values α(1)

i (k), k = 1, 2, . . ., 
where α(1)

i (0) = α
(0)
i , simply because the α(1)

i (k) are themselves linear combinations of exponentials. To not 
complicate matters too much yet, the example is cancellation free: so the correct value n0 = 3 is immediately 
discovered from the sampling at the multiples of rΔ, as we see in (20).
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For the disentanglement, we choose ρ = 133 and we set up the Vandermonde systems (17),
⎛
⎜⎜⎜⎝

1 1 1
λ

(0)
1 λ

(0)
2 λ

(0)
3

...
...

...
(λ(0)

1 )9 (λ(0)
2 )9 (λ(0)

3 )9

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝
α

(1)
1 (k)

α
(1)
2 (k)

α
(1)
3 (k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

fkρ
fr+kρ

...
f9r+kρ

⎞
⎟⎟⎠ , k = 1, . . . , 11.

In total so far 170 samples are used. A singular value analysis of the Hankel matrices
⎛
⎜⎜⎜⎜⎝
α

(1)
i (0) α

(1)
i (1) . . . α

(1)
i (5)

α
(1)
i (1) α

(1)
i (2) . . . α

(1)
i (6)

...
...

. . .
...

α
(1)
i (5) α

(1)
i (6) . . . α

(1)
i (10)

⎞
⎟⎟⎟⎟⎠ , i = 1, 2, 3

reveals the number of components that one can distinguish in and consequently extract from the α(1)
i (k). 

The numbers are respectively 3, 2, 1 for i = 1, 2, 3 and so h1 = 1, h2 = 4, h3 = 6, h4 = 7. The size of these 
Hankel matrices filled with values α(1)

i (k), is chosen somewhat larger than necessary so that the correctness 
of their rank is confirmed a number of times. We can also conclude that

n =
n0∑
i=1

(hi+1 − hi) = 6.

For i = 1, 2, 3 the generalized eigenvalue problems
⎛
⎜⎝
α

(1)
i (1) . . . α

(1)
i (6)

...
. . .

...
α

(1)
i (6) . . . α

(1)
i (11)

⎞
⎟⎠ v� = λ

(1)
�

⎛
⎜⎝
α

(1)
i (0) . . . α

(1)
i (5)

...
. . .

...
α

(1)
i (5) . . . α

(1)
i (10)

⎞
⎟⎠ v�

reveal the λ(1)
� = exp(φ�ρΔ), � = hi, . . . , hi+1−1, i = 1, . . . , n0. Note that we chose a notation where the λ(1)

�

are not indexed by a double index (�, i), � = 1, . . . , hi+1−hi, i = 1, . . . , n0 but are indexed consecutively from 
� = h1 = 1 to � = hn0+1−1 = n. This matches the indexing of the λ(0)

� of which some are coalescent, namely 

λ
(0)
hi

= · · · = λ
(0)
hi+1−1, i = 1, . . . , n0. The respective Vandermonde systems with unknowns αhi

, . . . , αhi+1−1

and right hand sides α(1)
i (0), . . ., α(1)

i (11) reveal the α�, � = hi, . . . , hi+1 − 1 in (16). Again we retain only 
the hi+1 − hi components with largest |α�|. From the λ(0)

� = exp(φ�rΔ), � = hi, . . . , hi+1 − 1, i = 1, . . . , n0

and λ(1)
� = exp(φ�ρΔ), � = 1, . . . , n the imaginary part of φi can be recovered as indicated in Lemma 2: with 

p1 = 4 and p2 = −3 we have p1r + p2ρ = 1 and so

�(φ�) = 4 Arg(λ(0)
� )Ω − 3 Arg(λ(1)

� )Ω + 2πhΩ, 1 ≤ � ≤ 6, h ∈ Z,

where h is taken such that 0 ≤ �(φ�) < 2πΩ. Eventually we unearth the following 6 φi and αi:

φ1 ≈ −0.021600 + i2π192.29,

φ2 ≈ −0.0085122 + i2π289.87,

φ3 ≈ −0.025728 + i2π386.69,

φ4 ≈ −0.066292 + i2π538.18,

φ5 ≈ −0.043745 + i2π858.70,

φ6 ≈ 0.0026126 + i2π956.23
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and

α1 ≈ 19.011 + i0.53818,

α2 ≈ −20.481 + i0.89352,

α3 ≈ 21.445 − i1.5790,

α4 ≈ 5.8439 − i0.035907,

α5 ≈ 5.0770 + i0.037562,

α6 ≈ 10.758 − i0.40878.

5.3. Example with cancellations in the collisions

The cancellation strategy is most clearly illustrated by means of a noisefree example, where exact can-
cellations are observed. The actual occurrence of this situation in case of real-life data is extremely small, 
but we primarily want to show that the proposed sub-Nyquist method is capable of recovering from it.

Let

φ(t) = exp(2πit) − exp(2πi21t) + exp(2πi41t) − exp(2πi61t) +

ei2π72/100 exp(2πi11t) − ei2π32/100 exp(2πi31t) + exp(2πi9t). (21)

We take Ω = 100, Δ = 0.01 and sample fj = φ(jΔ) for particular values of j. With r = 5 the first four 
terms cancel each other and the fifth and sixth term collide:

f5j = 0 exp(2πi5j/100) +
(
ei2π72/100 − ei2π32/100

)
exp(2πi55j/100) + exp(2πi45j/100). (22)

So from the samples f0, f5, f10, . . . only two terms can be retrieved:

rank H
(0)
3 = rank

(
f0 f5 f10
f5 f10 f15
f10 f15 f20

)
= 2

and rank H(0)
N = 2, N ≥ 2. The 2 eigenvalues that we can already compute, are λ(0)

5 = exp(2πi55/100) and 
λ

(0)
7 = exp(2πi45/100), satisfying

(
f5 f10
f10 f15

)
v = λ

(
f0 f5
f5 f10

)
v.

From the Vandermonde system

(
1 1

λ
(0)
5 λ

(0)
7

)(
α

(0)
5

α
(0)
7

)
=

(
f0
f5

)

we find α(0)
5 = ei2π72/100 − ei2π32/100 and α(0)

7 = 1. We now need to ask ourselves whether n0 truly equals 
2 or whether some cancellation of terms has happened. With ρ = 12 we find that

f5j+12k =
(
ei2π12k/100 − ei2π52k/100 + ei2π92k/100 − eı2π32k/100

)
exp(2πi5j/100) +(

ei2π72/100ei2π32k/100 − ei2π32/100ei2π72k/100
)

exp(2πi55j/100) + ei2π8k/100 exp(2πi45j/100).

(23)
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For k = 1 we hit an accidental zero for the coefficient of exp(2πi55j/100) and therefore

rank H
(12)
3 = rank

(
f12 f17 f22
f17 f22 f27
f22 f27 f32

)
= 2

again, with rank H(12)
N = 2, N ≥ 2. The generalized eigenvalues satisfying

(
f17 f22
f22 f27

)
v = λ

(
f12 f17
f17 f22

)
v,

namely λ(0)
1 = exp(2πi5/100) and λ(0)

7 = exp(2πi45/100), also belong to the n0 eigenvalues that are 
identifiable from the evaluations at the multiples of rΔ, since a shift does not change the generalized 
eigenvalues, only their coefficients. From the Vandermonde system

(
1 1

λ
(0)
1 λ

(0)
7

)(
α

(1)
1 (1)

α
(1)
7 (1)

)
=

(
f12
f17

)

we find α(1)
1 (1) and α(1)

7 (1). Apparently n0 equals at least 3, because in the first bunch computed from the 
samples f5j+12k with k = 0 we find two eigenvalues and in the second bunch with k = 1 we find one more. 
Bringing these results together results in the intermediate estimates

h1 = 1 : α(1)
h1

(0) = 0, α(1)
h1

(1) = ei2π12/100 − ei2π52/100 + ei2π92/100 − eı2π32/100,

h2 = 5 : α(1)
h2

(0) = ei2π72/100 − ei2π32/100, α
(1)
h2

(1) = 0,

h3 = 7 : α(1)
h3

(0) = 1, α(1)
h3

(1) = ei2π8/100,

where the values hi are merely mentioned as a guideline and are not explicitly computed. Remember that 
in real-life experiments the indices hi are not known and need not be known. They are revealed as the 
algorithm progresses.

Let us turn our attention to larger values of k to have the current estimate n0 = 3 confirmed and to 
extract all n distinct terms. As described in Section 4 on the disentangling of collisions, we continue sampling 
at multiples of the shift, namely we collect the fjr+kρ for k > 1. With k = 2 we obtain

f5j+24 =
(
ei2π24/100 − ei2π4/100 + ei2π84/100 − eı2π64/100

)
exp(2πi5j/100) +(

ei2π36/100 − ei2π76/100
)

exp(2πi55j/100) + ei2π16/100 exp(2πi45j/100) (24)

and

rank H
(24)
4 = rank

⎛
⎝f24 f29 f34 f39

...
...

...
f39 . . . f54

⎞
⎠ = 3

with rank H(24)
N = 3, N ≥ 4. Merely for completeness we compute the generalized eigenvalues satisfying

⎛
⎝f29 . . . f39

...
...

...

⎞
⎠ v = λ

⎛
⎝f24 . . . f34

...
...

...

⎞
⎠ v.
f39 . . . f49 f34 . . . f44
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We find λ(0)
1 = exp(2πi5/100), λ(0)

5 = exp(2πi55/100), λ(0)
7 = exp(2πi45/100), which confirms our earlier 

obtained combined result. Hence n0 = 3. We also compute the values for α(1)
i (2), i = 1, 5, 7 from the 

Vandermonde system

⎛
⎜⎝

1 1 1
λ

(0)
1 λ

(0)
5 λ

(0)
7

(λ(0)
1 )2 (λ(0)

5 )2 (λ(0)
7 )2

⎞
⎟⎠

⎛
⎜⎜⎝
α

(1)
1 (2)

α
(1)
5 (2)

α
(1)
7 (2)

⎞
⎟⎟⎠ =

(
f24
f29
f34

)
.

The purpose now is to find out how many terms are in the expressions α(1)
i (k) for each i retrieved so far. 

We compute α(1)
1 (k), α(1)

5 (k), α(1)
7 (k) for k ≥ 3 from

⎛
⎜⎝

1 1 1
λ

(0)
1 λ

(0)
5 λ

(0)
7

(λ(0)
1 )2 (λ(0)

5 )2 (λ(0)
7 )2

⎞
⎟⎠

⎛
⎜⎜⎝
α

(1)
1 (k)

α
(1)
5 (k)

α
(1)
7 (k)

⎞
⎟⎟⎠ =

(
f12k

f5+12k
f10+12k

)
, k = 3, 4, . . . ,

which reuses the n0 × n0 Vandermonde coefficient matrix from above.
Let us write k = 2κ − 2, so that when we increase κ by 1 then k is increased by 2. We check the rank of 

the κ × κ matrices

⎛
⎜⎝

α
(1)
i (0) . . . α

(1)
i (κ− 1)

...
...

...
α

(1)
i (κ− 1) . . . α

(1)
i (2κ− 2)

⎞
⎟⎠ , i = 1, 5, 7.

When pursuing the shifts up to k = 9, meaning κ = 5, we find that for i = 1 the rank is 4, for i = 5 the 
rank is 2 and for i = 7 the rank is 1, leading to a grand total of n = 7 distinct terms. We now separate the 
terms that are hiding in each of the collisions by computing the generalized eigenvalues satisfying

⎛
⎜⎝

α
(1)
i (1) . . . α

(1)
i (κ)

...
...

...
α

(1)
i (κ) . . . α

(1)
i (2κ− 1)

⎞
⎟⎠ v = λ

⎛
⎜⎝

α
(1)
i (0) . . . α

(1)
i (κ− 1)

...
...

...
α

(1)
i (κ− 1) . . . α

(1)
i (2κ− 2)

⎞
⎟⎠ v, i = 1, 5, 7. (25)

We find

i = 1, κ = 4 :λ(1)
1 = exp(2πi12/100), λ(1)

2 = exp(2πi52/100),

λ
(1)
3 = exp(2πi92/100), λ(1)

4 = exp(2πi32/100),

i = 5, κ = 2 :λ(1)
5 = exp(2πi32/100), λ(1)

6 = exp(2πi72/100),

i = 7, κ = 1 :λ(1)
7 = exp(2πi8/100).

At this stage we have all the information to reconstruct the non-aliased generalized eigenvalues:

λ
(0)
1 , λ

(1)
1 → λ1 = exp(2πi1/100),

λ
(0)
1 , λ

(1)
2 → λ2 = exp(2πi21/100),

λ
(0)
1 , λ

(1)
3 → λ3 = exp(2πi41/100),

λ
(0)
1 , λ

(1)
4 → λ4 = exp(2πi61/100),



A. Cuyt, W.-s. Lee / Appl. Comput. Harmon. Anal. 48 (2020) 1066–1087 1085
λ
(0)
5 , λ

(1)
5 → λ5 = exp(2πi11/100),

λ
(0)
5 , λ

(1)
6 → λ6 = exp(2πi31/100),

λ
(0)
7 , λ

(1)
7 → λ7 = exp(2πi9/100).

Remains to compute the individual linear coefficients of each of the 7 terms. We compute α1, α2, α3, α4 from

⎛
⎜⎜⎜⎜⎝

1 1 1 1
λ

(1)
1 λ

(1)
2 λ

(1)
3 λ

(1)
4

(λ(1)
1 )2 (λ(1)

2 )2 (λ(1)
3 )2 (λ(1)

4 )2

(λ(1)
1 )3 (λ(1)

2 )3 (λ(1)
3 )3 (λ(1)

4 )3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝
α1
α2
α3
α4

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎝
α

(1)
1 (0)

α
(1)
1 (1)

α
(1)
1 (2)

α
(1)
1 (3)

⎞
⎟⎟⎟⎟⎠ ,

the coefficients α5 and α6 from

(
1 1

λ
(1)
5 λ

(1)
6

)(
α5
α6

)(
α

(1)
5 (0)

α
(1)
5 (1)

)
.

The coefficient α7 is given by α7 = α
(0)
7 = α

(1)
7 (0) because there were no collisions in that term.

5.4. Full algorithm in pseudocode

An algorithm covering the eventuality of the above scenarios reads as follows. We assume that r > 1
otherwise a classical Prony analysis applies.

So far we used the notation n for the number of exponential terms in the signal, which we often don’t 
know up front. Moreover, the data are usually noisy, so that it is best to add another number of terms 
in order to model the noise. We denoted the latter in the previous sections by N − n so that the total 
number of terms we want to identify accumulates to N . To this end at least 2N samples are required, even 
without breaking the Shannon–Nyquist rate. We denote the number of samples collected at the uniformly 
distributed points tjr by the number M ≥ 2N . These allow us to build the square Hankel matrices H(0)

N

and H(1)
N or somewhat larger rectangular (M −N) ×N versions of these matrices. When sampling at the 

shifted locations tjr+kρ we collect for each k not M but m samples where �m/2� > n. Using the latter we 
can build the Hankel matrices H(ρ)

�m/2�. Often the total number of samples and the amount of undersampling 
are dictated by the circumstances and the constraints under which the analysis is performed.

We emphasize that n0 indicates the number of terms in the exponential sum after possible collisions, 
including the vanished ones due to cancellation in the coefficients. Also, the time step Δ ∈ R satisfies 
Δ ≤ 1/Ω. With this in mind the algorithm continues as follows.

Algorithm.

Input bounds on n, subsampling factor r and shift term ρ:

• M, N, m ∈ N with M ≥ 2N, N ≥ n, �m/2� > n.
• r ∈ N, ρ ∈ Z with r > 1 and gcd(r, ρ) = 1.

A0. Obtain n0, λ
(0)
i , α(0)

i :

• Collect the samples fjr = φ(tjr), j = 0, . . . , M − 1 and estimate n0 ≤ n by the numerical rank of the 
matrix H(0)

N .
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• For one or more 1 ≤ k ≤ 2n − 1 collect the samples fjr+kρ = φ(tjr+kρ), j = 0, . . . , m − 1 and compute 
the numerical rank nk of H(kρ)

�m/2�.
• From these different views on the number of collided terms in the exponential sum, we find that the 

correct value for n0 is n0 = maxk nk.
• Compute for i = 1, . . . , n0 the generalized eigenvalues λ(0)

i and the coefficients α(0)
i as in the example of 

Section 5.3.
• Either N ×N Hankel and 2N ×N Vandermonde systems are used or their least squares (M −N) ×N

and M ×N versions.

A1. Obtain α(1)
i (k) and hi+1 − hi for i = 1, . . . , n0 and 1 ≤ k ≤ K < 2n:

Put α(1)
i (0) := α

(0)
i , k = 1 and execute the for loop:

1. compute the α(1)
i (k) from (17) or its m × n0 least squares version,

2. collect or reuse the samples fjr+(k+1)ρ = φ(tjr+(k+1)ρ), j = 0, . . . , m − 1,
3. compute the α(1)

i (k + 1) from (17) or its m × n0 least squares version,
4. compute the numerical rank νi(κ) of the (κ + 1) × (κ + 1) matrix

⎡
⎢⎣
α

(1)
i (0) · · · α

(1)
i (κ)

...
...

α
(1)
i (κ) · · · α

(1)
i (k + 1)

⎤
⎥⎦ , 2κ = k + 1,

5. if νi(κ) = νi(κ − 1):
• then hi+1 − hi = κ,
• else k := k + 2, collect or reuse the samples fjr+kρ, j = 0, . . . , m − 1 and goto 1.

6. compute the generalized eigenvalues λ(1)
� , � = hi, . . . , hi+1 − 1 in (18),

7. compute the α�, � = hi, . . . , hi+1 − 1 from (16).

End the for loop.

Output number of terms n and the parameters φi, αi:
From

• λ
(1)
� , � = h1, . . . , hn0+1 − 1 with h1 = 1, hn0+1 − 1 = n

• and λ(0)
� with λ(0)

hi
= · · · = λ

(0)
hi+1−1, i = 1, . . . , n0

the φi, i = 1, . . . , n can be recovered.
The αi, i = 1, . . . , n are computed from (16) as in (19).
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