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Abstract

What is the connection of tensor decomposition in multilinear algebra with ex-
ponential analysis from signal processing, sparse interpolation from computer alge-
bra, Gaussian quadrature from numerical analysis, and Padé approximation theory?
These seemingly unrelated and diverse topics are nevertheless deeply intertwined, as
we explain here. However, several of these connections have remained unexplored.

The various reformulations bring forth new ways to approach the problem of
tensor decomposition (see Section 7) and suggestions for generalizations of existing
methods (see Section 6). This may lead to important results since tensor decom-
position has a number of grand applications [24], among others in chemometrics,
neuroscience, computer vision, social network analysis, big data and the like.

In Section 1 we introduce the problem statement. Subsequently the connections
are first established for two-dimensional tensors in the sections 2 and 3. Higher
dimensional tensors are dealt with in the sections 4 and 5, with a discussion of the
connections to the mentioned topics in the sections 6 and 7. We conclude in Section
8 with an illustration of the interrelationships and of our novel approach. Both the
existing method presented in Section 5 and the new technique presented in Section
7 are shown.
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§1. Symmetric tensors and homogeneous polynomials

A tensor of order d is an element of the product space Cn1 ⊗ · · · ⊗ Cnd and it is called cubical if its
dimensions ni, i = 1, . . . , d satisfy n1 = · · · = nd = n. A cubical tensor of order d and dimension
n+1 is represented by a multidimensional array [tj1,...,jd ]

n
j1,...,jd=0 and it is called symmetric if for any

permutation π of {j1, . . . , jd} holds tj1,...,jd = tπ(j1),...,π(jd). With a symmetric tensor [tj1,...,jd ]
n
j1,...,jd=0

we can associate a homogeneous polynomial of degree d in n+ 1 variables:

p(x0, . . . , xn) =

n∑

j1,...,jd=0

tj1,...,jdxj1 · · ·xjd ,

which can be written more compactly as

n∑

j1≤...≤jd=0

(
∑

π

tπ(j1),...,π(jd)

)
xj1 · · ·xjd ,

or just ∑

|κ|=d

cκX
κ,

where X = (x0, . . . , xn), κ = (k0, . . . , kn), |κ| = k0 + · · ·+ kn and

Xκ = xk0
0 x

k1
1 · · ·xkn

n .

For instance, the homogeneous polynomial associated with a symmetric tensor of order 3 and dimen-
sion 3 is

p(x0, x1, x2) = t000x
3
0 + (t100 + t010 + t001)x

2
0x1 + . . .

= c300x
3
0 + c210x

2
0x1 + . . .

=
∑

|κ|=3

cκX
κ.

For [tj1,j2,j3 ]
2
j1,j2,j3=0 given by



t000 t010 t020
t100 t110 t120
t200 t210 t220

∣∣∣∣∣∣

t001 t011 t021
t101 t111 t121
t201 t211 t221

∣∣∣∣∣∣

t002 t012 t022
t102 t112 t122
t202 t212 t222


 =



1 2 1
2 4 2
1 2 1

∣∣∣∣∣∣

2 4 2
4 8 4
2 4 2

∣∣∣∣∣∣

1 2 1
2 4 2
1 2 1


 ,
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p(x0, x1, x2) equals

x30 + 6x20x1 + 3x20x2 + 12x0x
2
1 + 12x0x1x2 + 3x0x

2
2 + 8x31 + 12x21x2 + 6x1x

2
2 + x32. (1.1)

The tensor decomposition or polynomial decomposition problem now consists in finding the least
number r of linear forms

ℓi(x0, . . . , xn) =

n∑

k=0

λikxk

and weights wi such that

p(x0, . . . , xn) =

r∑

i=1

wiℓi(x0, . . . , xn)
d.

This minimal r is called the rank of the symmetric tensor [tj1,...,jd ]
n
j1,...,jd=0. For example, the poly-

nomial in (1.1) can be decomposed as (x0 + 2x1 + x2)
3 and hence r = 1.

Without loss of generality, we can set x0 = 1 and assume that λi0 = 1, because a change of
variables can always guarantee this. Then the linear forms ℓi(x0, . . . , xn) take the form

ℓi(1, x1, . . . , xn) = 1 +

n∑

k=1

λikxk, i = 1, . . . , r.

§2. Two-dimensional tensors and Hankel systems

When n = 1, x := x1, k := k1 and λi := λi1, the polynomial p(1, x) and its decomposition take the
form

p(1, x) =

d∑

k=0

ckx
k

=
r∑

i=1

wi(1 + λix)
d

=

d∑

j=0

r∑

i=1

wi

(
d

j

)
λjix

j .

(2.1)

Let us denote σk := ck/
(
d
k

)
, k = 0, . . . , d. Then for i = 1, . . . , r the wi and λi must satisfy the

polynomial system
r∑

i=1

wiλ
j
i = σj , j = 0, . . . , d. (2.2)
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Now define

V (z) :=

r∏

i=1

(z − λi) = zr +

r−1∑

j=0

bjz
j (2.3)

and denote

H(k)
r :=

(
σk+(i−1)+(j−1)

)r
i,j=1

=




σk σk+1 . . . σk+r−1

σk+1 σk+2 . . . σk+r

...
...

. . .
...

σk+r−1 σk+r . . . σk+2r−2


 .

Then we obtain from (2.3) that
r∑

i=1

wiλ
k
i V (λi) = 0

or

σk+r +
r−1∑

j=0

bjσk+j = 0, k = 0, 1, 2, . . . (2.4)

The coefficients bj of the polynomial V (z) can therefore be obtained from the Hankel system

H(0)
r




b0
...

br−1


 = −




σr
...

σ2r−1


 , (2.5)

under the condition that a sufficient number of moments σk is given. The regularity of H
(0)
r , and more

generally H
(k)
r , is certified in (2.8). Since the λi, i = 1, . . . , r, are distinct, the matrix factorizations

H
(0)
r = V DV T ,

H
(k)
r = V D



λk1

. . .

λkr


V T , k = 1, 2, . . .

(2.6)
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where V and D respectively denote the Vandermonde matrix

V =




1 1 . . . 1
λ1 λ2 . . . λr
...

...
...

λr−1
1 λr−1

2 . . . λr−1
r




and the diagonal matrix

D =



w1

. . .

wr


 ,

hold and the roots λi of V (z) can also be obtained from the generalized eigenvalue problem [20,
p. 1226]

H(1)
r ui = λiH

(0)
r ui, i = 1, . . . , r,

or the eigenvalue problem [5, p. 1859]

H(1)
r

(
H(0)

r

)−1

ûi = λiûi, i = 1, . . . , r.

Note that the (properly normalized) eigenvectors ûi, i = 1, . . . , r, equal the columns of the matrix V .
Remains the problem of obtaining the rank r of the symmetric tensor. Here also sparse interpola-

tion and Padé approximation, discussed in detail in Section 3, help us out. For k ≥ 0 and denoting

|H(k)
r | = detH

(k)
r , it is known [21, p. 603] that

|H(k)
R | = 0, R > r, (2.7)

and it is proved in [23] that

|H(k)
r | 6= 0,

|H(k)
s | = 0, only accidentally, s < r.

(2.8)

So the rank r can be deduced from the fact that the matrices H
(0)
R with R > r are singular. Missing

data σj , j > d, in such a larger matrix, can be obtained from the fact that the matrices Gk =

H
(k)
r (H

(0)
r )−1 and Gℓ = H

(ℓ)
r (H

(0)
r )−1 with k 6= ℓ commute. Expressing

GkGℓ = GℓGk, k 6= ℓ,

delivers a set of equations from which the unknown moments can be computed.
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§3. Connection with sparse interpolation and Padé approxi-

mation

When we re-express

λi = ∆mi , ∆ = exp(2πi/M), M > 2 max
i=1,...,r

|ℑ(mi)|,

then the computation of λi amounts to the solution of the sparse interpolation problem

r∑

i=1

wiz
mi

j = σj , j = 0, . . . , d, zj = ∆j = exp(2πij/M), (3.1)

where the coefficients wi and the complex exponents mi need to be determined simultaneously in the
polynomial (3.1). Since

r∑

i=1

wiz
mi

j =

r∑

i=1

wi exp (2πijmi/M) ,

statement (3.1) is also called an exponential analysis problem.
When introducing the linear functional

γ : zj → σj , j = 0, 1, 2, . . . ,

it follows from (2.4) that the polynomial V (z) satisfies the formal orthogonality conditions

γ(zkV (z)) = 0, k = 0, 1, 2, . . .

The polynomial V (z) is also called a Hadamard polynomial [21, p. 625] and can be written compactly
as

∣∣∣H(0)
r

∣∣∣V (z) =

∣∣∣∣∣∣∣∣∣∣∣

σ0 . . . σr−1 σr
σ1 . . . σr σr+1

...
. . .

...
...

σr−1 . . . σ2r−2 σ2r−1

1 . . . zr−1 zr

∣∣∣∣∣∣∣∣∣∣∣

.

We now compute the interpolating polynomial of degree r − 1 through the interpolation points
z = λi, i = 1, . . . , r, for the function f(z) = (1 + zx)d of the variable z, where x is treated as a
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parameter. Its Lagrange form equals

r∑

i=1

(1 + λix)
d V (z)

(z − λi)V ′(λi)
. (3.2)

Applying the linear functional γ to both f(z) and (3.2) delivers on the one hand

γ
(
(1 + zx)d

)
= γ




d∑

j=0

(
d

j

)
zjxj


 =

d∑

j=0

cjx
j = p(1, x)

and on the other hand

r∑

i=1

Ai(1 + λix)
d, Ai = γ

(
V (z)

(z − λi)V ′(λi)

)
. (3.3)

The two expressions equal each other if Ai = wi, this means if the Ai satisfy (2.1). Remember that the
λi are the zeroes of the formally orthogonal polynomial V (z). Apparently the nodes λi provide jointly
with the weights wi an exact formula for the moments up to degree d, namely for the σj , j = 0, . . . , d,
as can be seen from (2.2). When d = 2r − 1 as in (2.5), then formula (2.2) is a Gaussian integration
rule. How the latter can be viewed as a Padé approximant of degree r−1 in the numerator and degree
r in the denominator is explained in [6, pp. 62]. For completeness we mention that the denominator
of this Padé approximant equals the reverse of the polynomial V (z) given by (2.3); in other words

zrV (1/z) =

r−1∑

j=0

bjz
r−j + 1. (3.4)

To see how this connection works in practice we take a simple example. Consider the two-
dimensional tensor of order d = 3, associated with

p(x0, x1) = 4x30 + 9x20x1 + 18x0x
2
1 + 17x31.

To decompose the polynomial p(1, x) we construct

H
(0)
2 =

(
σ0 σ1
σ1 σ2

)
=

(
4 3
3 6

)
,
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H
(1)
2 =

(
σ1 σ2
σ2 σ3

)
=

(
3 6
6 17

)
.

From solving the generalized eigenvalue problem we obtain the decomposition

p(x0, x1) =
5

8
(x0 + 3x1)

3 +
27

8
(x0 +

1

3
x1)

3.

The same result is obtained as follows. We form the Hadamard polynomial,

V (z) =

∣∣∣∣∣∣

4 3 6
3 6 17
1 z z2

∣∣∣∣∣∣
/
∣∣∣H(0)

2

∣∣∣

= z2 − 10

3
z + 1,

which is the reverse of the denominator of the Padé approximant of degree 1 in the numerator and 2
in the denominator for the series ∞∑

j=0

σjz
j. (3.5)

In [1] and [15] it is indicated that (3.5) is actually the Taylor series of a rational function with
denominator (3.4).

The roots of V (z) are λ1 = 1/3 and λ2 = 3. Computing the Ai using the linear functional γ
and formula (3.3), results in A1 = 27/8 and A2 = 5/8 and eventually in the same decomposition. For
completeness, it is easy to verify that as stated in (2.7) and (2.8),

∣∣∣H(0)
R

∣∣∣ = 0, R = 3 > r = 2,

with the missing σ4 computed from the commutativity of H
(2)
2 (H

(0)
2 )−1 and H

(1)
2 (H

(0)
2 )−1 as follows.

For r = 2, the products G1G2 and G2G1 are given by

G1G2 =

(
34−σ4

5
−51+4σ4

15
71−2σ4

3
−132+8σ4

9

)
,

G2G1 =

(
− 10

3
91
9

51−4σ4

15
−204+31σ4

45

)
.

From G1G2 = G2G1 we find σ4 = 152/3 and eventually |H(0)
3 | = 0.
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§4. Higher dimensional tensors and Hankel-like systems

By setting x0 = 1 the homogeneous polynomial p(x0, . . . , xn) takes the form

p(1, x1, . . . , xn) =
∑

|κ|≤d

cκX
κ, (4.1)

where we redefine κ = (k1, . . . , kn) and X = (x1, . . . , xn) since k0 and x0 are known by k0 = d− (k1 +
· · ·+ kn) and x0 = 1. Again, the decomposition problem consists in finding a minimal number r such
that the polynomial p(1, x1, . . . , xn) of total degree d can be written as

p(1, x1, . . . , xn) =

r∑

i=1

wi(1 + λi1x1 + · · ·+ λinxn)
d; (4.2)

in other words, such that

p(1, x1, . . . , xn) =
∑

|ν|≤d

(
r∑

i=1

wi

(
d

ν

)
Λν
i

)
Xν , (4.3)

where Λi = (λi1, . . . , λin), X = (x1, . . . , xn) and ν = (ν1, . . . , νn) are all n-dimensional vectors. Similar
to Xν , the compact notation Λν

i denotes the monomial

Λν
i = λν1i1 · · ·λνnin .

For (4.3) to hold (see [5, p. 1856]), the Λi must satisfy

r∑

i=1

wiΛ
ν
i = σν , σν = cν

/(d
ν

)
, |ν| ≤ d, (4.4)

which is the n-variate generalization of (2.2), where as usual

(
d

ν

)
=

d!

ν1! · · · νn!(d− |ν|)! .

In what follows we use subsets I ⊂ Nn ∩ {ν : |ν| ≤ d} of index vectors, and assume that their
elements are ordered as ν(0), ν(1), ν(2), . . . with ν(0) = (0, . . . , 0). Each index vector ν(k) in the
set I also needs to be connected to (0, . . . , 0) ([5, p. 1860]), meaning that either the index vector is
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ν(0) = (0, . . . , 0) or for ν(k), k > 0, there exist ν(h) and i with 0 ≤ h < k and 1 ≤ i ≤ n such that
ν(k) = ν(h) + (δi1, . . . , δin), where δij = 0 if i 6= j and δij = 1 if i = j. For n = 1 we have ν(j) = j.

Then (4.4) can be rewritten as ([5, p. 1856])

r∑

i=1

wiΛ
ν(j)
i = σν(j), j = 0, . . . ,

(
d+ n

n

)
− 1, (4.5)

or 


Λ
ν(0)
1 . . . Λ

ν(0)
r

Λ
ν(1)
1 . . . Λ

ν(1)
r

...
...

Λ
ν(s)
1 . . . Λ

ν(s)
r






w1

...
wr


 =



σν(0)
...

σν(s)


 , s =

(
d+ n

n

)
− 1.

The subsets of index vectors required in the sequel, are indexed as

I0 = {(0, . . . , 0)}, #Ik−1 = k,

and the index vectors in some selected Ik−1, which are all connected to (0, . . . , 0), are indicated as
ν(0), ν(1), . . . , ν(k− 1). This enumeration of the index vectors may be different for different sets that
contain k elements. We also define the boundary ∂I of an index set I by

∂I = (∪n
i=1{ν + (δi1, . . . , δin) : ν ∈ I}) \ I.

In the sequel we assume that the monomials Λ
ν(j)
i are such that the Vandermonde matrix (5.2), and

hence the matrices H
(k)
r in (5.1) for k ≥ 0, are regular. We now indicate how one can solve for the

vectors Λi, i = 1, . . . , r, given the moments σν(j) ([4, 26]). Afterwards it is easy to obtain the weights
wi, i = 1, . . . , r from the generalized Vandermonde system (4.5).

§5. Hankel-like generalized eigenvalue problems

We denote by H
(k)
r the matrix

H(k)
r :=

(
σν(k)+ν(i−1)+ν(j−1)

)r
i,j=1

=




σν(k)+ν(0)+ν(0) . . . σν(k)+ν(0)+ν(r−1)

σν(k)+ν(1)+ν(0) . . . σν(k)+ν(1)+ν(r−1)

...
...

σν(k)+ν(r−1)+ν(0) . . . σν(k)+ν(r−1)+ν(r−1)


 . (5.1)
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When n = 1 the matrix H
(k)
r coincides with the one-dimensional definition and hence we do not

introduce a different notation. How to obtain the proper value of r and the proper index set Ir−1 of
r index vectors connected to (0, . . . , 0), to proceed with, is explained in [5, p. 1861].

Using the matrix factorizations

H(0)
r = V DV T ,

H(k)
r = V D




Λ
ν(k)
1

. . .

Λ
ν(k)
r


V T ,

where the matrices V and D respectively denote the Vandermonde-like matrix

V =




Λ
ν(0)
1 . . . Λ

ν(0)
r

Λ
ν(1)
1 . . . Λ

ν(1)
r

...
...

Λ
ν(r−1)
1 . . . Λ

ν(r−1)
r




(5.2)

and the diagonal matrix

D =



w1

. . .

wr


 ,

it is easy to see that ([4, p. 60], [5, p. 1859], [26, p. 38])

H(k)
r ui = Λ

ν(k)
i H(0)

r ui, i = 1, . . . , r, k = 0, 1, 2, . . . (5.3)

or

H(k)
r

(
H(0)

r

)−1

ûi = Λ
ν(k)
i ûi, i = 1, . . . , r, k = 0, 1, 2, . . .

The corresponding (properly normalized) generalized eigenvector ûi is given by

ûi =
(
1,Λ

ν(1)
i , . . . ,Λ

ν(r−1)
i

)T
, i = 1, . . . , r,

which is independent of k.
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With some sets of index vectors ν(j), the values λi1, . . . , λin, i = 1, . . . , r, can be read directly
from the generalized eigenvalues or eigenvectors, or they can be obtained with a little extra effort.
For instance, having

(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

as the first n + 1 index vectors ν(j), j = 0, . . . , n, hands us λij for j = 1, . . . , n and i = 1, . . . , r. Of
course, this is not the only possibility for the ν(j) and it may not even be a suitable one.

If some of the moments in the matrices H
(k)
r are unknown because their index lies outside the set

|ν| ≤ d, then the method can still be used. In that case one proceeds as follows. Using (5.3) it is easy

to see that again the matrices Gk := H
(k)
r (H

(0)
r )−1 and Gℓ := H

(ℓ)
r (H

(0)
r )−1 with k 6= ℓ commute. So

by solving the equations
GkGℓ = GℓGk, k 6= ℓ,

for the unknown moments and substituting these in the Hankel-like matrices, one can continue the
procedure.

§6. Connection with multivariate sparse interpolation and

Padé approximation

The connection between tensor decomposition for n = 1, and sparse interpolation, exponential anal-
ysis, Gaussian quadrature or Padé approximation is through (2.2), which can be solved by Prony’s
method [22]. In case n > 1, several multivariate generalizations of these concepts are possible. Here we
present a discussion of some connections with the tensor decomposition algorithm in Section 5. In the
next section we present an entirely different approach built on a different multivariate generalization
and its connections.

As a result of all these interrelationships, new algorithms for tensor decomposition can be expected
in the future. For instance, the connections described here will make it possible (see [14]) to reduce the
number of moments required in the tensor decomposition problem to precisely (n+ 1)r , which is the
minimum because it equals the number of unkown parameters. A reduction from O (rn) when using
gridded data, to O (nr) in particular cases (see [18]), is yet possible via a method using 1-dimensional
projections of the data on lines (see [25, 27, 28]). A further reduction, using the technique described
in the forthcoming paper [14] on Prony’s method in higher dimensions, is however possible. Here we
only focus on the interrelationships between the different topics.

As in the 1-dimensional problem we re-express each λik as

λik = ∆mik

k , ∆k = exp(2πi/Mk), Mk > 2 max
i=1,...,r

|ℑ(mik)|, k = 1, . . . , n.
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Then the tensor decomposition problem can be reformulated as the sparse interpolation problem
with complex exponents,

r∑

i=1

wiZ
µi

j = σν(j), |ν(j)| ≤ d, µi = (mi1, . . . ,min), Zj = (∆
νj1
1 , . . . ,∆νjn

n ), (6.1)

where ν(j) = (νj1, . . . , νjn). Expression (6.1) is a multivariate version (not the most general though)
of (3.1). This sparse interpolation problem is often called a multivariate exponential analysis problem
since, as in (4.5),

r∑

i=1

wiZ
µi

j =

r∑

i=1

wi exp

(
2πi

(
νj1mi1

M1
+ . . .+

νjnmin

Mn

))

=

r∑

i=1

wiλ
νj1
i1 · · ·λνjnin = σν(j).

So far the connection with Prony’s method. We now focus on the connection with concepts from
approximation theory. Define V(Z) of the form

V(Z) = Zν(r) +

r−1∑

j=0

bjZ
ν(j), ν(r) ∈ ∂Ir−1, Z = (z1, . . . , zn),

with V(Λi) = 0. The coefficients bj , j = 0, . . . , r − 1, in V(Z) are obtained from

σν(k)+ν(r) +

r−1∑

j=0

bjσν(k)+ν(j) = 0, k = 0, 1, 2, . . . , (6.2)

or in matrix notation

H(0)
r




b0
...

br−1


 = −




σν(r)+ν(0)

...
σν(r)+ν(r−1)


 ,

which follows from
r∑

i=1

wiΛ
ν(k)
i V(Λi) = 0, k = 0, 1, 2, . . . ,
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in combination with (4.5). So a determinant representation for V(Z) is

∣∣∣H(0)
r

∣∣∣V(Z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

σν(0)+ν(0) . . . σν(0)+ν(r−1) σν(0)+ν(r)

σν(1)+ν(0) . . . σν(1)+ν(r−1) σν(1)+ν(r)

...
...

σν(r−1)+ν(0) . . . σν(r−1)+ν(r−1) σν(r−1)+ν(r)

Zν(0) . . . Zν(r−1) Zν(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (6.3)

with H
(0)
r as in Section 5.

This approach is still very much univariate in nature, as it can be seen from the fact that the
indices in (6.2) and (6.3) take the form ν(k) + ν(j) and not ν(k + j) as in the general multivariate
Padé approximants in [11, 10]. It is not our goal to provide a detailed discussion of the connection to
the latter approximants as well, but merely to provide a connection to this family of methods for the
purpose of future developments in tensor decomposition. Another approach based on an underlying
univariate principle is presented in the next section.

§7. A new approach via homogeneous multivariate Padé ap-

proximation

Let us switch from a cartesian to a spherical coordinate system. We write

X = (x1, . . . , xn) = (θ1x, . . . , θnx), ||(θ1, . . . , θn)||2 = 1, x ∈ R,

where Θ = (θ1, . . . , θn) is a directional vector and x is the signed distance from the origin (for a similar
approach we refer to [12]). Then the polynomial p(1, x1, . . . , xn) is rewritten as

p(Θ;x) =
d∑

j=0



∑

|ν|=j

cνΘ
ν


xj

=

d∑

j=0

Cj(Θ)xj ,

where
Cj(Θ) :=

∑

|ν|=j

cνΘ
ν , cνΘ

ν = cν1,...,νnθ
ν1
1 · . . . · θνnn .
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The decomposition problem takes the form

p(Θ;x) =

r∑

i=1

wi (1 + Λi(Θ)x)
d

=

d∑

j=0

(
d

j

)( r∑

i=1

wiΛi(Θ)j

)
xj ,

where

Λi(Θ) =

n∑

k=1

λikθk.

The counterpart of (2.2) is now

r∑

i=1

wiΛi(Θ)j = Cj(Θ)/

(
d

j

)
, j = 0 . . . , d.

Putting Sj := Cj(Θ)/
(
d
j

)
the system looks like

r∑

i=1

wiΛi(Θ)j = Sj(Θ), j = 0 . . . , d, (7.1)

where the moments Sj(Θ) and the vectors Λi(Θ), i = 1, . . . , r, are now parameterized by the directional
vector Θ. In the same way homogeneous multivariate Padé approximants were introduced in [7, 9].

Now define

V (Θ; z) :=

r∏

i=1

(z − Λi(Θ)) = zr +

r−1∑

j=0

Bj(Θ)zj, (7.2)

where Bj(Θ) is a multivariate homogeneous polynomial in Θ of degree r − j, and denote

H(k)
r (Θ) :=

(
Sk+(i−1)+(j−1)(Θ)

)r
i,j=1

=




Sk(Θ) Sk+1(Θ) . . . Sk+r−1(Θ)
Sk+1(Θ) Sk+2(Θ) . . . Sk+r(Θ)

...
...

. . .
...

Sk+r−1(Θ) Sk+r(Θ) . . . Sk+2r−2(Θ)


 .
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From (7.1) and (7.2) we obtain that

r∑

i=1

wiΛ
k
i (Θ)V (Θ; Λi(Θ)) ≡ 0,

or

Sk+r(Θ) +

r−1∑

j=0

Bj(Θ)Sk+j(Θ) ≡ 0, k = 0, 1, 2, . . . (7.3)

So the expressions Bj(Θ) that serve as parameterized coefficients in the polynomial V (Θ; z) in z, can
be obtained from the parameterized Hankel system

H(0)
r (Θ)




B0(Θ)
...

Br−1(Θ)


 = −




Sr(Θ)
...

S2r−1(Θ)


 , (7.4)

under the condition that a sufficient number of moments Sk(Θ) is given. The existence of a nontrivial
solution of (7.4) for general n > 1 is guaranteed in [8, pp. 60–62]. The same matrix factorizations

of H
(k)
r (Θ) hold as for (2.5), but now with all entries parameterized by Θ. So the Λi(Θ) can also be

obtained from the parameterized generalized eigenvalue problem

H(1)
r (Θ)ui = Λi(Θ)H(0)

r (Θ)ui, i = 1, . . . , r. (7.5)

Let us introduce the linear functional

Γ : zj → Sj(Θ), j = 0, 1, 2, . . .

Then the polynomial V (Θ; z) satisfies the formal orthogonality conditions

Γ(zkV (Θ; z)) ≡ 0, k = 0, 1, 2, . . . ,

and equals the parameterized Hadamard polynomial V (Θ; z) given by

∣∣∣H(0)
r (Θ)

∣∣∣V (Θ; z) =

∣∣∣∣∣∣∣∣∣∣∣

S0(Θ) . . . Sr−1)(Θ) Sr(Θ)
S1(Θ) . . . Sr(Θ) Sr+1(Θ)

...
. . .

...
...

Sr−1(Θ) . . . S2r−2(Θ) S2r−1(Θ)
1 . . . zr−1 zr

∣∣∣∣∣∣∣∣∣∣∣

, (7.6)
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where |H(0)
r (Θ)| denotes the determinant of H

(0)
r (Θ). From (7.6) we find that the expressions Bj(Θ)

also are multivariate rational functions of Θ, of homogeneous degree r2 − j in the numerator and
homogeneous degree r2 − r in the denominator ([29]). But if the tensor decomposition (7.1) exists,

then we know from (7.3) that |H(0)
r (Θ)| of homogeneous degree r2− r, is a common factor that can be

cancelled in numerator and denominator of each of the Bj(Θ). In the same way as for (3.4), the pa-
rameterized polynomial V (Θ; z) is related to the denominator of the homogeneous Padé approximant
of degree r − 1 in the numerator and r in the denominator by

zrV (Θ; 1/z) = 1 +

r∑

j=1

Br−j(Θ)zj.

Some words on obtaining the value of r. This value need not be the same for all directional vectors
Θ ([16]). Although we know that for k ≥ 0,

∣∣∣H(k)
r (Θ)

∣∣∣ 6≡ 0,

we cannot guarantee that |H(0)
r (Θ)| 6= 0 for all Θ. The expression |H(0)

r (Θ)| is a polynomial in Θ and
its zeroes constitute a set of Lebesgue measure zero in Cn. However, we can guarantee that for k ≥ 0,

∣∣∣H(k)
R (Θ)

∣∣∣ ≡ 0, R > r.

An illustration of this is given in the next section where we apply the methods of Section 5 and Section
7 on an example.

The relation with higher dimensional integration formulas, more precisely Gaussian cubature, is
established subsequently, following the ideas in [2]. Recent results on this can be found in [3]. Pro-
ceeding as in (3.2), the Gaussian cubature formula can be viewed as a homogeneous multivariate Padé
approximant of degree r− 1 in the numerator and r in the denominator ([2, 7]). So the different con-
nections between tensor decomposition, multivariate Prony methods and sparse interpolation ([13]),
multivariate orthogonality ([12]), Gaussian cubature ([2, 3]) and multivariate Padé approximation
([7]) exist clearly.

§8. Illustration

Consider the tensor of order 3 and dimension 3 associated with the homogeneous polynomial

p(x0, x1, x2) = x0x1x2 + x31.
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We first illustrate the technique described in Section 5 for the decomposition of this tensor. With

p(1, x1, x2) = x1x2 + x31,

we find that, except for
σ11 = 1/6, σ30 = 1,

all σν with |ν| ≤ d are zero. Following [5, p. 1861] we find that r = 4 and

ν(0) = (0, 0), ν(1) = (1, 0), ν(2) = (0, 1), ν(3) = (1, 1), (8.1)

I3 = {(0, 0), (1, 0), (0, 1), (1, 1)} .
Construct the matrices

H
(0)
4 =




σ00 σ10 σ01 σ11
σ10 σ20 σ11 σ21
σ01 σ11 σ02 σ12
σ11 σ21 σ12 σ22


 =




0 0 0 1
6

0 0 1
6 0

0 1
6 0 0

1
6 0 0 σ22


 ,

H
(1)
4 =




σ10 σ20 σ11 σ21
σ20 σ30 σ21 σ31
σ11 σ21 σ12 σ22
σ21 σ31 σ22 σ32


 =




0 0 1
6 0

0 1 0 σ31
1
6 0 0 σ22
0 σ31 σ22 σ32


 ,

H
(2)
4 =




σ01 σ11 σ02 σ12
σ11 σ21 σ12 σ22
σ02 σ12 σ03 σ13
σ12 σ22 σ13 σ23


 =




0 1
6 0 0

1
6 0 0 σ22
0 0 0 σ13
0 σ22 σ13 σ23


 .

The missing σij are determined from the commutativity of H
(1)
4 (H

(0)
4 )−1 and H

(2)
4 (H

(0)
4 )−1. They are

found to equal
σ22 = 0, σ31 = 5/3, σ32 = 1, σ13 = 1/6, σ23 = 0.

Solving the generalized eigenvalue problem with k = 1 gives us the four eigenvectors

û1 =




1
4
1
4


 , û2 =




1
−4
1
−4


 , û3 =




1
2
−1
−2


 , û4 =




1
−2
−1
2


 .
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Since
ûi = (1, λi1, λi2, λi1λi2)

T
, i = 1, . . . , 4,

we can deduce the Λi, i = 1, . . . , 4, from these and subsequently solve the linear system (4.5) for the
wi. We finally obtain the decomposition

p(x0, x1, x2)

=
1

96
(x0 + 4x1 + x2)

3 − 1

96
(x0 − 4x1 + x2)

3 − 1

48
(x0 + 2x1 − x2)

3 +
1

48
(x0 − 2x1 − x2)

3.

The boundary of I3 contains 4 elements: ∂I3 = {(2, 0), (0, 2), (2, 1), (1, 2)}. We compute the polyno-
mial V(z1, z2) with each of these points in ∂I3 as ν(4) and obtain:

ν(4) = (2, 0), V(z1, z2) = z21 − 6z2 − 10,

ν(4) = (0, 2), V(z1, z2) = z22 − 1,

ν(4) = (2, 1), V(z1, z2) = z21z2 − 10z2 − 6,

ν(4) = (1, 2), V(z1, z2) = z1(z
2
2 − 1).

The intersection of the 4 zero curves delivers the points (z1, z2) = (λi1, λi2), i = 1, . . . , 4, given by

(4, 1), (−4, 1), (2,−1), (−2,−1). (8.2)

Let us now follow the parameterized approach described in Section 7, which is fundamentally
different from the above. We write

p(1, x1, x2) = θ1θ2x
2 + θ31x

3 x1 = θ1x, x2 = θ2x,
= C2(Θ)x2 + C3(Θ)x3 Θ = (θ1, θ2).
= p(Θ;x),

Then the decomposition problem takes the form

p(Θ;x) =

3∑

j=0

(
r∑

i=1

wiΛi(Θ)j

)(
d

j

)
xj , Λi(Θ) = λi1θ1 + λi2θ2.

We have

S0(Θ) = 0, S1(Θ) = 0, S2(Θ) =
1

3
θ1θ2, S3(Θ) = θ31.
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Construct

H
(0)
4 (Θ) =




0 0 1
3θ1θ2 θ31

0 1
3θ1θ2 θ31 S4(Θ)

1
3θ1θ2 θ31 S4(Θ) S5(Θ)
θ31 S4(Θ) S5(Θ) S6(Θ)


 ,

H
(1)
4 (Θ) =




0 1
3θ1θ2 θ31 S4(Θ)

1
3θ1θ2 θ31 S4(Θ) S5(Θ)
θ31 S4(Θ) S5(Θ) S6(Θ)

S4(Θ) S5(Θ) S6(Θ) S7(Θ)


 .

The generalized eigenvalues Λi(Θ) are obtained from the generalized eigenvalue problem (7.5), after the

missing moments are determined from the commutativity of the matrix products H
(2)
4 (Θ)(H

(0)
4 (Θ))−1

and H
(1)
4 (Θ)(H

(0)
4 (Θ))−1. The latter are given by

S4(Θ) =
20

3
θ31θ2 +

2

3
θ1θ

3
2,

S5(Θ) = 20θ51 + 10θ31θ
2
2 ,

S6(Θ) =
100

3
θ31θ

3
2 + θ1θ

5
2 + 136θ51θ2,

S7(Θ) = 336θ71 + 420θ51θ
2
2 + 35θ31θ

4
2.

We remark that for this computation also H
(2)
2 (Θ) needs to be constructed. The parameterized

generalized eigenvalues equal

Λ1(Θ) = 4θ1 + θ2,

Λ2(Θ) = −4θ1 + θ2,

Λ3(Θ) = 2θ1 − θ2,

Λ4(Θ) = −2θ1 − θ2.

These can also be found from the factorization of V (Θ; z) which is given by

V (Θ; z) = (4θ1 + θ2 − z)(−4θ1 + θ2 − z)(2θ1 − θ2 − z)(−2θ1 − θ2 − z).

For the coefficients in the decomposition we can either solve (7.1) for the unknown wi or apply the
functional Γ to V (Θ; z)/ [(z − Λi(Θ))V ′ (Θ; Λi(Θ))] and obtain the Ai(Θ). The latter method gives

w1 = A1(Θ) =
1

96
, w2 = A2(Θ) =

−1

96
, w3 = A3(Θ) =

−1

48
, w4 = A4(Θ) =

1

48
.
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As indicated in [12], the Ai(Θ) are independent of Θ in this case. Combining the parameterized zeroes
Λi(Θ) of V (Θ; z) with the Ai(Θ) eventually gives the same decomposition

p(Θ; z) =
1

96
(x0 + (4θ1 + θ2)x)

3 − 1

96
(x0 + (−4θ1 + θ2)x)

3

− 1

48
(x0 + (2θ1 − θ2)x)

3 +
1

48
(x0 + (−2θ1 − θ2)x)

3 , x1 = θ1x, x2 = θ2x. (8.3)

For completeness, we mention that ∣∣∣H(0)
5 (Θ)

∣∣∣ ≡ 0

independent of Θ, thereby indicating that r = 4 indeed.
The question remains whether r = 4 for all directional vectors. Let’s take a look at the polynomial

|H(0)
4 (Θ)| of degree 12,

∣∣∣H(0)
4 (Θ)

∣∣∣ = 1

81
θ41(θ1 + θ2)

2(3θ1 + θ2)
2(θ1 − θ2)

2(3θ1 − θ2)
2.

When either θ2 = ±θ1 or θ2 = ±3θ1, one of the four terms in the decomposition (8.3) reduces to one
of the other three terms and so after simplification only 3 terms remain, reducing r from 4 to 3 for
these four directional vectors.

To conclude we reassure the reader that the symbolic expressions in this new method need not be
computed using symbolic methods. So the methods in the sections 5 and 7 do not need a different

computational environment. All multivariate polynomials involved, |H(k)
r (Θ)|, |H(0)

R (Θ)| as well as
missing Sj(Θ) and the Λi(Θ) for 1 ≤ i ≤ r, can easily be computed using numeric samples of these

polynomials in combination with Prony’s method. As an example we compute |H(0)
4 (Θ)| in this way

([13, 19]).

Inspecting |H(0)
4 (Θ)| tells us that a priori bounds on the partial degrees of this polynomial deter-

minant in θ1 and θ2, are given by 16 and 12. As mutually coprime bounds, 17 and 13 can be taken.

Evaluating |H(0)
4 (Θ)| at θ1 = exp(2πi(10/17)) and θ2 = exp(2πi(3/13)) and following [13, 19] we find

that |H(0)
4 (Θ)| only contains 5 terms, namely

|H(0)
4 (Θ)| = d1θ

8
1θ

4
2 + d2θ

10
1 θ

2
2 + d3θ

4
1θ

8
2 + d4θ

6
1θ

6
2 + d5θ

12
1 .

Numerical values for the real-valued coefficients di, i = 1, . . . , 5, have imaginary parts of the order of
10−10:

d1 = +1.45679012358018− 3.38031824831369× 10−11i,
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d2 = −2.22222222139352− 2.63621714615090× 10−10i,

d3 = +0.01234567926619− 5.75165916323563× 10−10i,

d4 = −0.24691358095272+ 7.01071048519302× 10−10i,

d5 = +0.99999999949986+ 1.71519431770272× 10−10i.

Computing the regular continued fraction representation ([17, p. 175])

ℜ(di) = δ
(i)
0 +

1

δ
(i)
1 +

1

δ
(i)
2 + · · ·

of the real parts of the coefficients di, delivers for rather small mi a partial denominator δ
(i)
mi that is

very large, indicating that the real part of di is close to a rational number:

d1 = 1 +
1

2 +
1

5 +
1

3 +
1

2 +
1

1235237+ . . .

,

d2 = −2− 1

4 +
1

1 +
1

1 +
1

14897602+ . . .

,

d3 =
1

80 +
1

1 +
1

600429 + . . .

,

d4 = − 1

4 +
1

20 +
1

215945+ . . .

,
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d5 =
1

1 +
1

1999439551+ . . .

.

Within truncation error bounds of less than 8.3× 10−10 for the real parts of the di, we find

|H(0)
4 (Θ)| = 118

81
θ81θ

4
2 −

20

9
θ101 θ

2
2 +

1

81
θ41θ

8
2 −

20

81
θ61θ

6
2 + θ121 .
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A review of multivariate Padé approximation theory, J. Comput. Appl. Math. 12-13, 221–232.

[10] Cuyt A. (1986)
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