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Summary
We explore the application of some recent results in exponential analysis and sparse interpolation
to underwater acoustics, in a joint effort from marine engineers and computational mathematicians.
The fact that, in practice, the sampling rate used for the recording of an echoed signal is often a
multiple of the Nyquist rate, is regarded as a constraint on the cost and performance of echo sounding
devices.
Here we illustrate how the latter can be overcome, using a new regular sampling scheme, that can
even go well below the Nyquist rate. In the numerical examples an average of 20-25 % of the Nyquist
rate is amply sufficient to reliably recognize and reconstruct the echo. The sparse sub-Nyquist method
under consideration allows to recover from possible aliasing introduced by the subsampling.
The technique does not need newly designed hardware, has low computational complexity and uses
a small number of samples.

PACS no. 43.25.Jh, 43.30.Gv, 43.60.Jn

1. Introduction

The applications of underwater sound analysis span a
wide range, including positioning, navigation, wireless
communication, echo-sounding, seabed mapping, geo-
physical surveying, water quality measurement, active
and passive sonar, military intelligence, and oceanic
measurements such as wave heights, ocean currents
and temperature. Underwater acoustics is also a key
underpinning technology in offshore oil and gas activ-
ities, is increasingly used in oceanographic and envi-
ronmental studies, and continues to play a crucial role
in defence. Its fundamental role cannot be overstated.

In signal processing data are traditionally sampled
uniformly at a rate dictated by the Shannon-Nyquist
theorem, which states that the sampling rate needs
to be at least twice the maximum bandwitdh of the
signal. A coarser time grid than dictated by the the-
ory of Nyquist and Shannon causes aliasing, mapping
higher frequencies to lower ones in the analysis. Here
we introduce a procedure for underwater acoustics
that works with sub-sampled data: our parametric
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method samples at a rate below the Shannon-Nyquist
one while maintaining a regular sampling scheme.

The key idea is quite generic so that it can be com-
bined [2, 1] with several popular signal processing pro-
cedures, both parametric and non-parametric, such as
ESPRIT [14], MUSIC [15], the matrix pencil [10] algo-
rithm, variable projection methods [13], and the dis-
crete Fourier transform. We illustrate some of these
possibilities on real-life hydrophone recordings.

2. Classical exponential analysis

Consider the interpolation problem

fj =

n∑
i=1

αi exp(φitj), αi, φi ∈ C (1)

from the values fj at the uniformly spaced interpola-
tion points tj . We assume that the frequency content
in (1) is limited by [12, 16]

|=(φi)|/(2π) = |ωi| < Ω/2, i = 1, . . . , n, (2)

and that the 2n sample points tj = j∆ are spaced
with ∆ ≤ 1/Ω. In the sequel we also assume that n
is known, as its computation is less relevant in the
current application. Techniques for the extraction of



the value of n from the samples fj can be found in
[4, 11, 2]. The interpolation problem (1) consists in
estimating the parameters φ1, . . . , φn and α1, . . . , αn
from the samples fj at the points tj .

Let us define the Hankel matrix

ρ
1Hn :=

 fρ . . . fρ+n−1

... . .
. ...

fρ+n−1 . . . fρ+2n−2

 , ρ ∈ Z.

It is well-known that the Hankel matrix ρ
1Hn can be

decomposed as
ρ
1Hn = VnΛnAnV

T
n ,

Vn =


1 · · · 1

exp(φ1∆) · · · exp(φn∆)
...

...
exp(φ1(n− 1)∆) · · · exp(φn(n− 1)∆)

 ,

An = diag(α1, . . . , αn),

Λn = diag(exp(φ1ρ∆), . . . , exp(φnρ∆)).

For chosen ρ, the values exp(φi∆) can be retrieved
from the generalized eigenvalue problem [10](

ρ+1
1 Hn

)
vi = exp(φi∆) (ρ1Hn) vi,

i = 1, . . . , n, (3)

where vi are the generalized right eigenvectors. The
choice ρ = 0 coincides with the original solution of
the interpolation problem already proposed in 1795 by
de Prony [8]. From the exp(φi∆), the complex num-
bers φi are uniquely defined because of the restriction
|=(φi∆)| < π. Subsequently the remaining linear co-
efficients αi, i = 1, . . . , n are obtained from the linear
system of interpolation conditions

n∑
i=1

αi exp(φij∆) = fj , j = 0, . . . , 2n− 1 (4)

which can be solved in the least squares sense in the
case of noisy data or exactly in the case of exact data
(in the latter case n of the interpolation conditions
are linearly dependent because the φi satisfy the gen-
eralized eigenvalue problem). We remark that the co-
efficient matrix of (4) is a Vandermonde matrix.

In the noisy case the structured matrices in both
(3) and (4) can also be extended to rectangular N×n
matrices with N > n and (3) and (4) can be consid-
ered in the least squares sense [13]. Then the index j
in (4) runs from 0 to N + n− 1 and the total sample
usage equals N + n.

3. Sub-Nyquist exponential analysis

Now let us consider more general sample locations
tρ+jr = (ρ+jr)∆ with r ∈ N, r > 1 and gcd(r, ρ) = 1.

For chosen ρ and r we denote the sample at tρ+jr, j =
0, . . . , 2n−1 by fρ+jr. The interpolation problem now
becomes

fρ+jr =

n∑
i=1

αi exp (φi(ρ+ jr)∆) ,

where j runs for ρ = 0 (at least) from 0 to 2n − 1
and for some ρ 6= 0 (at least) from 0 to n − 1. With
r ∈ N, ρ ∈ Z we now define

ρ
rHn :=


fρ fρ+r . . . fρ+(n−1)r

fρ+r
... . .

. ...
fρ+(n−1)r . . . fρ+(2n−2)r

 .
This Hankel matrix ρ

rHn is decomposable as
ρ
rHn = VnΛnAnV

T
n ,

Vn =


1 · · · 1

exp(φ1r∆) · · · exp(φnr∆)
...

...
exp(φ1(n− 1)r∆) · · · exp(φn(n− 1)r∆)

 ,

An = diag(α1, . . . , αn),

Λn = diag(exp(φ1ρ∆), . . . , exp(φnρ∆)).

Again the values exp(φir∆), now with r > 1, can be
obtained from the generalized eigenvalue problem(

ρ+r
r Hn

)
vi = exp(φir∆) (ρrHn) vi,

i = 1, . . . , n, (5)

where vi are the generalized right eigenvectors. With
r > 1 the φi cannot be retrieved uniquely from the
generalized eigenvalues exp(φir∆) anymore because

|=(φir∆)| < rπ. (6)

Choosing r > 1 offers several numerical advantages
though [9, 7, 3] besides the fact that one can work with
sub-Nyquist sampled data [5, 6]. Especially when Ω is
quite large, the latter may be interesting as ∆ ≤ 1/Ω
may become so small that collecting the samples fj
becomes costly.

We now indicate how to resolve (6). First of all,
with ρ = 0, the linear coefficients αi, i = 1, . . . , n are
computed from the linear system

n∑
i=1

αi exp(φijr∆) = fjr, j = 0, . . . , 2n− 1.

Next, for chosen ρ, a shifted set of at least n samples
fρ+jr is interpreted as

fρ+jr =

n∑
i=1

(αi exp(φiρ∆)) exp(φijr∆),

ρ ∈ Z. (7)



Note that (7) is merely a shifted version of the
original problem where the effect of the shift is
pushed into the coefficient. From (7) the coefficients
αi exp(φiρ∆) can be computed since the generalized
eigenvalues exp(φir∆) are known. From the αi and
the αi exp(φiρ∆) we obtain

αi exp(φiρ∆)

αi
= exp(φiρ∆),

from which again the φi cannot be extracted unam-
biguously if ρ > 1. But if gcd(r, ρ) = 1 the sets{

exp

(
φi∆ +

2πi

r
`

)
, ` = 0, . . . , r − 1

}
and {

exp

(
φi∆ +

2πi

ρ
`

)
, ` = 0, . . . , ρ− 1

}
,

which contain all the possible values for exp(φi∆)
obtained respectively from exp(φir∆) in (3) and
exp(φiρ∆) in (7), have a unique intersection [7]. How
to obtain this and identify the φi is detailed in [7, 3].
So at this point the nonlinear parameters φi, i =
1, . . . , n and the linear αi, i = 1, . . . , n in (1) are com-
puted through the solution of either (3) or (5) and (4),
and if r > 1 also (7). Remedying the aliasing intro-
duced by taking r > 1 is consequently at the expense
of another n samples at shifted locations tρ+jr.

As in the previous section, the structured matri-
ces in the generalized eigenvalue problem (5) can
be extended to N × n matrices with N > n. Like-
wise, the structured linear system (7) expressing the
shifted samples, can be extended and solved in the
least squares sense. For the latter we can for instance
consider the size b(N + n)/2c × n.

4. Application to echosounder signals

The sub-Nyquist analysis can easily be combined with
existing implementations such as ESPRIT, MUSIC,
the matrix pencil algorithm or variable projection, as
indicated in [2]. It can also be incorporated in a classi-
cal Fourier analysis which then turns this into a sparse
Fourier method, as developed in [1]. For our numer-
ical illustrations we use the basic underlying method
outlined in [7] which is summarized in the previous
sections.

We consider two hydrophone recordings, respec-
tively made:
1. at the test pool of the National Kaohsiung Univer-

sity of Science and Technology in Taiwan,
2. and in open water by the Antwerp Mar-

itime Academy associated with the University of
Antwerp in Belgium.

4.1. Test pool recording

The test pool is 1 m deep with a surface of 1.8 m by
1.8 m and for the experiment a Lowrance fishfinder
was used. The recording was of an 83 kHz outgo-
ing signal, about 30-fold oversampled at 5 MHz (the
Nyquist rate being 166 kHz), and of an incoming echo
with the same frequency, about 75-fold oversampled
at 12.5 MHz. Extracts of both are displayed in Figure
1.

Figure 1. Extracted pulse from the sent (top) and received
(bottom) signal.

Since we only process the middle part of the
recorded pulses, we can take n = 4 so that 2 ex-
ponential terms model the sinusoidal signal and an
additional 2 terms absorb the noise in each pulse. In
Figure 2 at the left we show the middle 1500 sam-
ples of a sent pulse and at the right the 2400 retained
samples of a received pulse. With r = 194, ρ = 11 for
the sent signal and r = 317, ρ = 13 for the received
signal, the frequency of 83 kHz is reliably extracted
from the minimal number of 3n = 12 samples taken at
the points tjr, j = 0, . . . , 7 and tρ+jr, j = 0, . . . , 3. For
the sent signal the estimate of 82.8 kHz is returned



and for the received one 82.4 kHz. This undersam-
pling and shifting strategy is comparable to the use
of recordings at 23% and 35% of the Nyquist rate for
the sent and received signal respectively.

Figure 2. Analyzed extract from the sent (top) and re-
ceived (bottom) signal.

When adding more samples, the square Hankel
and Vandermonde matrices are extended to overde-
termined rectangular ones and the problems can be
dealt with in the least squares sense. But in the test
pool setup the noise is not so large that this is neces-
sary.

In Figure 3 the reconstruction based on (1) (shown
in red) of the signal shown in Figure 2 is plotted on
top of the original (shown in blue). It is clear that
the exponential model extracted from only 12 samples
collected at a rate well below the Nyquist rate is quite
accurate.

4.2. Open water recording

The recording in open water was performed using a
Humminbird fishfinder at a sampling rate of 2 MHz.
The instrument’s emitted downward beam is 200 kHz
and the two side beams are 455 kHz. We analyze

Figure 3. Reconstructed extract from the sent (top) and
received (bottom) signal.

and reconstruct the echos on the side beams that are
shown in Figure 4. In a first step, we restrict the anal-
ysis to some middle part of the echos, namely some
190 samples for the first echo and some 130 samples
for the second one, as shown in Figure 5.

We take r = 7, ρ = 3 and n = 8, giving us six terms
to model the somewhat larger noise in addition to
the standard two terms representing the instrument’s
outgoing frequency. Instead of the minimal of 3n = 24
samples, we enlarge all structured matrices with ad-
ditional rows making the generalized eigenvalue prob-
lem and the Vandermonde system overdetermined.

For the first echo we solve an N × n = 20× 8 gen-
eralized eigenvalue problem requiring 28 samples at
the points tjr, j = 0, . . . , 27 and we solve an b(N +
n)/2c×n = 14× 8 Vandermonde system requiring 14
samples at the shifted time points tρ+jr, j = 0, . . . , 13.
The frequency of 455 kHz is recovered with a relative
error of only 1.7%, namely at 462.8 kHz.

For the second echo we solve an 11× 8 generalized
eigenvalue problem from 19 samples and a 9× 8 Van-
dermonde system needing 9 samples, resulting in an
estimate of 461.4 kHz for the frequency or a relative
error of only 1.4%.



Figure 4. Two echoed pulses recorded in the open water
experiment.

Figure 5. Analyzed extract from the first (top) and second
(bottom) echoed pulse.

Both analyses, considering the undersampling and
the shifting jointly, are comparable to using a sam-
pling scheme at only 21% of the Nyquist rate. The
undersampling solely is comparable to a sampling
scheme at somewhat more than 14% of the Nyquist

rate. The shifted samples added uniformly inbetween
account for almost an additional 7%. We also remark
that the output delivered by our scheme is more ac-
curate than a full ESPRIT analysis of all respectively
191 and 131 samples, when solving for n = 8 terms.
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