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A statistical multiplexer is a basic model used in the design and the dimensioning of communication networks.
The multiplexer model consists of a finite buffer, to store incoming packets, served by a single server with
constant service time, and a more or less complicated arrival process. The aim is to determine the packet loss
probability as a function of the capacity of the buffer. An exact analytic approach is unfeasible in real time,
and hence we show how techniques from rational approximation theory can be applied to the computation of
the packet loss. Since the parameters used in such networks may not produce precise probabilities of interest
without having to introduce drastic assumptions, we also carry out a perturbation analysis with respect to these
parameters. Using techniques from interval arithmetic, we can deliver sharp bounds for the true uncertainity
effect. The latter is very important because the packet loss probability function can be very sensitive to relatively
small changes in the network parameters.
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1 Introduction

Fixed length packet switches have been studied extensively in the context of ATM switching models. However,
since the Internet is primarily TCP/IP with variable length packets, it is even more important to analyze switching
in the new context. Variable bit rate (VBR) communications with real time constraints in general, and video
communication services (video phone, video conferencing, television distribution) in particular, are expected to
be a major class of services provided by the future Quality of Service (QoS) enabled Internet.

The introduction of statistical multiplexing techniques offers the capability to efficiently support VBR con-
nections by taking advantage of the variability of the bandwidth requirements of individual connections. These
techniques will handle a variety of traffic types such as video, voice, still images and data, each with their own
QoS. Accurate traffic modelling and analysis of the QoS parameters in the multiplexer environment will enable
the admission controller to make decisions that ensure the integrity of the traffic sources and that are efficient to
the network. An important QoS measure that we will study in this paper is the packet (or cell) loss probability
(PLP).

To compute the PLP PL(N) as a function of the buffer size N , several approaches have been developed in
recent years, based on exact analytical techniques, approximate techniques or simulation.

In exact analysis, the traffic is described by Markovian arrival processes, leading to a Markov model of finite
M/G/1-type [11, 23]. Queues of finite M/G/1-type give rise to finite embedded Markov chains whose transition
matrices are upper block Hessenberg [12]. The complexity of the algorithms used to find the stationary probabil-
ities of M/G/1-type queues is O(cN3

1 N2
2 ), where c is the number of servers, N1 is the dimension of a block and

N2 is the number of block rows. This order of complexity does not allow one to compute PL(N) for large values
of N in real time.

∗Corresponding author: e-mail: Annie.Cuyt@ua.ac.be, Phone: +00 323 265 3898, Fax: +00 323 265 3777
∗∗e-mail: Lenin@saii.ac.in, Phone: +91 40 5582 6155, Fax: +91 40 2326 0013

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Appl. Num. Anal. Comp. Math. 1, No. 1, 18 – 35 (2004) / DOI 10.1002/anac.200310003



Appl. Num. Anal. Comp. Math. 1, No. 1 (2004) / www.interscience.wiley.com 19

In approximate analysis, models from fluid queues have been used [7]. However, the computational require-
ments of the algorithms grow quite rapidly as the system’s complexity grows.

Monte Carlo simulation is also an option to compute the packet loss probabilities. However, if the desired
probability is in the range of 10−6 to 10−12 (rare event probability), it is computationally impossible to use the
conventional Monte Carlo simulation. A simulation technique called Importance Sampling (IS) can speed up
simulations involving rare events. However, because of the complicated nature of multiplexing queueing models,
applying the IS technique is not straightforward.

The rational approximation technique proposed in [4] is a kind of “divide and conquer” technique, in the sense
that :

– for small values of the buffer capacity N , the exact value PL(N) is computed;
– the function log PL(N) is being approximated by a suitable rational function rn(N);
– and the approximate model is validated by simulation for one larger value of the buffer length.

The motivation to compute the packet loss probabilities using rational approximation comes from the works
of Gong et al. [10] and Yang [24]. They compute these probabilities for large buffer sizes, from sampled values
of log PL(N) for small buffer sizes and its decay rate. The technique was at first applied to multiplexer models
with little or no correlation between the cells.

In [4], an automatic procedure to select the sample points (also called support points) is proposed and used
for the efficient computation of models rn(N) in case there is more correlation between the cells. The procedure
selects the support points in a region which we determine from the system parameters, until the model rn(N) is
sufficiently accurate, meaning that |rn(N)− rn+1(N)|/|rn+1(N)| does not exceed a prescribed error threshold.
But when encountering positive real poles in the model rn(N), the procedure has to add more support points and
increase n to achieve the desired accuracy.

In [3], the technique of [4] is perfected by making very good use of the knowledge of PL(N) for extremely
small values of N . The approach maximizes the information that can be extracted from the data, while minimizing
the number of date samples to be collected. Extremely small is to be interpreted as N = 1, 2, 3, . . . ,M , where M
is the number of sources. The modified technique allows to construct a model rn(N) which is free from positive
real poles, and is extremely efficient.

Since the parameters used in such networks are measured values based on the application requirements, precise
probabilities may not be known. Hence it is interesting and important to carry out a perturbation analysis with
respect to these parameters. Instead of taking point values for some real-valued parameters, we will consider
intervals and carry out the computation of the PLP for interval data. First, we compute the pair of packet loss
probabilities for small buffer sizes using interval arithmetic corresponding to the minimal and maximal loads
of the networks. These minimal and maximal loads are computed from the interval parameter values using
theorem 5.1. We also compute an interval enclosure for the pair of decay rates corresponding to the minimal
and maximal loads. Second, we compute the Newton-Padé type approximant using the technique developed in
[3] in combination with the method of Markov et al. [14] for the computation of the interval coefficients of the
numerator polynomial. This is done by using the interval packet loss probabilities at small buffer sizes as support
points and the interval decay rate.

2 Analytical Model

2.1 Notation and definitions

In a multiplexer environment, the arrival of packets to the switch happens in discrete time, with discrete service
time, which makes the discrete time Markov chain a natural modelling choice. We assume that the arrival of
packets transmitted by M independent and non-identical information sources to the multiplexer, can be modelled
as a discrete time batch Markovian Arrival Process (D-BMAP), the discrete-time version of BMAP. The BMAP
is a convenient representation of the versatile Markovian point process which generalizes the Markovian arrival
process (MAP) [15]. The D-BMAP is a general process used to model a number of arrival processes, for example
video [5] and periodic processes [9].

Each information source is controlled by a Markov chain, called the background Markov chain. The basic
queueing system which models the multiplexer is a D-BMAP/D/c/N queue with c discrete time servers, where
each server can serve at most one cell per time unit. These servers serve a buffer with a capacity of N cells which
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is fed by M independent information sources. When the server is busy, a maximum of c cells will depart in each
slot. Service starts at the beginning of each time slot.

The arrival process associated with a single source is modelled as an Interrupted Bernoulli Process (IBP). This
process has two states 0 and 1. Source i generates a packet with probability di(m) when it is in state m (m = 0, 1)
and its transition probability matrix is given by

Qi =
(

1 − pi pi

qi 1 − qi

)
. (1)

The D-BMAP queueing model is an M/G/1 type queue which is basically a two-dimensional discrete time
Markov chain {(Xn, Yn), n ≥ 0}, where Xn is the number of cells in the buffer and Yn represents the state of
the M sources during the nth time slot. We are interested in the steady state behavior (X,Y ):= lim

n→∞(Xn, Yn).

The state space of the process (X,Y ) is S:=SX × SY , where

SX = {0, 1, 2, . . . , N}, SY = {(m1,m2, . . . , mM ) | mi = 0 or 1}.

A significant reduction of the state space SY is possible when the sources are homogeneous (identical). We
discuss this case in subsection 2.2.

The 2M × 2M matrix D, the transition probability matrix of the process Y , is given by

D =
M⊗
i=1

Qi. (2)

Since we assume that each source can generate at most one cell during a time slot and there are M sources, at
most M cells can arrive at the multiplexer during a time slot. Therefore, there are M + 1 matrices governing the
arrivals, namely D0,D1, . . . ,DM . Then by [23] the probability matrix DM of m arrivals during a time slot is
given by

Dm =
∑

j1, j2, . . . , jM

ji = 0 or 1, 1 ≤ i ≤ M
j1 + j2 + · · · + jM = m

M⊗
i=1

[
(1 − ji)I + (−1)(1−ji)Pi

]
Qi, (3)

where

Pi =
(

di(0) 0
0 di(1)

)
, i = 1, 2, . . . , M (4)

and I is the identity matrix of order 2 × 2. The dimension of the matrix Dm is 2M × 2M .
The average arrival rate of the packets at the multiplexer is given by

λ =
M∑
i=1

pidi(1) + qidi(0)
c(pi + qi)

(5)

The sources are said to be of ON-OFF type with state 0 corresponding to the OFF state and state 1 correspond-
ing to the ON state if di(0) = 0, ∀i. That is, when a source is in OFF state, it does not transmit any cell. In this
case we denote di(1) by di for i = 1, 2, . . . ,M .

The load (traffic intensity) of the network ρ:=λ/c. Under the condition of ergodicity (ρ < 1) of the chain
(X,Y ), the stationary distribution vector Π:={π0,π1, . . . ,πN} where πi ∈ 2M

, satisfies

ΠP = Π (6)

Πe = 1 (7)
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where the transition probability matrix P [11] of the process (X,Y ) is given by

P =




D0 D1 . . . DN−c . . . DN−1 BN

D0 D1 . . . DN−c . . . DN−1 BN

...
...

D0 D1 . . . DN−c . . . DN−1 BN

0 D0 . . . DN−c−1 . . . DN−2 BN−1

0 0 . . . DN−c−2 . . . DN−3 BN−2

...
...

0 0 . . . D0 . . . Dc−1 Bc




(N+1)2M×(N+1)2M

(8)

with

Bn:=
M∑

j=n

Dj (9)

and e is a column vector of ones. The complexity of matrix-analytic methods to find the stationary probabilities
Π is O(c23MN2) (see for example [2, 11]).
The packet loss probability function, as a function of the buffer size N , is then given by

PL(N) = 1 − average number of served packets
average number of arrived packets

= 1 − 1
λ

N∑
i=0

min(i, c)πie. (10)

2.2 Particular case

Suppose all the sources are homogeneous (identical) and of ON-OFF type. Then

pi = p, qi = q, di(0) = 0, di(1) = d,

where p is the probability of an ON source becoming OFF, q is the probability of an OFF source becoming ON,
and d is the probability of an ON source transmitting a cell.

The average arrival rate for this case can easily be verified as

λ =
Mpd

c(p + q)
.

For this case the state space

SY = {0, 1, 2, . . . ,M},
where i ∈ SY denotes the number of ON sources. The state space SX remains the same.

For example, consider a population of voice sessions serviced by a single T1 channel (1.536 Mbps). We
discretize time into 16ms slots and model each voice source as an ON-OFF source controlled by a 2-state Markov
chain. The service capacity of the channel is c = 48, corresponding to each voice source generating cells at a peak
rate of 32Kbps (= 1.536Mbps/48). Suppose the peak ON and OFF periods are 352ms and 650ms, respectively
and a voice packet will be transmitted if the source is in ON state. Then the probabilities p and q are given by

p =
16
650

≈ 0.02462 and q =
16
352

≈ 0.04546

The packet generation probability d = 1. With the presence of M = 100 sources, the average arrival rate
λ = 35.1297.

The (i, j)-th element dij of the transition probability matrix D of Y is given by

dij =
i∑

k=0

(
i
k

)(
M − i

k + j − i

)
qk(1 − q)i−kpj+k−i(1 − p)M−j−k. (11)
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When the parameters p and q are very small (more correlation between the arriving cells), then the dij in (11) can
be approximated by the following formula:

dij =




1 − (M − i)p − iq, if j = i
(M − i)p, if j = i + 1
iq, if j = i − 1

(12)

That is, the dij are one-step transition probabilities and the matrix D corresponds to the transition probability
matrix of a birth-death process with birth rate (M − i)p and death rate iq when the process is in state i.

The matrices Dm are given by

Dm = diag(cm(0), cm(1), . . . , cm(M))D, m = 0, 1, . . . ,M, (13)

where cm(k), the probability of m arrivals during a time slot when the process Y is in state k, is given by

cm(k) =

{ (
k
m

)
dm(1 − d)k−m, if d �= 1

δmk, if d = 1
(14)

The (i, j)-th element of Dm equals the probability of m arrivals at the buffer during a time slot when the
background Markov chain changes from state i to j.

The formulae to compute P and PL(N) remain the same, namely (8) and (10), respectively. The matrix P is
now a square matrix of order (N + 1)(M + 1).

2.3 Asymptotic behaviour of log PL(N)

It has been proved that for infinite M/G/1-type queues, the buffer overflow probability decays exponentially [8].
In [13], the authors have shown that for Markov modulated queueing models with multi-server and infinite buffer,
the queue length distribution has exponential bounds. In [1], the exponential decay of the loss probability of the
finite MAP/G/1/K queue is studied. The asymptotic decay rate in a finite buffer queueing system is the same as
in the equivalent infinite buffer system [18].

We now briefly discuss the approach to compute the decay rate from the knowledge of the parameters for a
given model. We first show how we arrange the blocks in the matrix P for the multi-server case so that the
structure of P is similar to that of a finite M/G/1-type Markov chain.
Define for i = 0, 1, . . . ,K,

Ai :=




Di×c Di×c+1 · · · Di×c+c−1

Di×c−1 Di×c

. . .
...

...
. . .

. . . Di×c+1

Di×c−c+1 · · · Di×c−1 Di×c




with Dk = 0 for k < 0 and K = �M/c� (�2M/c�) for homogeneous (heterogeneous) sources. The matrix Ai

is a square matrix of size c(M +1) if the sources are homogeneous and size 2Mc if the sources are heterogeneous.
If c = 1, then Ai = Di for i = 0, 1, . . . ,K.
Define

A(z):=
K∑

n=0

Anzn, 0 < z < RA, (15)

where RA is the radius of convergence of A(z). Then for z ∈]1, RA[, the exponential decay rate ξ is the Perron-
Frobenius eigenvalue of A(z) satisfying the condition ξ = z [8]. Since PL(N) decays exponentially with decay
rate ξ, we have as N → ∞,

log PL(N) ∼ ξN. (16)
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3 Rational approximation without pole placement

Because of the fact that the function log PL(N) asymptotically behaves as ξN for large N , polynomial approx-
imation techniques for log PL(N) are not suitable. Every polynomial model of degree larger than one, would
blow up for large N . However, a rational function rn(N) of numerator degree n + 1 and denominator degree n,

rn(N) =
pn(N)
qn(N)

=
∑n+1

i=0 aiN
i∑n

i=0 biN i
, (17)

has a similar asymptotic behavior as that of log PL(N). Remains to compute the coefficients in numerator
and denominator of the rational function from sampled function values log PL(Nj) for chosen Nj and to fit its
asymptotic behaviour to ξ. A rational approximant rn(N) can be obtained as the 2nth convergent of a so-called
Thiele type continued fraction [19]:

rn(N) = ϕ[N0] +
∑2n

j=0
N−Nj

ϕ[N0,...,Nj+1]

= ϕ[N0] + N−N0

ϕ[N0, N1] +
N − N1

ϕ[N0, N1, N2] +
N − N2

. . .

,

where the inverse differences ϕ[N0, . . . , Nj+1] are computed recursively from

ϕ[Nj ] = log PL(Nj)

ϕ[N0, . . . , Nj+1] = Nj+1 − Nj

ϕ[N0, . . . , Nj−1, Nj+1] − ϕ[N0, . . . , Nj−1, Nj ]
.

(18)

The rational function rn(N) is sometimes also known as a Newton-Padé or multipoint Padé approximant.
In order to fit the asymptotic behavior of rn(N) to that of log PL(N), we only compute ϕ[N0, . . . , Nj+1]

with j = 0, . . . , 2n− 1 from (18). The last inverse difference ϕ[N0, . . . , N2n+1] is computed from the following
property. The coefficient of highest degree in the numerator of rn(N), namely an+1 equals

an+1 =
1

n∑
j=0

ϕ[N0, . . . , N2j+1]
, bn = 1.

For rn(N) to behave asymptotically like ξN , we need to require an+1/bn = ξ or in other words

ϕ[N0, . . . , N2n+1] =
1
ξ
−

n−1∑
j=0

ϕ[x0, . . . , x2j+1].

The accuracy of the model rn(N) is assessed by looking at

||rn(N) − rn+1(N)|| = sup
N∈

|rn(N) − rn+1(N)|

which tends to zero if rn(N) converges to log PL(N) [21].
From the knowledge of the transition probabilities of the background Markov chain, the load, the decay rate

and the number of servers of a given system, we determine a range [K,L] for N , in which the function log PL(N)
switches from a fast decreasing to a slowly decreasing function. The initial support points Nj are chosen to satisfy
K ≤ Nj ≤ L as detailed in the flowgraphs (Figures 1, 2) given below. We use supp as an abbreviation for the
set of support points.

Successive support points are added in the following way. A discrete approximation

max
N=K,...,L

|rn(N) − rn+1(N)|, r0(N) = (log PL(N0) − ξN0) + ξN
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Fig. 1 Strategy for networks with heterogeneous sources.

of ||rn(N) − rn+1(N)|| is computed. The values of N in [K,L] for which the maximum and the second largest
value are attained are chosen to be the next two support points.

To compare the model rn(N) to the true log PL(N) in the Figures 3(a)-3(d), the latter is computed using the
algorithm from [11].

In all figures, the values obtained at support points are circled, the computed function log PL(N) is graphed
using a full line and the approximation rn(N) is graphed using a dotted line. An additional simulation point,
used merely for validation, is denoted by a �. When only the full line is visible, this means that on the displayed
figure the approximation and the function log PL(N) are graphically indistinguishable. In Table 1 the parameters
of the networks and the corresponding figures are tabulated, where for Figure 3(d)

p =




6.984e − 5
2.1e − 7
8.366e − 5
8.8894e − 5
1.98e − 6


 , q =




9.84e − 6
3.747e − 5
9.675e − 5
6.196e − 5
6.7e − 5


 and d =




0.4562 0.2953
0.8380 0.6022
0.8231 0.1828
0.5421 0.7332
0.0924 0.5489


 . (19)

The displayed rational approximants satisfy

||rn(N) − rn+1(N)|| ≤ ε||rn+1(N)||
with ε = 0.01.

4 Rational approximation with optimal pole placement

4.1 Problem of undesirable poles

Functions with poles or at most a countable number of isolated essential singularities, in particular, allow nice
convergence properties when approximated by rational functions. In that case, the singularities of the function
under consideration, attract the poles of the rational approximant to their position. Although the behaviour of the
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Table 1 Examples from section 3

Figure M c p q d ρ ξ approximant
3(a) 30 1 2.19e − 5 4.3e − 5 7.6923e − 2 0.7787 −1.43e − 4 r9

3(b) 25 15 2.5e − 3 1.15e − 3 6.5e − 1 0.742 −7.6923e − 4 r12

3(c) 15 9 2.19e − 4 5.5e − 6 6.0e − 1 0.9755 −2.628e − 3 r7

3(d) 5 3 (19) (19) (19) 0.8128 −2.271e − 4 r6
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Fig. 3 Packet loss probabilities without optimal pole placement of rn

function log PL(N) is not such that a rational approximant rn(N) “naturally” attracts real positive poles, once
in a while it may happen that rn(N) has one or more poles in the region of interest for N . For instance, with the
system parameters given by M = 30, p = 2.19e− 5, q = 4.3e− 5, d = 7.6923e− 2, c = 1 the approximant r8,
which can be seen in Figure 4, exhibits a pole around N ≈ 100. This is of course undesirable. Since a suitable
value for the denominator degree n is determined from comparing ||rn+1 − rn||/||rn+1|| on the positive real axis
to a threshold value ε,

sup
0<N<∞

|rn+1(N) − rn(N)| ≤ ε sup
0<N<∞

|rn+1(N)|, (20)

the occurrence of an undesirable pole slows the method down. Fortunately, it does not make the method unsuit-
able. Indeed, when log PL(N) itself does not have any singularities on the positive real axis, while rn(N) has a
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Fig. 4 log PL(N)

pole at N = N� > 0, then there is no mathematical argument for the next approximant rn+1(N) to have a pole
in the neighbourhood of N = N� as well. While (20) is not satisfied, it may be satisfied for a larger value of n.
Let us now explain how the occurrence of these undesirable poles can be avoided.

4.2 Curvature maximum of log PL(N)

Besides the typical asymptotic behaviour of log PL(N), we also want to “grab” the neighbourhood of N for
which the graph turns from a steep descent towards its linear asymptotic look. In the neighbourhood of the
transition from burst region to cell region, the curvature of log PL(N) attains its maximal value. The curvature
of a function f(x) is given by

κ(x) =
f ′′(x)(√

1 + (f ′(x))2
)3 .

Here ′ and ′′ denote the first and second derivatives, respectively. A discretised version of κ(x), which can also
be used for f(N) = log PL(N), is given by

κj =
(fj+1 − 2fj + fj−1)(√

1 + (fj+1 − fj)2
)3 , fj = log PL(j + 1), j ≥ 1. (21)

We are interested in the point of maximal curvature of the function log PL(N), which can be estimated by
monitoring κj for successive values of j. Let us denote by Ñ the value of j+1 for which κj attains its maximum.
That the computation of Ñ can be put to good use, becomes clear from the following observations.

A rational function of the form 1/(N2 + R2) with R > 0 “resembles” log PL(N) on the positive real axis.
It has its maximal curvature for positive N in the immediate neighbourhood of the point N = R, namely in the
interval [R, 1.002R] if R ≥ 2. A typical evolution of the curvature of log PL(N) and that of 1/(N2 + R2) can
be found in Figure 5. A rational function of the form

r2(N) =
ξN3 + a2N

2 + a1N + a0

N2 + R2

also exhibits a limiting behaviour of the required type, namely limN→∞ r2(N) ≈ ξN . And it achieves maximal
curvature in the neighbourhood of N = R.
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Fig. 5 Curvature of log PL(N) and of 1
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In all numerical experiments we observed that the maximum of the curvature of log PL(N) is attained in the
interval [1,M ], where M is the number of sources. That is, either the curvature increases from N = 1 on until
it reaches its global maximum and then decreases, or, for some networks, the curvature function is a decreasing
function in the interval [1,M ] and then we return N = 2 as the argument of the maximum. Since M is relatively
speaking rather small, the computation of R = Ñ is almost negligible. The detailed algorithm for the estimation
of R goes as follows:

1. compute log PL(j + 1) for j = 0, 1, 2, 3

2. compute κj for j = 1, 2

3. set i = 2

4. while ((κi − κi−1 > 0) or (i < M) )

compute log PL(i + 3)

set i = i + 1

compute κi

end

5. if (i < M) then R = i else R = 2

4.3 Optimally placed poles

So, when detecting an approximation Nj of the point of maximal curvature of log PL(N), through the com-
putation of (21), we can choose R = Nj in r2(N) and hence introduce two complex conjugate poles, thereby
preventing the occurrence of real poles in r2(N). Remains to point out which strategy can be followed for larger
denominator degrees n.

A rational function rn(N) with denominator polynomial of the form

qn(N) =




(N2 + R2)
k−1∏
j=1

(
N − Reıθj

) (
N − Re−ıθj

)
, n = 2k

(N + R)(N2 + R2)
k−1∏
j=1

(
N − Reıθj

) (
N − Re−ıθj

)
, n = 2k + 1

(22)
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has its point of maximal curvature in the neighbourhood of N = R only if θj ≈ π/2. So, when increasing
the denominator degree of rn(N), more complex conjugate poles of modulus R can be prescribed, by choosing
different θj ≈ π/2. Complex conjugate poles further away from the imaginary axis “pull” the point of maximal
curvature away from N = R.

So far we have explained how to use the curvature of log PL(N) to fix the coefficients b0, . . . , bn in the rational
model. The coefficient an+1 of the numerator polynomial is determined from the asymptotic behaviour

lim
N→∞

log PL(N) ≈ ξN =
an+1

bn
N, (23)

where the usual normalization b0 = 1 is replaced by bn = 1, an equally simple choice. The remaining coeffi-
cients, being the numerator coefficients a0, . . . , an, can be computed from the polynomial data fitting conditions

(qn log PL)(Nj) = pn(Nj) j = 0, . . . , n (24)

which, under the condition that qn(Nj) �= 0, are equivalent to

rn(Nj) = log PL(Nj) j = 0, . . . , n.

The values to be chosen for Nj are detailed in section 3. This technique is called Newton-Padé type or mul-
tipoint Padé-type approximation [20]. It differs from the standard multipoint Padé approximation because the
denominator qn(N) is not determined by the interpolation conditions but is prechosen.

The convergence results obtained in [20] underline that:

1. the rational approximants rn(N) need to be uniformly bounded on bounded subsets of the region of interest
(here the natural numbers);

2. the interpolation points Nj cannot be scattered around but must be centered in one location (as described in
section 3.

We reconsider the examples discussed in section 3 which are illustrated in the Figures 3. The modified rational
approximants with preassigned poles are shown in the Figures 6. Besides being pole free, they also require less
support points. The numerical results are compared in Table 2.

Table 2 Examples from section 4

# support pointsFigures
Figure 3 Figure 6

Optimal qn(N)

6(a) 19 5 (N2 + 25)
(
N + 5e(π/2+π/12)ı

) (
N + 5e−(π/2+π/12)ı

)
6(b) 25 3 N2 + 225
6(c) 15 4 (N2 + 81)(N + 9)
6(d) 13 4 (N2 + 9)(N + 3)

5 Uncertainty analysis and interval arithmetic

5.1 Uncertainty in the parameters

For the type of networks under investigation, the following set of parameters completely determines the behaviour
of a network:

(M, c, p, q, d) if the sources are homogeneous,

(M, c, p, q, d) if the sources are heterogeneous.

The parameters M and c take positive integer values and the rest take real values. So, we investigate the effect
of uncertainties in the parameters p (or p), q (or q) and d (or d) on the PLP on one hand and/or uncertainties in
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Fig. 6 Packet loss probabilities with optimal pole placement of rn

the values of log PL(Nj) when coming from measurements or verified computations. Assume interval values for
p, q and d (or p, q and d).

To automatically incorporate this perturbation analysis in the computation of the rational fitting technique,
we use tools from interval arithmetic. The verified computation of rn(N) requires enclosures for or the verified
computation of:

- p (or p), q (or q) and d (or d) which are involved in the matrices Dm,

- the samples log PL(Nj),

- and the asymptotic slope ξ [16].

One of the important finds is that PL(N) itself is rather sensitive with respect to small changes in the parameters.
This of course has its effect on the data fitting problem. When using a rational model with prescribed poles to fit
the interval data, as in the multipoint Padé-type approach, the verified computation of rn(N) is carried out as in
[14].

We denote by [r], an interval enclosure for a real value r and we denote by inf [r], sup [r] and mid[r] its lower
bounds, upper bounds and midpoint, respectively.

When considering interval ranges [p], [q] and [d] for the parameters p, q and d, the load of the network under
consideration varies. The following result expresses [ρ] in terms of [p], [q] and [d].
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Theorem 5.1 For a network with parameters M, c, [p], [q] [d], the load varies between ρ̌ and ρ̂ given by

ρ̌ =




1
c

M∑
i=1

ďi(1)p̂i + ďi(0)q̌i
p̂i + q̌i

, if ďi(0) > ďi(1)

1
c

M∑
i=1

ďi(1)p̌i + ďi(0)q̂i
p̌i + q̂i

, if ďi(0) ≤ ďi(1)

(25)

ρ̂ =




1
c

M∑
i=1

d̂i(1)p̌i + d̂i(0)q̂i
p̌i + q̂i

, if d̂i(0) > d̂i(1)

1
c

M∑
i=1

d̂i(1)p̂i + d̂i(0)q̌i
p̂i + q̌i

, if d̂i(0) ≤ d̂i(1)

(26)

P r o o f. We derive only the expression for the minimal load as the derivation is completely similar for the
maximal load.

Let us consider the source i. The probability ranges corresponding to this source are [pi], [qi], [di(0)] and
[di(1)]. Since [di(0)] and [di(1)] are the transmitting probabilities, clearly the minimum load is achieved for
ďi(0) and ďi(1).

If ďi(0) > ďi(1), then the probability for source i to transmit a cell is smaller in state 1 than in state 0, resulting
in less load. So by letting source i stay in state 1 for a longer period, which is achieved with p̂i and q̌i, the load
diminishes to

ρ̌ =
1
c

M∑
i=1

ďi(1)p̂i + ďi(0)q̌i

p̂i + q̌i

, ďi(0) > ďi(1).

If ďi(0) < ďi(1), then the probability for source i to transmit a cell is smaller in state 0 than in state 1, resulting
in less load in the network. So by letting source i stay in state 0 for a longer period, which is achieved with p̌i

and q̂i, the load grows to

ρ̂ =
1
c

M∑
i=1

ďi(1)p̌i + ďi(0)q̂i

p̌i + q̂i

, ďi(0) ≤ ďi(1).

If ďi(0) = ďi(1), (5) becomes independent of the probabilities p and q.

Corollary 5.2 If the sources are homogeneous and of ON-OFF type, the minimal and maximal loads are given
by

ρ̌ =
Mp̌ď

c(p̌ + q̂)
and ρ̂ =

Mp̂d̂

c(p̂ + q̌)
. (27)

In the forthcoming analysis we refer to the parameters determining ρ̌ and ρ̂ as minimal and maximal param-
eters, respectively. We refer to PL(N) which corresponds to the minimal and maximal parameters, as the lower
bound and upper bound loss probabilities P̌L(N) and P̂L(N), respectively.

To compute the rational approximant for the packet loss probability function, in the context of uncertainty, we
need to determine reliable enclosures for log PL(N) at some support points Nj . This can be done by computing
interval enclosures [P̌L(Nj)] and [P̂L(Nj)] for the lower bound and upper bound loss probabilities respectively,
using the matrix-analytic method given in [2, 11] and the interval technique described in [17]. In the Figures 7,
[log P̌L(N)] and [log P̂L(N)] are plotted using a full line, for as large N as computationally feasible, which is
more than needed to collect the samples and is only done for comparison with the rational interval model of which
the computation is detailed below. The enclosing intervals are so sharp that the infimum and the supremum of
both [log P̌L(N)] and [log P̂L(N)] are visually indistinguishable. The top full line corresponds to [log P̂L(N)]
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while the bottom full line depicts [log P̌L(N)]. The sharpness of the interval enclosures is a result of the iterative
validation technique for linear systems of equations as detailed in [17].

For the interval rational interpolant that encloses the lower and upper bound loss probabilities, we further
compute:

1. a floating-point approximation for the decay rates ξ̌ and ξ̂ corresponding, respectively, to the minimal and
maximal parameters;

2. reliable enclosures [ξ̌] and [ξ̂] from the knowledge of ξ̌ and ξ̂ and their corresponding eigenvectors using the
technique detailed in [16] and define

[ξ]:=[inf [ξ̌], sup [ξ̂]]. (28)

The interval rational interpolant is then given by

[rn(N)] =
[pn(N)]
[qn(N)]

, N = 1, 2, . . . , (29)

where [qn(N)] is computed using (22). Using the result of Markov et al.[14], the numerator polynomial is given
by

[pn(N)] =
n+1∑
j=1





 ∏

k=1,...,n, k �=j

N − Nk

Nj − Nk


 (

[log PL(Nj)][qn(Nj)] − [ξ]Nn+1
j

) + [ξ]Nn+1, (30)

where Nj , j = 1, 2, . . . , n + 1 are the support points.
Although interval techniques make it computationally feasible to perform a sensitivity analysis and compute

[P̌L(N)] and [P̂L(N)], it is uncomparably faster to compute them only at the support points and construct the
rational interval model. However, when only computing the latter the next situation may cause a problem. An
interval technique is only reliable if it takes all errors into account, rounding errors (for which interval arithmetic
is particularly useful) as well as truncation errors. When the largest buffer size N∗ at which both log P̌L(N)
and log P̂L(N) are sampled, is already in the range of the asymptotic behaviour of log PL(N), then the trun-
cation error is negligible and the interval rational interpolant is trustworthy. If N∗ is still too small, then the
rational model may not be 100% reliable. Whether or not N∗ is in the “correct” range can be checked as fol-
lows, if desired. One computes [log P̌L(N∗ + 1)] and [log P̂L(N∗ + 1)] and compares the divided differences
[log P̌L(N∗ + 1)]− [log P̌L(N∗)] and [log P̂L(N∗ + 1)]− [log P̂L(N∗)], which estimate the slope of the lower
bound and upper bound loss probabilities, to [ξ̌] and [ξ̂]. According to our experience, the interval rational model
is usually a good estimate of [log P̌L(N), log P̂L(N)].

The interval rational model from section 5 fulfills another role than the floating-point rational model from
section 4. While the floating-point multipoint Padé type approximant is built with the aim to accurately model
the loss probabilities, the interval rational function is constructed with the aim to return a guaranteed enclosure
for the effect of the uncertainty in the parameters. If the latter is not desired, then Theorem 5.1 tells us that a
floating-point estimate of the uncertainty effect can be obtained by computing the floating-point multipoint Padé
type approximants separately for the maximal and minimal parameters, using the technique detailed in section
4. The one computed with the maximal parameters estimates P̂L(N) and the one calculated with the minimal
parameters approximates P̌L(N). The difference in meaning of the models is also apparent from the simulation
output, added as validation in the Figures 3 and 7 (marked by �). In the floating-point model, graphed in the
Figures 3, the simulation output is supposed to end up “on” the graph of the rational model. Thus the rational
model is validated by the simulation result. In the interval rational model, the simulation results only have to
lie inside [rn(N)]. Moreover, when simulating rare event probabilities, such as in the Figures 7(b) and 7(c), the
statistical reliability is also less. For instance, for Figure 7(c), the simulated results for P̌L(1500) and P̂L(1500),
which respectively take slightly less and slightly more than 36 hours of simulation time each (on a dual 1 GHz
Pentium III machine), come with a relative error estimate of only ±48.5% and ±22.9%, repectively. For the
simulation output given in Figure 7(b), the technique of importance sampling was used, taking up twice around 6
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hours of simulation time for both P̌L(500) and P̂L(500). Although the computation time was much improved by
the importance sampling, the reliability was not, because the simulated results are clearly “off” the true curve (full
line) computed with interval arithmetic. As a conclusion we can say that the additional overestimation present
in the interval rational model (dotted line), when compared to the true packet loss probability functions P̌L(N)
and P̂L(N), is only a small drawback of the method, taking into account that it is an extremely fast technique.
Moreover, the interval rational model is more trustworthy than the simulation.

5.2 Numerical illustration

We use the automatic procedure proposed in section 3 to select the support points. The successive approximants
[rn(N)] with optimal denominator are computed until the following condition is satisfied:

max
{ |sup [rn] − sup [rn−1]|

|mid[rn]| ,
|inf [rn] − inf [rn−1]|

|mid[rn]|
}

≤ ε, (31)

where ε is usually chosen to be a small multiple of 0.01. If the functions [rn−1(N)] and [rn(N)] are visually
indistinguishable, then [rn−1(N)] is plotted in the graphical illustrations.
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Fig. 7 Packet loss probabilities in intervals

In all figures, the values obtained at support points are circled, the exact value of log PL(N) corresponding
to minimal and maximal parameters is graphed using full lines, and the approximation [rn(N)] is graphed using
dotted lines. Besides the examples discussed in section 3 and corresponding to the Figures 3(b), 3(c), 3(d), we
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Table 3 Examples

FigureParameter
7(a) 7(b) 7(c) 7(d)

M 15 25 15 5
c 1 15 9 3
[p] [2.18e − 5, 2.2e − 5] [2.45e − 3, 2.55e − 3] [2.18e − 4, 2.2e − 4] (32)
[q] [6.9e − 6, 7.1e − 6] [1.145e − 3, 1.155e − 3] [5.4e − 6, 5.6e − 6] (32)
[d] [6.8965e − 2, 6.8967e − 2] [6.45e − 1, 6.55e − 1] [5.999e − 1, 6.001e − 1] (33)
[ρ] [0.7803, 0.7875] [0.7306, 0.7534] [0.9748, 0.9762] (34)
[ξ] [−1.1518e − 3, −1.1143e − 3] [−8.9220e − 3,−6.9786e − 3] [−3.0811e − 3,−2.6553e − 3] (34)
R 2 15 9 3

approximant r3 r3 r3 r3

also consider a single-server homogeneous sources network. For the parameters of the examples of section 3, we
now consider interval values [p], [q] and [d] for p, q and d. For the heterogeneous sources network, we consider
intervals [p], [q] and [d] for p, q and d, given by

[p] =




[5.984e − 5, 7.984e − 5]
[1.1e − 7, 3.1e − 7]
[7.366e − 5, 9.666e − 5]
[7.8894e − 5, 9.8894e − 5]
[0.98e − 6, 2.98e − 6]


 , [q] =




[8.84e − 6, 1.094e − 5]
[2.742e − 5, 4.742e − 5]
[8.675e − 5, 1.675e − 4]
[5.196e − 5, 7.196e − 5]
[5.7e − 5, 7.7e − 5]


 (32)

[d] =




[0.4552, 0.4572], [0.2943, 0.2963]
[0.8370, 0.8380], [0.6012, 0.6032]
[0.8221, 0.8241], [0.1818, 0.1838]
[0.5411, 0.5431], [0.7322, 0.7342]
[0.0914, 0.0934], [0.5479, 0.5499]


 . (33)

The functions [log P̂ L(N)] and [log P̌L(N)] and the interval rational models are shown in the Figures 7.
For Figure 7(d)

[ρ] = [0.7892, 0.8572], [ξ] = [−0.2826e − 3,−0.1662e − 3]. (34)
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