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Abstract—A statistical multiplexer is a basic model used in the design and the dimensioning of communication networks. The

multiplexer model consists of a single server queue with constant service time and a more or less complicated arrival process. The aim

is to determine the packet loss probability as a function of the capacity of the buffer. In this paper, we show how rational approximation

techniques may be applied to compute the packet loss efficiently. The approach is based on the knowledge of a limited number of

sample values, together with the decay rate of the probability distribution function. A strategy is proposed where the sample points are

chosen automatically. The accuracy of the approach is validated by comparison with both analytical results obtained using a matrix-

analytic method and simulation results.

Index Terms—Statistical multiplexing, Markovian arrival process, matrix-analytic methods, Newton-Padé approximation.
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1 INTRODUCTION

VARIABLE bit rate communications with real-time con-
straints in general, and video communication services

(video phone, video conferencing, television distribution) in
particular, are expected to be a major class of services
provided by the future Quality of Service (QoS) enabled
Internet. This network must offer a high degree of flexibility,
together with efficiency in resource consumption, by sharing
the same network resources (bandwidth and buffers) among
several connections with different characteristics (band-
width, peak bit rate, correlation) requiring different QoS
level guarantees. The introduction of statistical multiplexing
techniques, such as provided in ATM networks, offers the
capability to efficiently support variable bit rate connections
by taking advantage of the variability of the bandwidth
requirements of individual connections. In this way, connec-
tions share a link, of capacity less than the sum of the
individual peak bit rates, achieving a more or less significant
multiplexing gain while guaranteeing the often stringent QoS
requirements with respect to packet loss, end-to-end packet
delay, and delay jitter.

In order to assess the multiplexing gain, a variety of

techniques have been developed in recent years, based on

exact analysis, approximate analysis, and simulation, to

study these multiplexer models. In particular, considerable

work has been done on the development of analytical

techniques for evaluating packet loss probabilities, also

called cell loss probabilities (CLP). In these models, the

traffic is described by Markovian arrival processes, leading

to a Markov model of M/G/1-type [3], [9], [12], [18].

Unfortunately, these techniques incur high computation
costs and are therefore sometimes practically impossible.
Hence, considerable attention has been paid to the devel-
opment of techniques that provide approximate estimates
for performance metrics. These techniques include methods
which approximate the arrival process by fluid models [5],
approaches based on generating functions [17], [20], and
matrix-analytic methods [12]. However, the computational
requirements of the algorithms grow quite rapidly as a
function of the system complexity.

Monte Carlo simulation is also used to compute the CLP.
If the desired cell loss probability is in the range of 10ÿ6 to
10ÿ12, depending on the kind of service, it is, however,
computationally impossible to use the conventional Monte
Carlo simulation. A simulation technique called Importance
Sampling (IS) can speed up simulations involving rare
events such as CLP [4]. However, because of the compli-
cated nature of multiplexer queuing models, applying the
IS technique is not straightforward.

Recently, another approach to compute the CLP as a
function of the system size has become available, based on
the use of rational approximation techniques. The motiva-
tion behind this approach is that it is computationally
feasible to evaluate the CLP as a function of the system size
when the system size is small and, moreover, it is often
possible to study interesting properties of this function such
as monotonicity, convexity, boundedness, and asymptotic
behavior [6], [11]. In [8], [21], the authors have employed
rational approximants to compute the CLP in ATM net-
works fed by a population of ON-OFF sources. Their
studies were mainly limited to models where the correla-
tion between the cells was ignored, that is, the transition
probabilities of the Markov chains which modulate these
sources were large. To introduce more correlation between
the cells, these transition probabilities should be at least less
than 10ÿ3 [2]. Considering a high degree of correlation is of
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major importance when the input consists of more video

sources [3].
In [8], [21], the authors have computed the CLP for larger

system sizes from the knowledge of the sample values for

small sample points and the decay rate of the CLP function.

It has been noticed that employing this technique to

approximate the function in a multiplexer model with less

correlation between the cells is rather straightforward

because the graph of the CLP becomes linear in logarithmic

scale rather quickly. This property is no longer valid when

the correlation between the cells increases. Then, one has to

choose a sample point corresponding to a larger buffer size.

Choosing sample points is a difficult task since it depends

on the various networks and system parameters. In this

paper, we propose a strategy where sample points are

chosen automatically.
In most real-world network environments, the network

load is not close to 1 (heavy traffic). In [8], [21], the authors

have chosen numerical examples with fairly heavy traffic,

which leads to the case where the graph of the CLP becomes

linear rather quickly, facilitating the approximation techni-

que quite a lot. In this paper, we show that there exist

networks with both light and heavy loads such that the

graph of the CLP becomes linear from a large buffer size on,

requiring the method to choose a large sample point. Unlike

in [21], we compare the results obtained using the rational

approximation approach with results obtained using the

matrix-analytic approach proposed in [9], [10] and also with

simulation results.

2 MODEL DESCRIPTION

In the multiplexer environment, cells have the same length

and, hence, a fixed service time, which makes the discrete

time Markov chain a natural modeling choice. We assume

that the arrival of cells which are transmitted by

M independent and nonidentical information sources to

the multiplexer can be modeled as a discrete time batch

Markovian Arrival Process (D-BMAP), the discrete-time

version of BMAP. The BMAP is a convenient representation

of the versatile Markovian point process which generalizes

the Markovian arrival process (MAP) [12]. The D-BMAP is a

general process used to model a number of arrival

processes, for example, video [3] and periodic processes

[7]. Each information source is controlled by a Markov

chain, called the background Markov chain. So, the basic

queuing system which models the multiplexer is a

D-BMAP/D/c/N queue with c discrete time servers, where

each server can serve at most one cell per time unit. These

servers serve a queue with a capacity of N cells which is fed

by M independent information sources. When all the

servers are busy, a maximum number of c cells will depart

in each slot. Service starts at the beginning of each time slot.
The arrival process associated with a single source is

modeled as an Interrupted Bernoulli Process (IBP). This

process has two states, 0 and 1. Source i generates a cell

with probability diðmÞwhen it is in state m ð¼ 0; 1Þ. Source i

has the following transition probability matrix:

QQi ¼
1ÿ pi pi
qi 1ÿ qi

� �
: ð1Þ

The system can be modeled as a two-dimensional

discrete time Markov chain fðXn; YnÞ; n � 0g, where Xn is

the number of cells in the buffer and Yn represents the state

of the M sources during the nth time slot. We are interested

in the steady state behavior ðX;Y Þ � limn!1ðXn; YnÞ.
Clearly, the state spaces SX and SY of the processes X

and Y are given by

SX ¼ f0; 1; 2; . . . ; Ng and

SY ¼ fðm1;m2; . . . ;mMÞ j mi ¼ 0 or 1g:
ð2Þ

Let Mi be the background Markov chain for source i. The

transition probability matrix QQi of Mi is given by (1).

Significant reduction can be made in the state space Y

when the sources are identical. We will discuss this case

in Section 2.2.

2.1 Cell Loss Probabilities

The transition probability matrix DD of the process Y is

given by:

DD ¼
OM
i¼1

QQi; ð3Þ

with dimension 2M � 2M .
Let DDm be the matrix corresponding to m arrivals during

a time slot. Then,

DDm ¼
X

j1 ;j2 ;...;jM
ji¼0 or 1; 1�i�M
j1þj2þ���þjM¼m

OM
i¼1

ð1ÿ jiÞII þ ðÿ1Þð1ÿjiÞPPi

h i
QQi; ð4Þ

where

PPi ¼
dið0Þ 0

0 dið1Þ

� �
; i ¼ 1; 2; . . . ;M ð5Þ

and II is the identity matrix of order 2� 2. The dimension of

the matrix DDm is 2M � 2M (see, for example, [19]).
Since we assume that each source can generate at most

one cell during a time slot and there are M sources, at most

M cells can arrive at the multiplexer during a time slot.

Therefore, there are M þ 1 matrices governing the arrivals,

namely, DD0; DD1; . . . ; DDM .
The average arrival rate of the cells at the multiplexer

� ¼ ������
XM
m¼0

mDDm

 !
�ee�ee; ð6Þ

where �ee�ee is a column vector of ones and ������ is such that
������DD ¼ ������ and �������ee�ee ¼ 1. The load (traffic intensity) of the

network is � ¼ �
c . Under the condition of ergodicity

(� < 1) of the chain ðX;Y Þ, the stationary distribution

vector ������ :¼ f���0���0; ���1���1; . . . ; ���N���Ng; ð���i���i 2 IR2M Þ satisfies

������PP ¼ ������ and �������ee�ee ¼ 1; ð7Þ

where the transition probability matrix PP of the process

ðX;Y Þ is given by [9]
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PP ¼

DD0 DD1 ... DDNÿC ... DDNÿ1 BNBN

DD0 DD1 ... DDNÿC ... DDNÿ1 BNBN

..

. ..
.

DD0 DD1 ... DDNÿC ... DDNÿ1 BNBN

0 DD0 ... DDNÿCÿ1 ... DDNÿ2 BBNÿ1

0 0 ... DDNÿCÿ2 ... DDNÿ3 BBNÿ2

..

. ..
.

0 0 ... DD0 ... DDCÿ1 BBC

0BBBBBBBBBB@

1CCCCCCCCCCA
ðNþ1Þ2M�ðNþ1Þ2M

ð8Þ

with

BBn :¼
XM
j¼n

DDj:

The cell loss probability function

PLðNÞ :¼ 1

�

XN
n¼0

���n���n
XM
k¼0

½kþ nÿN �þDDk�ee�ee; ð9Þ

where ½x�þ :¼ maxð0; xÞ.

2.2 Particular Case

Suppose all the sources are homogeneous (identical). Then,

pi ¼ p and qi ¼ q for i ¼ 1; 2; . . . ;M. For this case, the state

space of Y is

SY ¼ f0; 1; 2; . . . ;Mg;

where i 2 SY denotes the number of active sources. This

drastic reduction in the state space of Y is due to the fact

that the sources are identical. The state space SX remains

the same.
Each of the M sources will generate a cell with

probability d when it is in active state (or state 1) and no

cells when it is in idle state (or state 0), that is, dið0Þ ¼ 0 and

dið1Þ ¼ d for all i ¼ 1; 2; 3; . . . ;M. For this case, the ði; jÞ-th
element dij of the transition probability matrix DD of Y is

given by

dij ¼
Xi
k¼0

i
k

� �
M ÿ i
kþ jÿ i

� �
qkð1ÿ qÞiÿkpjþkÿið1ÿ pÞMÿjÿk:

ð10Þ

When the parameters p and q are very small (more

correlation between the arriving cells), then the dij in (10)

can be approximated by the following formula:

dij ¼
1ÿ ðM ÿ iÞpÿ iq; if j ¼ i
ðM ÿ iÞp; if j ¼ iþ 1
iq; if j ¼ iÿ 1:

8<: ð11Þ

That is, the dij are one-step transition probabilities and the

matrix DD corresponds to the transition probability matrix of

a birth-death process with birth rate ðM ÿ iÞp and death

rate iq when the process is in state i.
The matrices DDm are given by

DDm ¼ Diagðcmð0Þ; cmð1Þ; . . . ; cmðMÞÞDD; m ¼ 0; 1; . . . ;M;

ð12Þ

where

cmðkÞ ¼
k
m

� �
dmð1ÿ dÞkÿm; if d 6¼ 1

�mk; if d ¼ 1

8<: ð13Þ

is the probability of m arrivals during a time slot when the
process Y is in state k. The formulae to compute �, PP , and
PLðNÞ remain the same, namely, (6), (8), and (9), respec-
tively. For this simple case, the ði; jÞ-th element of DDm

equals the probability of m arrivals at the buffer during a
time slot when the background Markov chain changes from
state i to j.

For this homogeneous case, the matrix PP is a square
matrix of order ðN þ 1ÞðM þ 1Þ.

2.3 Decay Rate

It has been proven that, for infinite M/G/1-type queues, the
buffer overflow probability decays exponentially [6]. In [11],
the authors have shown that, for Markov modulated
queuing models with multiserver and infinite buffer, the
queue length distribution has exponential bounds. In [1],
the author has studied the exponential decay of the loss
probability of the finite MAP/G/1/K queue. In all these
papers, the exponential decay rate is studied by providing
some conditions on the stationary queue length distribu-
tion. We assume that these conditions hold in our
D-BMAP/D/c/N queuing models and use the approach
provided in [6]. Apparently, our numerical results show
that the loss probability of D-BMAP/D/c/N queues decays
exponentially.

We now briefly discuss the approach to compute the
decay rate from the knowledge of the parameters for a
given model. We first show how we arrange the blocks in
the matrix PP for the multiserver case so that the structure of
PP is similar to that of a finite M/G/1-type Markov chain.

Define

AA0 :¼

DD0 DD1 � � � DDcÿ1

0 DD0
. .

. ..
.

..

. . .
. . .

.
DD1

0 � � � 0 DD0

0BBBBB@

1CCCCCA;

AAi :¼

DDi�c DDi�cþ1 � � � DDi�cþcÿ1

DDi�cÿ1 DDi�c
. .

. ..
.

..

. . .
. . .

.
DDi�cþ1

DDi�cÿcþ1 � � � DDi�cÿ1 DDi�c

0BBBBB@

1CCCCCA;
i ¼ 1; 2; 3; . . . ; K;

where K ¼ dM=ce ðd2M=ceÞ for homogeneous (heteroge-
neous) sources.

The matrix AAi is a square matrix of size cðM þ 1Þ if the
sources are homogeneous and size 2Mc if the sources are
heterogeneous. If c ¼ 1, then AAi ¼ DDi; i ¼ 0; 1; . . . ; K.

Define

AAðzÞ :¼
XK
n¼0

AAnz
n; 0 < z < RA; ð15Þ

where RA is the radius of convergence of AAðzÞ. Then, for
z 2�1; RA½, the exponential decay rate � is the Perron-
Frobenius eigenvalue of AAðzÞ satisfying [6] the condition
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� ¼ z. Since PLðNÞ decays exponentially with decay rate �,

we have

logPLðNÞ � �N as N !1: ð16Þ

3 RATIONAL APPROXIMATION

The new technique to compute logPLðNÞwhich is proposed

here is a kind of “divide-and-conquer” technique. From [9],

[10], we know that the function PLðNÞ can easily be

evaluated for small values of the buffer length N . Also,

the decay rate � of logPLðNÞ can easily be obtained [6].

Combining this knowledge into a function model for

logPLðNÞ that is validated by one simulation point for a

moderate value of N in a reasonable range of PLðNÞ, will

prove to be much more efficient than the traditional

techniques used for the computation of logPLðNÞ, while

the accuracy is comparable.
Because of the fact that the function logPLðNÞ asympto-

tically behaves as �N for large N , polynomial approxima-

tion techniques for logPLðNÞ are not suitable. However, a

rational function rnðNÞ of numerator degree nþ 1 and

denominator degree n,

rnðNÞ ¼

Xnþ1

i¼0

aiN
i

Xn
i¼0

biN
i

;

has a similar asymptotic behavior as that of logPLðNÞ.
Sometimes we shall denote rnðNÞ by ½nþ 1=n�. It remains to

compute the coefficients ai and bi in the numerator and

denominator of the rational function from sampled function

values logPLðNjÞ for chosen Nj and to fit its asymptotic

behavior to �. The rational approximant of the type of rnðNÞ
can be obtained as the 2nth convergent of a so-called Thiele

type continued fraction [14]:

rnðNÞ ¼ ’½N0� þ
X2n
j¼0

N ÿNj j
j’½N0; . . . ; Njþ1�

¼ ’½N0� þ
N ÿN0

’½N0; N1� þ
N ÿN1

’½N0; N1; N2�þNÿN2

...

;

where the inverse differences ’½N0; . . . ; Njþ1� are computed

recursively from

’½Nj� ¼ logPLðNjÞ
’½N0; . . . ; Njþ1� ¼

Njþ1 ÿNj

’½N0; . . . ; Njÿ1; Njþ1� ÿ ’½N0; . . . ; Njÿ1; Nj�
:

ð17Þ

In order to fit the asymptotic behavior of rnðNÞ to that of

logPLðNÞ, we only compute ’½N0; . . . ; Njþ1� with j ¼
0; . . . ; 2nÿ 1 from (17). The last inverse difference

’½N0; . . . ; N2nþ1� is computed from the following property.

The coefficient of highest degree in the numerator of rnðNÞ,
namely, anþ1 equals

anþ1 ¼
1Pn

j¼0

’½N0; . . . ; N2jþ1�
:

For rnðNÞ to behave asymptotically like �N , we need to
require anþ1 ¼ � or, in other words,

’½N0; . . . ; N2nþ1� ¼
1

�
ÿ
Xnÿ1

j¼0

’½x0; . . . ; x2jþ1�:

Let us summarize how the function logPLðNÞ can be

modeled by a rational function rnðNÞ. The rational model is
fully specified when we know its numerator and denomi-
nator coefficients b1; . . . ; bn; a0; . . . ; anþ1, which are in total
2nþ 2 coefficients (b0 in the denominator is only a normal-
ization constant for the rational function [14]). Obtaining

these coefficients is equivalent to computing the inverse
differences ’½N0; . . . ; Nj� for j ¼ 0; . . . ; 2nþ 1 in the con-
tinued fraction representation of rnðNÞ. In total, 2nþ 1 of
these inverse differences are determined from sampling
logPLðNÞ at chosen Nj for j ¼ 0; . . . ; 2n, while one value is

determined from the asymptotic behavior

logN!1 PLðNÞ � �N:

Interpolating or approximating an analytic function by
polynomials or by rational functions with prescribed poles
is rather well understood and has been studied in great

detail in [16]. A rather different situation arises if one
considers interpolation by rational functions with free
poles. Free poles means that both the numerator and
denominator coefficients are determined by the interpola-
tion conditions, as is the case here, while, in the case of

preassigned poles, this is true only for the numerator
coefficients. The theoretical background of rational inter-
polation with free poles is very similar to that of Padé
approximation. Actually, Padé approximants are a special
case of rational interpolants with all the interpolation

conditions concentrated in one point.
The accuracy of the model rnðNÞ is assessed by looking at:

sup
N2 IN

jjrnðNÞ ÿ rnþ1ðNÞjj;

which tends to zero if rnðNÞ converges to logPLðNÞ. The

convergence of the rational interpolant rnðNÞ is guaranteed
by the following theorem [15]. Because we include inter-
polation conditions at infinity, namely,

lim
N!1

rnðNÞ ¼ 1 lim
N!1

r0nðNÞ ¼ �;

the support of the set of interpolation points is given by

½Nmin;1�, where

Nmin ¼ minfNj j 9 n : Nj support point for rnðNÞg:

Theorem 1. Let the single-valued function f be analytic

everywhere in the extended complex plane, except in a compact

set E of capacity zero. Let ½Nmin;1� \E ¼ ;. Then, for every

" > 0 and for every compact set B � CC, we have

lim
n!1

cap fz 2 B : jðf ÿ rnÞðzÞj > "ngð Þ ¼ 0:
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The above theorem is a special case of a more general

theorem in which the convergence of more close-to-

diagonal sequences of rational interpolants is proven under

the condition that the support of the set of complex

interpolation points does not intersect the exceptional

set E. Here, we only need to focus on rational interpolants

of numerator degree one more than the denominator degree
and we know that the support is a subset of the positive real
line where the function logPLðNÞ is well-behaved.

4 NUMERICAL RESULTS

Since logPLðNÞ decays linearly as N tends to infinity, we
compute a rational interpolant ½nþ 1=n� to approximate this
function. As mentioned in Section 3, we use 2nþ 1 support
points Nj and the decay rate �. Let us now illustrate all this
with some numerical examples for networks with homo-
geneous and heterogeneous sources.

We also want to propose an algorithm that computes the
model rnðNÞ in a fully automatic way, meaning that it
selects the support points Nj automatically, depending on
the given parameters M; c; p; q; d of the network with
homogeneous sources or M; c; pp; qq; dd of the network with
heterogeneous sources. The algorithm proceeds as follows:
Successive approximants rnðNÞ are computed for several
values of n. Increasing n by one implies adding two more
support points. For n ¼ 1, only three support points have to
be specified to start the procedure. Two of these support
points, denoted by K and L, will delimit the sampling range
in the sense that all subsequent support points Nj satisfy
K < Nj < L.

After conducting some numerical experiments, we found
that the delimiters K and L can be fixed from the
knowledge of the load, decay rate, and the number of
servers of a given system so that the function logPLðNÞ
switches in the interval ½K;L� from a fast decreasing to a
slowly decreasing function. When looking at the subse-
quent figures, it is apparent that the function logPLðNÞ
always makes that switch for not too large buffer sizes. For
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single-server homogeneous systems with light load � and

large decay rate �, K ¼ 10 and, in all other cases, K ¼ 1. The

delimiter L is chosen to be directly proportional to the

decay rate �.
Below, the pseudocode for initializing the first three

support points is given in three different situations: the case

of a network with homogeneous sources and single server,

that of a network with homogeneous sources and multi-

server, and the case of a network with heterogeneous

sources. Successive support points are added in the

following way: A discrete approximation

max
N¼K;...;L

jjrnðNÞ ÿ rnþ1ðNÞjj

r0ðNÞ ¼ ðlogPLðN0Þ ÿ �N0Þ þ �N

of supN2IN jjrnðNÞ ÿ rnþ1ðNÞjj is computed. The values of N

in ½K;L� for which the maximum and the second largest value

are attained are chosen to be the next two support points.

The pseudocode is based on an extensive number of
numerical experiments, varying the system parameters in
all sorts of ways. Our main conclusions are the following:

. For networks with homogeneous sources:

- When p and q are in the range of 10ÿ1 to 10ÿ3

and if j�j > 0:1, then logPLðNÞ becomes smaller
than 10ÿ12 for small values of N , which is of less
practical importance. If j�j < 0:1, a small number
of support points is sufficient to approximate
the CLP for large N .

- Suppose p and q are less than 10ÿ3, which
corresponds to long overload periods of the

information sources. The graph of logPLðNÞ is

now almost parallel to the N-axis for increasing

values of N . If the load � is close to 1, the loss is

heavy and logPLðNÞ remains in between 10ÿ1 to

10ÿ5. If � < 0:5, then logPLðNÞ parallels the

N-axis again and stays in between 10ÿ5 to 10ÿ12

or even less.
. For networks with heterogeneous sources:

- Immaterial of the values for pp and qq, it has been
observed that the quantities � and � are
inversely proportional. Based on this observa-
tion, the pseudocode selects the support points
automatically.

To compare the model rnðNÞ to logPLðNÞ, the latter is
computed using the algorithm from [10] for Section 4.1 and
the algorithm from [9] for Sections 4.2 and 4.3. All
numerical experiments (except for Fig. 4) have also been
verified using standard Monte Carlo simulation (20 simul-
taneous runs). The stopping criterion for the simulation
guaranteed a maximum relative error of 5 percent (except
for Figs. 3, 9, and 10, where it was set to be 1 percent, and
Fig. 7, where the relative error was 10 percent). The relative
error was computed from the associated confidence inter-
val, which was obtained through the usual normal
approximation.
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In all figures, the values obtained at support points are
circled, the computed function logPLðNÞ is graphed using a
full line, and the approximation rnðNÞ is graphed using a
dotted line. An additional simulation point, used merely for
validation, is denoted by a ?. When only the full line is
visible, this means that, on the displayed figure, the
approximation and the function logPLðNÞ are graphically
indistinguishable.

4.1 Networks with Homogeneous Sources and
Single Server

In this section, we compute the CLP for networks with
homogeneous sources where the server is capable of
serving at most one cell during a time slot. In Table 1, we
propose a pseudocode for the algorithm which chooses and

adds support points automatically until the required result

is achieved up to a prescribed error tolerance for
rnðNÞ ÿ rnþ1ðNÞ.

In Table 2, one finds the parameter values for the three
different examples which are of interest in this section.

Example 1 (see Fig. 1a) deals with a simple case where

the values for p and q are not extremely small and the

system load is rather high, namely, almost 99 percent. It can

easily be modeled by r3ðNÞ. On the other hand, if the decay

parameter is not used as an interpolation condition, then
Example 1 cannot easily be modeled accurately, not even by

r14ðNÞ, as one can see from Fig. 1b).
Example 2 (see Fig. 2) is more difficult because of the

small values of p and q. The system load is average. The

simulation point confirms both the matrix-analytic compu-
tation and the rational model r2ðNÞ.

Example 3 (see Fig. 3) clearly illustrates the influence of
the additional support point for large N . The value of

logPLðNÞ at this support point can be obtained either using

a matrix-analytic technique or simulation. Situation (a) is

with N14 ¼ 60, (b) with N14 ¼ 500, (c) with N14 ¼ 1; 500, and
(d) with N14 ¼ 2; 000. The last choice is clearly the more

satisfactory. In Table 3, we compare the CPU time in

seconds and the exact values and approximated values of

logPLðNÞ for some large N values corresponding to case (d).
Note that the CPU time listed for logPLðNÞ relates to its

computation for one value of N only, whereas the CPU time

needed for the computation of rnðNÞ serves to obtain the

full function evaluation for a wide range of N values and,

hence, it is constant.
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Fig. 3. CLP for Example 3.

TABLE 3
Comparison of Values and CPU Times for Larger N

Total CPU time in seconds includes computation of function values at
interpolation points.



4.2 Networks with Homogeneous Sources and
Multiple Servers

In this section, we compute the CLP for networks with

homogeneous sources and c servers, each serving at most

one cell during a time slot. Again we propose, in Table 5,

pseudocode for the part of the algorithm that selects the

support points automatically. The parameter values for the

examples considered in this section are tabulated in Table 4.
Example 4 (see Fig. 4) deals with a 5-server system with

average load and small p and q. Although the function

logPLðNÞ switches to an almost linear and slowly decreas-

ing function before PLðNÞ reaches 10ÿ3, it can be modeled

quite accurately by r2ðNÞ. In Table 6, we compare the CPU

time in seconds and the exact values and approximated

values of logPLðNÞ for large N values.
An even more difficult case is that of Example 5 (see

Fig. 5). Here, it is very important to obtain an accurate

model because PLðNÞ only becomes acceptably small for a

very large buffer size N .
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TABLE 4
Parameter Values for Examples Considered in Section 4.2

TABLE 5
Strategy for Networks with Homogeneous Sources

and Multiple Servers

Fig. 4. CLP for Example 4.



Example 6 (see Fig. 6) illustrates a 15-server system with

very high load. The aberrant behavior of logPLðNÞ in the

first few support points is responsible for the higher degree

of the rational model, namely 12, in the denominator.

Example 7 deals with a particularly difficult situation

(see Fig. 7). The system load is moderate and the values for

p and q are so small that it is impossible to compute

logPLðNÞ analytically in a reasonable amount of time

(several days on a dual Intel-Pentium 733Mhz system).

Therefore, only the function r7ðNÞ is displayed, which is

then validated by more simulation points.

4.3 Networks with Heterogeneous Sources

In this section, we compute the CLP for networks with

heterogeneous sources and c servers, each serving at most

one cell during a time slot. For this type of network, we

propose the pseudocode in Table 7.

For the examples discussed in this section, the parameter

values are tabulated in Table 8. Typical values and CPU

times for Example 8 are given in Table 9.

Example 8 (see Fig. 8) is a typical example of packet loss

probabilities where pi and qi are very small while the load is

still more than 80 percent. This case is interesting because it

deals with a true real-world situation. The function

logPLðNÞ switches to a slowly decreasing function for
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TABLE 6
Comparison of Values and CPU Time for Larger N

Total CPU time in seconds include computation of function values at
interpolation points.

Fig. 5. CLP for Example 5.

Fig. 6. CLP for Example 6.

Fig. 7. CLP for Example 7.

TABLE 7
Strategy for Networks with Heterogeneous Sources



average to large N . Yet it can be modeled fully auto-

matically and accurately by r6ðNÞ.
Example 9 (see Fig. 9) shows that, even for large pi, qi,

and di, the graph of logPLðNÞ can be almost linear. The
decay rate is close to zero, unlike for a situation with
homogeneous sources.

In Example 10 (see Fig. 10), the same effect can be
observed for very small pi and qi. But, our technique catches
logPLðNÞ perfectly, using only seven support points and
the decay rate.

5 CONCLUSION AND FUTURE WORK

From the examples in the previous section, it is clear that
the method is successful. The function logPLðNÞ can be
accurately fitted by a rational interpolant of sufficiently low
degree in all cases. Of course, the situation where one is
dealing with homogeneous sources is easier to deal with
than that with heterogeneous sources. The novelty is that
we have been able to propose a single rational interpolation
technique for logPLðNÞ that is able to model all cases

equally well. Whether the parameters p and q or pp and qq are

very small or rather large, whether the load of the system is
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TABLE 8
Parameter Values for Examples Considered in Section 4.3

TABLE 9
Comparison of Values and CPU Time for Larger N

Total CPU time in seconds includes computation of function values at
interpolation points.

Fig. 8. CLP for Example 8.

Fig. 9. CLP for Example 9.

Fig. 10. CLP for Example 10.



low, average, or high, the algorithm finds the correct

support points and delivers an approximation for logPLðNÞ
within a specified error tolerance.

The attentive reader may have noticed that, in none of

the examples, were we bothered by the poles of the rational

interpolant, which nevertheless are free. On one hand, the

stopping criterion

max
N¼K;...;L

jjrnðNÞ ÿ rnþ1ðNÞjj < "

ensures that, if rnþ1 has unexpected poles, then the

condition will not be satisfied. On the other hand, the

technique could be enhanced with an optimal pole assign-

ment procedure, which is the subject of further research.
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