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Adaptive Multivariate Rational Data Fitting
With Applications in Electromagnetics

Annie Cuyt, R. B. Lenin, Stefan Becuwe, and Brigitte Verdonk

Abstract—The behavior of certain electromagnetic devices or
components can be simulated with great detail in software. A
drawback of these simulation models is that they are very time
consuming. Since the accuracy required for the computational
electromagnetic analysis is usually only 2–3 significant digits, an
approximate analytic model is sometimes used instead, as noted by
Lehmensiek and Meyer in 2001. The most complex model we con-
sider here is a multivariate rational function, which interpolates
a number of simulation data. The interpolating rational function
is constructed in such a way that it minimizes both the truncation
error and the number of simulation data since each evaluation of
the simulation model is computationally costly.

Index Terms—Electromagnetics, meta-modeling, multivariate,
rational function.

I. INTRODUCTION

WHEN computing a rational interpolant in one variable,
all existing techniques essentially yield the same ra-

tional function because all rational functions that satisfy the
interpolation conditions reduce to the same unique irreducible
form. When switching from one to many variables, the situation
is entirely different. Not only does one have a large choice
of multivariate rational functions, but moreover, different
algorithms yield different rational interpolants and apply to
different situations.

The rational interpolation of function values that are given at
a set of points lying on a multidimensional grid has extensively
been dealt with among others in [2]–[6]. In Section III, we de-
scribe the situation where the interpolation data are scattered in
the multivariate space. This case is far less discussed [7], [8] and
proves extremely useful for the application under consideration.

The structured nature of the linear system of equations that
determines the coefficients of the rational interpolant leads to
severe ill conditioning when using the classical multinomial
basis. This is illustrated in Section IV, where we reformulate
the problem in terms of an orthogonal polynomial basis. We
present a fast solver for the resulting linear system, expressed
in the orthogonal basis, which exploits the structure. This solver
can cope with the nonsquare block structure of the system and
is as stable as Gaussian elimination with partial pivoting.
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In Section V, we discuss related research and illustrate the
proposed modeling technique on several higher dimensional ex-
amples, real valued, as well as complex valued. In the latter, the
additional challenge is to model modulus and argument simul-
taneously using one and the same set of data points.

To achieve the goals outlined in the abstract, our modeling
technique is such that it constructs a rational model as follows.
Step 1) Of the most general form: in the sense that the user

can freely choose the terms making up the numer-
ator and denominator polynomial of the rational
function, and this in any number of variables.

Step 2) Of minimal complexity: because the data are sampled
at optimally located points, without restriction to a
grid-like structure, hence reducing the amount of
data to be collected and the number of terms in the
rational model.

Step 3) Of minimal truncation error: since the algorithm
constructs several models of the same complexity,
by varying the numerator and denominator degree,
and chooses the one with smallest truncation error
upper bound.

We also indicate how the rational model can be computed via
a fast linear block Cauchy–Vandermonde-like solver, which is
a generalization of the algorithm in [9] for use with rectangular
blocks.

Step 2) translates to a data updating step, where an additional
data point is added and a rational model of higher complexity is
fitted, as long as the model is not sufficiently accurate. To this
end, an approximation of the truncation error is computed, as we
outline later, and the data point at which the estimation of the
truncation error is maximal is selected as additional data point.

Step 3) consists of a model updating step, where the degree of
the numerator and denominator in the rational model is varied,
keeping the sum of the degrees constant, in order to find the
rational model with the smallest truncation error upper bound.
A rule-of-thumb from univariate approximation theory is that
the rational models with an approximately equal numerator and
denominator degree are the best choice [10].

We remark that a recursive technique for the computation of
the function value of the rational functions in Step 3) is not
an option, even though a recursive technique immediately de-
livers various rational functions of a different degree in the nu-
merator and denominator, which are computed at intermediate
steps. Indeed, a recursive technique is useful only if the func-
tion value of the desired rational interpolant is required at a
small number of points different from the interpolation points.
In our application, the rational interpolant needs to be evaluated
over an entire high-dimensional grid in order to approximate
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the truncation error in Step 2) and to locate the new optimal in-
terpolation point. We, therefore, only focus on a solver for the
linear system, which computes the coefficients of the rational
model and, hence, yields an explicit representation of the ra-
tional function.

II. UNIVARIATE RATIONAL INTERPOLATION AND

LOW DISPLACEMENT RANK SYSTEMS

Let the value of the univariate function be given in the
interpolation points , which are noncoinciding.
The rational interpolation problem of order for consists
of finding polynomials

with irreducible and such that

(1)

In order to solve (1), we rewrite it as

(2)

Condition (2) is a homogeneous system of linear equations
in the unknown coefficients and of and and,
hence, it has at least one nontrivial solution. It is well known
that all the solutions of (2) have the same irreducible form and
we shall, therefore, denote by

the irreducible form of with and satisfying (2) where
is normalized according to a chosen normalization. We say that

“interpolates” the given function and by this we mean that
and satisfy some of the interpolation conditions (1).
This does not imply that actually interpolates the given

function at all the data because, by constructing the irreducible
form, a common factor and, hence, some interpolation condi-
tions, may be cancelled in the polynomials and that generate

. An interpolation point that appears as a common zero of
the numerator and denominator is called an “unattainable” in-
terpolation point.

Since is the irreducible form, the rational functions
with and satisfying (2) are called “equivalent.” If the rank of
the linear system (2) is maximal, then . In
the multivariate case, the issues of unique irreducible form and
unattainable interpolation point are much more delicate than in
the univariate case.

Let us take a closer look at the linear system of equations
(2), defining the numerator and denominator coefficients and

. In the sequel, we assume, for simplicity, but without loss of
generality, that this homogeneous linear system
of equations can be solved for the choice .

The concept of displacement rank was first introduced in
[11] and [12]. We use the definition given in [9] where the
displacement rank of an matrix is
defined as the rank of the matrix with and being
the so-called left and right displacement operators. If is a
Cauchy–Vandermonde matrix, as in (2) after choosing ,
and if all and all , then suitable displace-
ment operators are given by and

with

. . .
...

...
. . .

. . .
. . .

...

The resulting matrix then takes the form

...
...

Hence, the displacement rank of equals . From a
factorization

an factorization of the Cauchy matrix
can be obtained from [9] with order of complexity

. Here, the superscript denotes complex conju-
gation and transposition, and the columns of the matrices
and contain the eigenvectors of for which explicit
formulas are known. By exploiting the displacement structure of
the matrix , the complexity of computing the solution is thus
reduced from to .

When switching from the monomial basis to an orthogonal
basis such as, for instance, the Chebyshev polynomials ,
the above technique can be generalized as follows [13]. Here
and in the sequel, we use the notation as a shorthand for

. For given by

...
...

...
...
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and and by and
with

. . .

. . .

. . .

the matrix can be factored as with the equations
shown at the bottom of this page. The displacement rank of the
latter is 4 instead of 2. From the fact that the matrix can be
factored as where the orthogonal matrix is
the discrete cosine transform

and the diagonal matrix is given by

(3)

a factorization can be transformed into a
factorization of where ,

, and is a Cauchy-like matrix

Again, when is a Cauchy-like matrix, a fast factoriza-
tion technique for can be obtained from [9], leading to a
fast factorization of . Similar factorizations exist for other
orthogonal polynomial bases [13].

III. SCATTERED MULTIVARIATE RATIONAL INTERPOLATION

Although the situation between one and more variables is sub-
stantially different, there is no loss in generality by describing
the bivariate case instead of the general higher dimensional case.
Let the bivariate function be given in the set of points

and let us assume that none of
the points coincide. Let (from the “numerator”) and

(from the “denominator”) be two finite subsets of with
which we associate the bivariate polynomials

(4a)

(4b)

The multivariate rational interpolation problem consists in
finding polynomials and with
irreducible such that

(5)

In applications where adaptive sampling is used and data points
are placed at optimally located positions, it is an exception rather
than the rule that some data points have the same - or -coor-
dinates. Hence, techniques available for a grid-like set of data
points, such as in [2]–[6], cannot be used. In the sequel, we shall
deal with the more general and less-studied multivariate situa-
tion where the data set is not necessarily grid structured. We
do, however, require that the sets and satisfy the inclusion
property, meaning that if the index tuple belongs to (or

), then also belongs to (or ) for all and ,
which is not a severe restriction.

The fact that the numerator and denominator polynomials can
be chosen freely by picking the terms in (4) implies that all
kinds of situations can be handled. One can opt for a model that
is purely polynomial in some variables and rational in the other
ones, or a model that takes into account terms of different order
(degree) for different variables.

Problem (5) of interpolating the data is reformulated as

(6)

The set of polynomial tuples satisfying (6) is
denoted by . In the sequel, we assume that the linear
system resulting from (6) has a maximal rank. All rational func-
tions belonging to the set are then equal up to a
multiplicative constant and lead to the same unique irreducible
form. In this case, we represent by its (suitably nor-
malized) irreducible form which we denote by . For a

...
...

...
...
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TABLE I
TABLE OF MULTIVARIATE RATIONAL INTERPOLANTS

discussion of the nonuniqueness of the rational interpolant, we
refer to [14].

When for all data points, then no interpola-
tion points are unattainable. Note that, in the multivariate case,
unattainability can also occur if
without and having a common factor. In the nu-
merical examples, we guard against unattainability by moni-
toring the location of the zeroes of the denominator.

When modeling real-life examples, usually a sequence of
consecutive approximants is computed. The rational functions

can be ordered in a two-dimensional table as indi-
cated in Table I.

From univariate rational approximation theory [10], we
know that for some classes of functions, the most accurate
rational models with the smallest truncation error are the ones
with approximately equal numerator and denominator degrees.
Although, to this day, this fact has only partially been proven
for the multivariate case [15], we use it as a rule-of-thumb in
our algorithm to update the interpolating rational function.

With the same set of datapoints , one
can compute all rational models with ,
which make up the upward sloping diagonal in Table I from

to . Assuming that the models near the main
diagonal of Table I are the more accurate ones, we associate a
penalty with the off-diagonal approximants. Let us denote the
target threshold for the relative error in the final model by .
A rational approximant that is off the diagonal in
Table I by is then assigned a penalty error

where is a small integer. In our
examples, we have used . The idea is that an off-diagonal
approximant is only preferred as a model if its relative truncation
error is at least better than the truncation error of the diagonal
approximant. Another motivation for keeping the approximant
close to the diagonal is the following.

It is clear that the relative truncation error of the multivariate
rational interpolant must be estimated instead of computed. In-
deed, the latter would require that the given function is evalu-
ated in a lot of points in the multidimensional domain of interest,
which is precisely what we want to avoid since each evaluation
of is very costly. Therefore, the relative error of interest
is approximated as follows.

Let be the best rational approximant on the diagonal
in Table I and let

(7)

is then the best approximant on the diagonal
in Table I if

(8)

Without penalty , the numerator and denominator de-
grees of and may vary too much and one can
end up with quite incomparable functions and
where the former is, for instance, purely polynomial and the
latter purely rational.

In practice, for the actual computation of the error estimate
, the multidimensional domain is discretized and (7)

is evaluated at all the grid points of the discretized domain .
Once is determined among all rational interpolants on
the diagonal based on (8), the grid point at which the (modulus
or absolute value of the) error estimate attains a (dis-
crete) maximum is selected as the additional interpolation point
indexed . This approach can be replaced by an actual op-
timization algorithm that searches for the true maximum, but
such a decision is left to the user and depends on the dimension
of the problem. In the examples of Section V, we compare

(9)

where , which is measured in decibels, is typically in the range
of 60. As soon as (9) is satisfied, no interpolation points are
added anymore and is accepted as the final model for

.

IV. COMPLEXITY AND CONDITIONING

Let us introduce the notation

Let equal or and let us
introduce the shorthand notation and . Since
both and satisfy the inclusion property, we can decompose
the sets as follows:

This is illustrated in Fig. 1. If is
attained in the -direction instead of in the -direction, then the
sets and are decomposed horizontally instead of vertically.
We point out to the reader that the sequel does not apply if both
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Fig. 1. Decomposition of the index sets N and D. (a) Breaking up N . (b) Breaking up D.

sets and are not decomposed in the same way, either both
horizontally or both vertically.

Using this notation, we arrange the unknown coefficients
and as

Introducing the matrices of size
and the matrices of dimension ,
respectively, given by

the system of interpolation conditions (6) becomes

Again, without loss of generality, we solve this system with
normalized to 1. We denote by the coefficient matrix of the
square inhomogeneous linear system, which results from re-
moving the first unknown from and the first column from

.
For Example 2, which is worked out in detail in Section V,

we list the -condition number of in Table II. Here,
and consist, respectively, of the first

and first index tuples from the set enumerated as

This enumeration makes a maximal number of the index sets
and symmetric with respect to the variables and . In the
absence of any information about nonsymmetry of the function

, which is to be approximated, this is the more appro-
priate choice.

TABLE II
CONDITIONING IN DIFFERENT BASES

It is clear that the problem becomes extremely ill conditioned
as the size of the linear system grows. We, therefore, reformu-
late the multivariate rational data fitting problem in terms of a
product form orthogonal basis, such as the product
of the Chebyshev polynomials or the product of the
Legendre polynomials, instead of the multinomial basis .
Since the index sets and satisfy the inclusion property,
this is possible. It suffices to replace each occurring in
(6), as well as in and either by

or . If the data points lie outside the
hypercube , then an additional change of vari-
ables needs to be performed because the orthogonality of the
univariate basis factors is only assured on . In Table II,
the new condition numbers can be found. It is easy to see that the
conditioning of the problem is greatly improved. For Gaussian
elimination with partial pivoting applied to the full matrix , the
relative error in the computed solution is typically of the order
of the product of the condition number of and machine ep-
silon. It can be shown that the fast LU factorization with partial
pivoting, which takes into account the displacement structure of

, has the same property under appropriate conditions. This is,
in fact, an optimal result for a fast linear system solver. For in-
stance, when computing the solution of the linear system of di-
mension 40 in Example 2 in double precision (machine epsilon

10 ), the solution may not have any significant digits when
using the monomial basis (condition number 10 ), while full
single precision accuracy (relative error 10 ) is guaranteed
when using an orthogonal basis (condition number 10 ).

In order to generalize the fast Cauchy–Vandermonde-like
solver given in [13], we need to construct block versions of



2270 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 5, MAY 2006

the left and right displacement operators. We continue with the
Chebyshev basis, although similar results can be obtained with
the Legendre basis. With , the diagonal
matrix given by (3) and

it is easy to see that the resulting matrix
can be factored as follows:

(10)

where the th row of the and
submatrices and are given by

and the matrix consists of zeroes with the exception of the
following entries:

column number row number

When is either or and
and are being decomposed horizontally, then is replaced

by . Since the matrix is a Cauchy-
like matrix, the displacement rank technique proposed in [9] can
be applied. As mentioned, it incorporates partial pivoting while
its order of complexity for the problem under consideration is

. This is noticeably smaller than that of
classical Gaussian elimination as soon as . The
procedure to compute the factorization of directly from
the matrix factors and is fully detailed in [9]. Roughly
speaking, all entries in the factors can be computed from the
scalar products of the rows in and the columns in , and
the differences of the entries in the left and right displacement
operators and .

TABLE III
STRIPLINE CHARACTERISTIC IMPEDANCE

V. NUMERICAL ILLUSTRATION

Microwave circuits are used in many electronic sensors such
as wireless transmitters or receivers of handheld telephones, an-
tennas, microphones, infrared detectors used in motion sensors,
remote-control devices, and photocells to mention just a few.
Hence, there is an increasing demand in designing microwave
circuits using computer-aided design (CAD) tools. The design
techniques include computational electromagnetic (CEM) anal-
ysis, lookup tables, and artificial neural networks [16], [17],
each with their own drawbacks.

The use of lookup tables necessitates the generation and
storage of data points in a database. The amount of storage
space increases exponentially with the dimension since the data
points are determined in a grid-like nonadaptive way throughout
the multidimensional parameter space. The number and loca-
tion of these data points may, therefore, not be optimal. This
can lead to inaccurate modeling, as well as to oversampling.
In between the grid points, simple low-order interpolation
techniques are used and, hence, only mild fluctuations in the
design can be handled.

Artificial neural networks can learn from data, are easy to
implement, and also fast to evaluate. Once properly trained, they
have the ability to model multidimensional nonlinear functions.
The size of the network does not increase exponentially with the
dimension. However, neural nets must have the right topology
and may require lots of training and testing on a multitude of
examples.

To overcome the drawbacks of the above methods, inter-
polation techniques for circuit optimization are proposed in
[18]–[21]. These techniques, when compared with artificial
neural networks, normally require the smallest amount of data
(obtained from CEM) to establish a useful model. In [22], a
rectangular grid of data points is used to construct the mul-
tidimensional interpolating model. The sampling algorithm
presented in [23] to model standard microwave circuits using
multivariate rational interpolating functions is based on a
Thiele-type branched continued fraction representation. This
interpolation technique also requires that the datapoints in
the multivariate space are grid structured, a drawback that is
overcome in this paper.

We take our examples from [23] and show that the number of
data required for the computation of the model is reduced signif-
icantly by means of the new technique that allows the datapoints
to be scattered in the interpolation space. All examples are mod-
eled making use of the Chebyshev product basis. In all exam-
ples, we list for each computed interpolant the following:

• and , from which the number of datapoints
interpolated by can be determined;
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Fig. 2. Model of the stripline characteristic impedanceZ (q; � ). (a) Z (q; � ). (b) r (q; � ). (c) jZ (q; � )�r (q; � )j=(1+jZ (q; � )j). (d) j(r �
r )(q; � )j=(1 + jr (q; � )j). (e) Datapoints for Z (q; � ). (f) Zeroes of denominator of r (q; � ).

• condition number ;
• , and we compare this to the value

for the maximum in [23];
• mean , which is also compared to the

value obtained in [23];
• number of datapoints required by the method laid out in

[23] to achieve a similar accuracy.
In Example 1, we model the stripline characteristic

impedance by a bivariate rational interpolant. The
strip width-to-height ratio is limited to , while
the relative dielectric constant lies in the interval

. The results can be found in Table III and Fig. 2. In Fig. 2(a),
the function is graphed, in Fig. 2(b), the ra-
tional interpolant , in Fig. 2(c), the true relative error

, and in Fig. 2(d), the
estimated relative error
with and .

TABLE IV
TRANSMISSION COEFFICIENT OF INDUCTIVE POSTS

IN RECTANGULAR WAVEGUIDE

This fairly simple example mainly illustrates that, with the
same number of data, the new method can do quite a lot better.
With only 25 datapoints (instead of 29 in [23]), a mean error is
achieved of less than 100 dB (compared to 70 dB in [23])
and a maximal error of less than dB (as opposed
to dB in [23]). In Fig. 2(e), the datapoints from
the interpolation space that were used to
construct are indicated by an asterisk. The role of the
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Fig. 3. Model of the transmission coefficient S (f; w) of two inductive posts in rectangular waveguide. (a) jS (f; w)j. (b) jr (f; w)j. (c) arg(S (f; w)).
(d) arg(r (f; w)). (e) jjS j� jr k=(1+ jS j). (f) jjr j� jr jj=(1+ jr j). (g) j argS �arg r j=(1+ j argS j). (h) j arg r �
arg r j=(1 + j arg r j). (i) Datapoints for S (f; w).

denominator zeroes is clear from Fig. 2(f): in the neighborhood
of where the slope of the function becomes steeper,

the rational model places poles. The interpolation space is
delimited by a rectangle.
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TABLE V
CAPACITIVE STEP IN RECTANGULAR WAVEGUIDE: REFLECTION COEFFICIENT

In general, since rational functions can use either real or com-
plex poles to model the steep fluctuation present in given data, it
is to be expected that the rational modeling technique gradually
decides to locate its poles near the slopes of the given design.
The model can also be made free of real poles in the domain
of interest, while complex poles model the steepness present in
that domain.

In Example 2, we model the transmission coefficient
of two perfectly conducting round posts centered

in the -plane of a rectangular waveguide. The diameter of
the posts is set to 2 mm and the frequency and post-spacing

vary over (7, 13 GHz) and (4, 18 mm), respectively. The
problem is bivariate and complex valued, and the modulus and
argument are modeled using the same datapoints. The results
are displayed in Table IV and Fig. 3. We display the modulus
and argument of both and . We also
display the true and estimated relative error in the modulus and
argument. Let us point out that, as in the real-valued case, the
datapoints are still selected on the basis of where in
(8) or, equivalently,
attains a discrete maximum. Observe that

is different from both the
function plotted in Fig. 3(f) and Fig. 3(h). The gain in computing
time is clear: with only 40 datapoints (for the computation of

) instead of 57 (a gain of 30%), a similar result is obtained.
Since there are no poles of in the neighborhood of the
interpolation space, we do not plot the denominator zeroes.

We next consider some trivariate problems. In Example 3, we
model the reflection coefficient of a capacitive step
in a standard WR90 rectangular waveguide. The variables are
the frequency , the gap height , and the step length . The
interpolation space is chosen rather large to test the capabilities
of the new method, namely, GHz GHz, mm

mm, and mm mm. The results can be found
in Table V. For this problem, a qualitatively comparable model
can be realized with less than 5% of the datapoints used in [23]:
92 to reach at least 59-dB maximum error or 101 to obtain
almost 94-dB mean error.

In Example 4, we model the trivariate transmission coeffi-
cient of a 1-mm iris in a standard WR90 rectan-
gular waveguide. The variables are the frequency
in gigahertz, the gapwidth in millimeters, and the
gap height in millimeters. The results are shown in
Table VI. Now with less than 6% of the data required in [23],
an equally accurate model dB can be constructed. In
higher dimensions, the advantage of allowing the datapoints to
be scattered in the interpolation space obviously pays off.

TABLE VI
IRIS IN RECTANGULAR WAVEGUIDE: TRANSMISSION COEFFICIENT

The study of the proposed technique when the microwave
structure exhibits resonant behavior is part of ongoing work.
In view of the fact that the new technique can easily handle
steep changes in the parameter domain, this investigation is ex-
pected to be successful. Together with the forthcoming work, a
MATLAB toolbox for the computation of the rational interpolant
in any higher dimension will be made available.
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