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Abstract. Underflow is a floating-point phenomenon. Although the use of
gradual underflow as defended in [2] and [4] is now widespread, most nu-
merical analysts may not be aware of the fact that several implementations of
the same principle are in existence, leading to different behavior of code on
different platforms, mainly with respect to exception signaling. We intend
to thoroughly discuss the slight differences among these implementations.
Examples will be taken from current hardware and from our own multipreci-
sion software class library. Throughout the discussion the focus is on the
analysis of the phenomenon and not on any implementation issues. Many
programmers are also unaware of the fact that the IEEE 754 and 854 stan-
dards do not guarantee that a program will deliver identical results on all
conforming systems. Of all the differences that can occur cross-platform,
the underflow exception is just one.

1 Underflow and IEEE 754-854

We denote byF(β, t, L, U) the set of normalized floating-point numbers
±d0.d1 . . . dt−1 × βe where

0 ≤ di ≤ β − 1, d0 �= 0, L ≤ e ≤ U.

In order to be able to take care of overflow, the set is enlarged by the represen-
tation±1.0 . . . 0×βU+1 for signed infinity. In order to take care of underflow

� Research Director, FWO-Vlaanderen
�� Supported by an NOI-grant from the Universiteit Antwerpen (UIA)

��� Postdoctoral Fellow, FWO-Vlaanderen
† Research Fellow, IWT (Institute for Science and Technology)



170 A. Cuyt, P. Kuterna, B. Verdonk, D. Verschaeren

the set is also enlarged by the denormalized numbers±0.d1 . . . dt−1 × βL,
where±0.0 . . . 0 × βL represents signed zero. We speak of denormalized
numbers rather than unnormalized, because they cannot be normalized with
the exponent range being bounded by[L, U ]. The introduction of denormal
numbers enables the implementation of the primary underflow mechanism
of gradual underflow which, roughly speaking, rounds tiny floating-point
numbers less thanβL in magnitude to denormal numbers, rather than to
zero. The internal representation of these denormal numbers and signed ze-
roes is with exponentL− 1, flagging that the leading digitd0 = 0 while the
actual exponente = L.

Because the set of floating-point numbers is a discrete approximation of
the real number set, each arithmetic operation introduces a rounding error.
In round to nearest, the default rounding mode, the relative error made when
approximatingx ∗ y by its nearest floating-point number©(x ∗ y), where
∗ ∈ {+, −, ×, /}, is at most

∣∣∣∣
x ∗ y − ©(x ∗ y)

x ∗ y

∣∣∣∣ ≤ β

2
β−t x, y ∈ F(β, t, L, U) (1)

unlessx∗y overflows or underflows. Implementingx∗y such that its machine
versionx�y delivers©(x∗y) is called an exactly rounded implementation.
When taking gradual underflow into account the error analysis has to be
reformulated as

©(x ∗ y) = (x ∗ y)(1 + ε) + η, (2)

|ε| ≤ β

2
β−t , |η| ≤

(β

2
β−t

)
βL, εη = 0

unlessx ∗ y overflows. Hereε expresses the relative error that occurs when
| © (x ∗ y)| is larger than or equal to the underflow thresholdβL. For
denormalized results,η expresses the absolute error which is at mostβ

2β−tβL

[4]. In round up, round down or trunc the relative bound of(
β

2β−t ) doubles
to β−t+1 in (1), (2) and the bound onη. We also note that at most one ofε

andη is nonzero, in other wordsεη = 0, and that, moreover,η = 0 when
ever the arithmetic operation is either addition or subtraction [11]. It is easy
to prove that the use of denormalized numbers allows us to represent all
tiny results of the floating-point addition or subtraction operations without
rounding error, in other words, exactly.

The underflow exception flag was introduced to signal that (1) is no
longer valid and thatη �= 0 has occurred in (2). The IEEE standards [6,
7] relax this condition in the sense that the underflow exception should be
signaled “at least” whenη �= 0. A commentary [1] to the standard, however,
encourages the stricter criterion for setting the underflow flag. That is, it
should be set whenever the result delivered is different from what would be
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delivered in a system with the same precision but with an unbounded (or
large enough) exponent range. But it is the rule rather than the exception
that many more underflow alarms go off.

The IEEE standards specify that underflow (in non-trapping mode) should
be signaled at the occurrence of the following two correlated events. One
is the creation of a tiny nonzero result in the interval] − βL, +βL[. The
other is the loss of accuracy during the approximation of this tiny result,
usually by a denormalized number. Tininess may be detected either after
rounding or before rounding. Loss of accuracy may be detected as either
a case of inexactness (the delivered result differs from the result computed
with unbounded precision and unbounded exponent range) or a case of de-
normalization loss (the denormalized result differs from the result delivered
with unbounded exponent range). Since the decision to denormalize is taken
after rounding, only the following combinations of tininess and loss of ac-
curacy can occur: tiny before rounding and inexact, tiny after rounding and
inexact, tiny after rounding and denormalization loss. We now discuss these
three possible ways to detect the underflow exception in accordance with the
IEEE standards. Although several options are possible for the implementa-
tion of the underflow exception, the IEEE standard requires that underflow
be detected in the same way for all operations in a single programming
environment.

We introduce the notationsresult_ext for the exact result of the arith-
metic operationx∗y (unbounded precision and unbounded exponent range)
andresult_tmp for the normalized, rounded result (tot β-digits) of x ∗ y

with unbounded exponent range. We letresult denote the (possibly denor-
malized) floating-point result delivered. Then the following three slightly
different implementations are consistent with the specifications of the IEEE
standards for the underflow exception:

(W) result_ext is tiny (this is before rounding) and cannot be delivered
exactly toresult, in other words,

|result_ext| < βL

result �= result_ext

(V) result_tmp is tiny (this is after rounding tot β-digits) and different
from result_ext or result or both, in other words,

|result_tmp| < βL

result �= result_ext

(U) result_tmp is tiny, possibly different fromresult_ext and has to be
denormalized as in the previous case, but what is worse, in the process
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of the denormalization, nonzero trailingβ-digits are lost, implying the
conditionη �= 0 in (2),

|result_tmp| < βL

result �= result_tmp.

It is clear that, if condition U is satisfied, condition V is also satisfied,
because a denormalization loss implies inexactness. Moreover, if condition
V is true, condition W is also true, because tininess after rounding implies
tininess before rounding. The situation where case U does not occur while
result_tmp is tiny, is in fact not so alarming because here the tiny result
can be denormalized without losing any nonzeroβ-digits. For instance, with
t = 4 andβ = 2, the conditions for U-underflow are not satisfied in the
case:

result_ext = 1.010111× 2L−1,

result_tmp = 1.010× 2L−1,

result = 0.101× 2L.

(3)

whereas they are in the case:

result_ext = 1.00111× 2L−2,

result_tmp = 1.010× 2L−2,

result = 0.010× 2L.

(4)

The above situations respectively occur in the multiplicationx ⊗ y with

x = 1.100× βe(x),

y = 1.101× βe(y),

e(x) + e(y) = L − 1 orL − 2.

The difference between the two cases lies in the fact that in (3)η = 0
whereas in (4)η �= 0, the first case obeying (1) and the second case not.
The difficulty in detecting pure U-underflow stems from the inexact flag
which in most implementations does not allow one to distinguish between
result_ext �= result_tmp andresult_tmp �= result. Observe that the
inexact exception can be raised at several occasions during the computation
of x � y: the significand of the normalizedresult_ext may contain more
thant bits or, while both the significands ofresult_ext andresult_tmp
contain at mostt bits, some trailing nonzero bits may be lost at the very end
during denormalization.

In addition to signaling underflow at the occurrence of a U case, a V
implementation also signals underflow whenresult_tmp is tiny but does not
suffer a denormalization loss: the inexact condition arises during rounding
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but (1) is not violated. In addition to signaling underflow in the U and
V cases, a W implementation even signals underflow when the delivered
floating-point result, though inexact, is no longer tiny: the result delivered
equals±βL after rounding. Since all potentially dangerous underflow cases
that complicate the error analysis should be flagged, the U implementation
is the minimal implementation required. However, owing to the difficulty of
implementing this scheme, the IEEE standard allows setting the underflow
flag whenever the unrounded or final result is tiny and the infinitely precise
result cannot be delivered exactly.

The IEEE 754-854 standards are currently up for revision and the under-
flow definition is one of the topics on the committee’s revision list. There is
a general consensus that a unique definition for underflow, rather than the
current three possible definitions, is a good idea for implementation design
and testing, but it does entail some kind of compromise. One proposal [9]
is to choose criterion V as the unique definition for underflow: underflow
shall be signaled when the result is tiny after rounding and inexact. How-
ever, it was subsequently observed by W. Kahan [10] that the V definition
is inconvenient both to those looking for underflows signifying greater than
normal rounding error (U underflow) and to those looking for subnormal
results, exact or inexact, in order to get rid of them. In this respect, it is
relevant to mention one unapproved proposal [8] which introduces, besides
the underflow exception, a subnormal exception. This exception signals that
the rounded result is tiny, irrespective of the inexactness of the result.A final
consensus has not yet been reached at the time of writing.

2 Underflow signaling in some implementations

We discuss a W and a V hardware implementation, respectively, by SUN for
their UltraSparc processors and by INTEL for their Pentium processors. At
the end we also mention a multiprecision C++ class library developed at the
University ofAntwerp, which supports a U implementation. The consistency
of each implementation was tested using a large set of test vectors which
is a generalization of Coonen’s [3] and Hough’s [5] sets of test vectors and
which is publicly available from [12,13]. For each of the precisions (single,
double, 64 bit extended on INTEL and 113 bit quadruple on SUN) our test
set for multiplication contained 1152 cases of U underflow, an extra 176
cases of V∧¬U underflow and an additional 64 cases of W∧¬V underflow.
Analogously the test set for division contained 286 cases of alarming U
underflow and 51 cases of V∧¬U underflow. One can show [12,13] that
W∧¬V underflow cannot occur during division. It was already pointed out in
the previous section that underflow does not occur in addition and subtraction
when gradual underflow is supported.



174 A. Cuyt, P. Kuterna, B. Verdonk, D. Verschaeren

2.1 SUN UltraSparc

Although SUN implemented V underflow signaling in their single and dou-
ble precision SuperSparc processors, they have switched to a W implemen-
tation in their single and double precision UltraSparc. Both the V and the
W implementations are easier and faster to handle than the detection of a
pure U case. The implementation on the UltraSparc signals all W, V and U
cases included in our test set, as is required for a proper W implementation,
since U implies V, which in its turn implies W. We give an example of a test
vector that signals underflow on the UltraSparc and not on the SuperSparc.

If we multiply x = 0.11. . . 1× 2L by y = 1.00. . . 01× 20 in any of the
available precisions, then

result_ext = 0.11. . . 1 . . . 111× 2L 2t − 1 bits

= 1.1 . . . 1 . . . 111× 2L−1.

When rounding the tinyresult_ext to nearest or upward, one obtains
result_tmp = 1.0 × 2L or the smallest normalized float. It is clear that
the conditions for W underflow are satisfied while those for V underflow are
not.

2.2 INTEL PC family

The INTEL processors are extended-based. The default working precision is
t = 64 and the default exponent range[L, U ] = [−16382, 16383]. Single
or double precision arithmetic can be mimicked by changing the precision
control (often also referred to as rounding precision) to, respectively, 24 or
53. But this leads to a change in the underflow behavior (as described in
Sect. 2.2.1) and to erroneous double rounding in some cases (as described
in Sect. 2.2.2).

2.2.1 Underflow strategy and precision control In its extended precision
the INTEL Pentium implements the V underflow strategy. However, it be-
haves like a U implementation in single and double precision as a result of
the fact that the hardware is extended-based: only the precision of single
(t = 24) or double (t = 53) is mimicked but the exponent range is still that
of the extended precision (15 bits wide). Hence single or double precision
tiny results are only recognized as tiny when stored from the extended pre-
cision register to memory. At that moment the single or double precision
denormalization also takes place, resulting in U underflow detection.

We elaborate on this in more detail. Assume that the precision control is
set to double (t = 53) and consider for instance the two double precision
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operandsa = b = 1.0 × 2−1022, the smallest normal number in double
precision. Now consider the C program statements

double a = b;

long double c = a * b;

double d = a * b;

Most numerical analysts will agree with the idea that the second statement
consists of two operations, namely, a double precision multiplication and a
conversion of the result to extended precision, and that the last statement is
essentially one single operation, namely, the double precision producta ×b

copied to the double precision variabled. So we expect to get

a × b = double(1.0 × 2−2044) = 0 underflow, inexact

c = 0

d = 0.

This is not the case on an INTEL platform. Because the hardware is extended-
based, the second statement actually behaves like most of us think the last
statement does:a andb are copied to the extended precision registers of the
INTEL FPU, the product is carried out in the extended precision register and
rounded according to the precision of precision control (in this caset = 53)
but with extended precision exponent range. The result is then copied to
the extended precision variablec. In the same way, the last statement is
essentially a compound statement (something many do not realize):a andb

are copied to the extended precision registers of the INTEL FPU, the product
is again carried out in the extended precision register and rounded to the
precision of precision control (t = 53) with extended precision exponent
range. The result is then converted to the double precision variabled. This
conversion to double precision memory implies a reduction in the range
of representable exponents (from[−16382, 16383] to [−1022, 1023]) and
hence we get

a × b = 1.0 × 2−2044

c = 1.0 × 2−2044

d = 0 underflow, inexact.

Even though the precision control is set tot = 53, the producta×b does not
underflow because the extended precision exponent range is large enough.
Underflow and inexactness, which is due to denormalization loss, are only
detected when the result of the product is stored ind.

Thus, for the evaluation of expressions with the precision control set to
24 or 53 bits, the INTEL actually uses a hybrid format with 15 bits for the



176 A. Cuyt, P. Kuterna, B. Verdonk, D. Verschaeren

exponent (instead of the usual 8 for single or 11 for double) and 24 or 53
bits for the significand. While this, on the one hand, disturbs the semantics
of arithmetic statements and neglects the formal model of single or double
precision arithmetic, it can, on the other hand, deliver more accurate results
as in the above example forc.

This also explains why, while the INTEL processors implement the V
underflow strategy in extended precision, they behave like a U implemen-
tation when the precision control is set tot = 24 or t = 53. To illustrate
this, assume that the precision control is set tot = 53 and consider the two
double precision operandsa = (1 + 2−52) × 2−1022 andb = 1.5 × 2−1 of
which the product is given by

a × b = (1 + 2−1 + 2−52 + 2−53) × 2−1023.

In pure double precision semantics, this is a V∧¬U underflow case. When
the INTEL processor executes the program statement

double d = a * b;

the valuea × b is first rounded to the precision of precision control (for our
examplet = 53) with extended precision exponent range, yielding

(1 + 2−1 + 2−51) × 2−1023 inexact.

This rounded result is then stored to the double precision variabled with-
out unrounding it first: denormalization without denormalization loss takes
place and

d = (2−1 + 2−2 + 2−52) × 2−1022.

Since the store to double precision memory involves only tininess and no
inexactness, the INTEL processors do not signal underflow for V∧¬U cases
when mimicking double precision. The same holds when the precision con-
trol is set to single.

2.2.2 Erroneous double rounding More remarkable is the way in which the
floating-point unit deals with certain cases which, in pure single or double
precision semantics, are U underflow cases. As an example, consider the
multiplication of the single precision (t = 24 and[L, U ] = [−126, 127])
operandsx andy where

x = 1.000 0000 0000 0000 0000 0001× 2−25,

y = 1.111 1111 1111 1111 1111 1111× 2−126.
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For the computation ofx × y in single precision, the intermediate values
result_ext andresult_tmp defined above are given by

result_ext = 1.000 0000 0000 0000 0000 0000 0111

1111 1111 1111 1111 1111× 2−126−24,

result_tmp = 1.000 0000 0000 0000 0000 0000× 2−126−24.

(5)

Clearly, bothresult_ext andresult_tmp are tiny. Moreover, the U con-
ditions for underflow are satisfied since, in the process of denormaliza-
tion, nonzero trailing bits will be lost. Double rounding will occur if erro-
neouslyresult_tmp is denormalized rather thanresult_ext. Denormal-
izing result_ext means shifting the significand 24 bits to the right and
adjusting the exponent accordingly, yieldingL=−126. This unnormalized
value then has to be rounded to single precision (t = 24), resulting in

result = 0.000 0000 0000 0000 0000 0001× 2−126 underflow, inexact

which is the correct floating-point approximation ofx × y given by (5). At
the same time, both the inexact and underflow exceptions should be raised
to signal denormalization loss.

When the computation ofx × y is carried out on an INTEL PC plat-
form with precision control set tot = 24, erroneous double rounding
occurs. Taking into account the hybrid format used by the INTEL when
the precision control is set tot = 24 (or t = 53), the INTEL FPU first
computesresult_tmp in the extended precision register witht = 24 and
[L, U ] = [−16382, 16383], and apparently does not unround when storing
the result to a single precision variable, delivering the doubly rounded value

result = 0.000 0000 0000 0000 0000 0000× 2−126 underflow, inexact.

While the inexact and underflow exceptions are appropriately raised to signal
denormalization loss, the returned value is not correct. It results from round-
ing to even the exact halfway value obtained by denormalizingresult_tmp

rather thanresult_ext. The IEEE standard, however, as it is formulated
now, admits this deviation from the principle of exact rounding, for the sake
of extended-based hardware platforms.

2.2.3 The MpIeee class library At http://win-www.uia.ac.be/u/cant
a multiprecision, high performance and yet fully IEEE compliant class li-
brary can be found, with user definable precisiont and baseβ = 2k or
10j . Great care has been taken to support all IEEE features (basic opera-
tions including square root and IEEE specified remainder, exactly rounded
decimal-to-binary and binary-to-decimal conversions, exactly rounded con-
versions between floating-point formats of different precisions including
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the hardware precisions, round to integral value and conversions from and
to integers) without performance penalty in comparison with other multi-
precision libraries that offer arithmetical operators (instead of library calls)
and a user-defined base (usually of the form 2k or 10j ). The library can be
used for rather large precisions and supports an exponent range equal to the
range of the C++long integer type (which is currently often 32 bits), with
the restriction that|L| < U in (1). In the library, U underflow signaling is
implemented. The fact that, generally speaking, underflow will occur less
often because of the wide exponent range, together with the fact that the
unrounding ofresult_tmp is not so costly compared to the multiprecision
basic operations, makes the cost of U underflow checking relatively small.
The importance of the U underflow implementation in the context of a high
precision library lies in the fact that a warning is only issued in case of a
true potentially dangerous underflow, that is, in case of greater than normal
rounding error.
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