THE CLASS LIBRARY FOR EXACT RATIONAL
ARITHMETIC IN ARI6GMOX.

A. Cuyt * P. Kuterna B. Verdonk I J. Vervloet

Dept Mathematics and Computer Science
University of Antwerp (UIA)
Universiteitsplein 1, B-2610 Antwerpen, Belgium

Tel: +32 3 8202401, Fax: +32 3 820 24 21
Email: {cuyt, kuterna, verdonk, jvvloet }Quia.ua.ac.be
Homepage: win-www.uia.ac.be/u/cant/

Abstract

ARIOMOX consists of a family of class libraries (fully IEEE compliant multipreci-
sion floating-point, sharp multiprecision floating-point interval and exact rational arith-
metic in V1.0, floating-slash, rational interval and complex arithmetic in V2.0) that are
available at programming language level as well as through a GUI with parser. In this
paper we discuss the rational class library from ARIOMO?>.. Besides offering additional
functionality when compared to other rational arithmetic software, the implementa-
tion is fully cross-platform (no assembler), object-oriented (operator overloading) and
currently the most performant rational library available (on 64-bit platforms even out-
performing well-known C libraries).

1 Introduction

In the past decade the interest in alternative implementations of computer arith-
metic, besides the well-known IEEE 754 hardware floating-point arithmetic, has grown
tremendously. Among others we mention in particular interval arithmetic, multipreci-
sion arithmetic and rational arithmetic.

Rational arithmetic can mostly be found in computer algebra systems, where the
user has access to the exact arithmetic via a GUI simulating the usual pencil and paper
style of calculations. Of course these interpreters are much less performant than some
C- or C++-libraries that offer a similar functionality and operate on an abstract data
type. The most popular of these libraries [8, 13, 23, 9] will be discussed in Section 2.

Interval arithmetic [16, 12, 11, 10] has been very successful at solving some hard
problems and is now even available directly through a Sun f90 compiler. One of the
main drawbacks of this type of automatic error analysis and result verification is the

*Research Director FWO Vlaanderen
tPostdoctoral Researcher FWQO Vlaanderen

fact that the interval enclosures tend to grow very fast, especially when calculated
naively. Hence the success of interval arithmetic ultimately lies in the combination with
multiprecision arithmetic. This is in sharp contrast with most interval implementations
that are around and make use of the underlying hardware.

As far as multiprecision arithmetic is concerned, several packages can be found
[3, 8], even for extremely large precisions [19, 2], but none of them adheres to the
principles of the IEEE 754 floating-point standard that exists for the smaller standard
precisions, such as exact rounding of the basic operations, special representations for
signed zeroes and infinities, denormals and exception handling. Hence the packages
cannot offer the same reliability and portability and certainly do not allow for an
interval implementation. Moreover, the big number arithmetic offered in for instance
Mathematica follows an obscure formal model that is largely undocumented.

In short, for the numerical programmer who wants to make use of several of the
alternatives above, there is no single platform that offers the best of all worlds. The
new rational class library that we describe in this paper must be seen in that context.
It accompanies a recently developed and very performant multiprecision class library,
that fully complies with the principles of the IEEE 754-854 standards for floating-point
arithmetic [21]. Offering all the required rounding modes, the latter allows to build
a sharp interval library on top. Besides the rational class library described here in
Section 3, future work will include mediant rounding in rational arithmetic and the
implementation of rational interval arithmetic. Complex and polynomial arithmetic
built on each of the basic number types are also planned.

We have chosen to keep the implementation fully cross-platform and not include any
platform-specific optimizations. Notwithstanding this choice, the rational class library
in ARIOMOY is the fastest library currently available, as will be indicated in Section
4. A simple GUI with parser for the quick evaluation of expressions, complements
the set of class libraries and is presented in Section 5. ARIOMOX aims at offering a
fast, fully portable, object-oriented alternative for numerical computing, inbetween the
computer algebra systems on one hand and the plain C-libraries on the other hand.

2 Overview and functionality of existing imple-
mentations

In this section we briefly describe some of the more popular implementations offering
rational arithmetic. Detailed information on the functionality offered by each imple-
mentation, as well as on the added functionality offered by the new implementation in
ARIOMOX V1.0, is given in the next section. It is typical for most implementations
that can be found, that little or no communication exists between the supported ra-
tional number type and other number types such as multiprecision or hardware floats,
hardware integers, complex numbers, intervals etc. As explained before, this is pre-
cisely one of the goals of the ARIOMOXY. project.

2.1 Mathematica

The computer algebra system Mathematica is available for all major operating systems.
The core of Mathematica is built into a kernel which can be accessed by means of a
GUI. Mathematica is a powerful and easy-to-use environment which is being applied
to a wide range of sectors.

Mathematica offers a wide range of functions, algorithms and graphics as well as a
programming language. Its greatest drawback however is its performance.

2.2 GNU MP

The GNU Multiprecision arithmetic library [8] is a portable C-library for arbitrary
precision arithmetic on integers, rational numbers, and floating-point numbers. GNU
MP supports different implementations for each of the operations, depending on the
size of the operands in order to achieve a reasonably good performance in all cases.
Furthermore it uses optimized assembly code on many different CPU’s for the most
common inner loops of the algorithms.

For rational arithmetic this library offers initialization and assignment of operands,
the basic arithmetic and relational operators, and functions operating on the numerator
and denominator of a rational operand.

2.3 SIMATH

SIMATH [23], which stands for SInix-MATHematik, is essentially a computer algebra
system focusing mainly on algebraic number theory. SIMATH is known to run on
most 32-bit UNIX platforms. The arithmetic library in SIMATH contains algorithms
to perform computations over the integers I (representing the mathematical set Z), the
rational numbers Q, (fixed precision) multiprecision floating-point numbers, the finite
rings I/ml, the finite Galois fields, the p-adic number fields, algebraic number fields
and function fields. For all these domains, basic arithmetic as well as higher algorithms
are available.

The SIMATH-library can be accessed in two ways. Either by calling the SIMATH
functions from a SIMATH-program, for which the SIMATH-preprocessor generates a
corresponding C-program, or by using the interactive calculator Simcalc, which features
many of the SIMATH algorithms, comprehensive error checking, and detailed help
facilities.

2.4 MIRACL

MIRACL stands for Multiprecision Integer and Rational Arithmetic C/C++ Library
[17, 18]. MIRACL is in fact a C-library, but a C++-wrapper is provided. Optimized
assembly code is used on certain processors for the most time-critical routines, but a
portable C-version of these routines is still available. The developers state that it is
currently the fastest library available on an 80x86 or Pentium platform.

MIRACL uses irreducible floating-slash numbers to approximate data and results.
For fixed k, each signed floating-slash number occupies k + [logy k] + 1 bits of memory
to store the sign, an unsigned i-bit integer numerator and an unsigned j-bit integer
denominator with ¢ + 7 = k, the position of the slash separating numerator and de-
nominator, and the status of the fraction which can be exact or approximate. In what
follows we will denote the set of floating-slash numbers by Q.

For multiprecision integer arithmetic MIRACL includes all the primitives that are
necessary for public key cryptography. On the rational side MIRACL supports func-
tions for initialization and assignment of rational numbers, as well as the basic arith-
metic and relational operators. Besides this, MIRACL also supports the power func-
tion, the square root, the extraction of the numerator and denominator, and elementary
functions like sine, cosine, tangent.

2.5 CLN

CLN stands for Class Library for Numbers [9] and is a portable C++-library. CLN
is capable of representing integers, rational numbers, floating-point numbers, complex

numbers, modular integers and univariate polynomials. CLN claims to be memory
efficient by using immediate allocation for small integers and short floats and has an
automatic, non-interruptive garbage collection for heap-allocated memory. Further-
more CLN claims to be speed efficient by using assembly language in the kernel for
some processors, low-level routines from GNU MP, the Karatsuba multiplication and
the Schonhage-Strassen multiplication for very large numbers.

For rational arithmetic the following operations are supported: initialization and
assignment, the basic arithmetic and relational operators, the square, the exponential,
the absolute value and the sign of an operand. Four rounding functions of an operand
x are available: the floor function delivering the largest integer smaller than or equal
to z, the ceiling function delivering the smallest integer greater than or equal to z, the
trunc function for the nearest integer to z among 0 and z (inclusive), and the round
function for the nearest integer to z with break to even. The square root and the n-th
root are also supported but a result is only delivered when the root is exact.

2.6 libg++

The implementation libg++ is a library for the GCC-compiler [13] with support for
integer and rational arithmetic. As of version 2.8.1 the library is an add-on, because the
required portion of libstdc++ is separated from libg++. The libray is still available,
but enhancements to it should not be expected.

2.7 Overview

From the above it should be clear that a fully portable, object-oriented yet performant
set of class libraries, offering several number representations and complemented with
a simple GUI to offer the look and feel of writing mathematical formulas, would fill a
void.

Mathematica)
GNU MP
SIMATH
MIRACL
CLN

libg++
ARIOMOX

Implementation and number types
C

C++

multiprecision IEEE compliant

rational NV

multiprecision interval

<
<

< NS

NN

complex

GUL ;

<

3 Functionality offered in the new rational class
library

In the next sections we discuss one by one the extra functionality that is available in
the new implementation. The fact that the new class library is part of an integrated
computational system, motivates for the following new features:

3.1

exactly rounded conversions from and to hardware and multiprecision floats (see
Section 3.5) and hence more constructors;

special values like signed infinities, non-integer and non-rational values (see Sec-
tions 3.3 and 3.7);

the unordered relation to compare with non-integer and non-rational values (see
Section 3.4);

the power function for rational operands (see Section 3.6);

a rational control word and status word (see Sections 3.8 and 3.9), among other
things for exception handling (see Section 3.10) and to prepare for rational interval
arithmetic.

Notations

The number sets that are available to the user in the ARIOMOY. V1.0 programming
environment, and that hence appear in our discussion besides the set of rational num-
bers, are the following:

The sets of binary hardware floats Fy, F; and F., where s, d and e refer to
the IEEE 754 single, double and double extended precision respectively [1]. Of
course a single extended precision inbetween single and double precision can also
be included, but such a fourth precision is rare.

The set of multiprecision software floats with base # and precision ¢, denoted by

Fgﬂ). Usually 3 is 2¥ or 10¢ and in case 3 = 2, the superscript will be omitted if

no confusion can arise. The set Fgﬂ) is also dependent on a range [L,U] for the

exponent which we shall usually not specify explicitly.

The sets of decimal floating-point numbers FSO),JFSO) and FSO) where the sub-
scripts s, d and e now respectively refer to the single, double and double extended
precisions specified in the IEEE 854 radix-independent standard.

The sets of signed hardware integers [14, 132 and g4 where the subscript denotes
the number of bits provided to represent the integer and its sign in one or other
notation.

The set of signed big integers denoted by I,. Here the subscript oo indicates
that as much memory as needed can be allocated to represent the integer, as long
as the limit on machine memory is not exceeded. In the sequel this subscript will
usually be omitted.

The set of rational numbers Qo that can be represented in machine memory. In
the sequel, we shall often omit the subscript oo too. We assume, without loss of
generality, that the rational numbers are represented as a tuple of irreducible big
integers in [, and that the denominator is positive.

The set Q) of floating-slash rational numbers [14]. The elements of Q are the
signed irreducible fractions with an unsigned :—bit integer numerator and an
unsigned j—bit integer denominator where i+ 5 < k. Each element of Q occupies
k + [logy k] + 1 bits of memory in which are stored the unsigned numerator and
denominator, the position of the slash separating numerator and denominator,
the sign of the fraction and the status of the fraction which can be exact or
approximate.

Each of the sets listed so far is an exactly representable finite subset of the set of
real numbers R. The graph given in Figure 1, is the analogue for machine numbers
of the inclusion relation between the mathematical sets Z C Q C R. In contrast with
these mathematical sets however, we remark that there is only a partial order relation
between the different sets of machine numbers.

ST BT
\ \ \”"/

Fzgure 1: Incluszon relation for the partzczpatmg subsets of R

Each node in this directed acyclic graph represents one of the number sets listed
above. KEach arrow corresponds to the strict inclusion relation C. If an arrow is
accompanied by a condition, the inclusion relation only holds in case the condition
holds. Note that the inclusion of I4 in 11?,21”) and of I35 in IF'((;U) is guaranteed by the
requirement in the IEEE 854 standard that the single precision decimal floating-point
format has a significand of at least 6 decimal digits wide and the double precision
decimal floating-point format one of at least 13.

It is well-known that the operations discussed in the next sections are not neces-
sarily closed in the number sets listed above. Yet when adding for instance two single
precision floating-point numbers, everybody is expecting a single precision result as
return value, not a real number. Hence the notions of rounding and machine operation
have to be introduced and are indispensable.

A rounding Q¢ : R — C that associates with each real value its representation in
the set C' C R, is called an exact rounding if it is monotone and exact for the elements
of C', meaning that

Ve e C:Qclz) =z (1)
Va2 €R o <y < 2 = Ocls) < Ocly) < Ool?))

The machine operation ®¢ denotes the operation * applied to two elements of a
machine number set C' and yielding an element of C as result. Hence the operation
®c is closed in C. Here * can be any one of 4+, —, x,/,rem,\/ or the supported
conversions. Clearly we want z ®c y to be as accurate as possible. The principle
of exactly rounded machine operation achieves this. The adoption of this principle
for floating-point computation in the IEEE 754 standard is one of the standard’s key
achievements: it states that, if C' is any of F,,F; or F, then

c:=Qcox (3)

3.2 Constructing a rational number

A rational object can be constructed in several ways. The default constructor creates
a rational object which is initialized with the value zero. All the other constructors
give the programmer the possibility to initialize the rational object with a value which
is passed on to the constructor via parameters.

When two parameters are passed to the constructor, the first parameter stands for
the numerator and the second parameter stands for the denominator. In this case the

parameters can be of the big integer type or the hardware integer type. A hardware
double, a string representing a fraction, or a multiprecision float can also be passed to
the constructor for creation of a rational object.

g
= W
IS} (ol) — C
| = = | O + =
= < | < + | @
< Z, = — — e} o
= O |m |2 |0 |=|<
Construction of a rational
from a hardware integer VIiVIiVI VIV
from a hardware long integer VIiVvVIVIVIVI]Y
from a multiprecision integer Vv VIiVIVIVIY
from a hardware float Vv
from a hardware double V4 V4 VARV
from a multiprecision floating-point Vv Vv Vv
from a string Vv VI VIV v

3.3 Basic operations and square root

Exact rounding of the basic operations in Q is easy because these binary operations
are closed in Q. The overview shows that each implementation offers the four basic
operations but not necessarily the square root.

)
< ol —
£ = E O =
5} > +
Sl |2 |2z |48
=z |2 |8 |5 | 2=
= |0 @ |2 |0 = |«
Basic operations and Square root
addition VIVIVIVIVIVIV
subtraction VIVIVIVIVIVIYV
multiplication VIVIVIVIVIVIYV
division VI IVIVIVIVIVIV
square root Vv vV iV v

In a floating-point context, the implementation of the square root is required to
be exactly rounded. This is achieved by defining the machine implementation of the
square root for C' # Q as

©c:=Q0co/ (4)
The above definition cannot be applied when C' = QQ, because when for instance ¢ € Q
is such that /g € R\ Q, then the exactly rounded value of ,/g in Q is mathematically
not well-defined.

In order to define @, we observe that for other number sets such as for example
[F;, the definition of @p, is such that if Op, (y/z) is mathematically well-defined in
F;, then @, returns this value. If, on the other hand, this value is mathematically
not well-defined, which can only occur if z < 0, then @, returns NaN (Not a Num-
ber). Applying a similar philosophy to C = Q, the following definition of @¢ seems
appropriate if it is essential that all computations in (Q,, be implemented exactly:

Va if /g€ Q
@q(q) := ¢ +laR (positive Is a Real) if /g & Q,q >0 (5)
NaN (Not a Number) ifg<0

Indeed, in all cases where /g & Q, the value Og(,/q) is not well-defined. The fun-
damental reason to return a special value such as TaR or +IaR (and not return an
undefined NaN or abort the program) comes from the fact that we found it useful to
return as much information on the result as possible, in case a representation cannot
be given. The underlying reason being that in subsequent computations such special
values can sometimes vanish while mathematically undefined results persist. Consider
for instance

(+1aR) ® (—o0) = —o0 (6)
ged(L, |+12Q)) = 1 7

Generally speaking, returning IaD or +IaD (where D can be Z for integers, Q for
rationals and R for reals) for the operation ®¢, means that the result of the operation
* cannot be represented in the set C' (taking the specifications in the control word into
account) but does exist in the mathematical set D D C. Here the set D is the smallest
of Z,Q, R.

It is clear, however, that a definition such as (5) is not very informative for the user.
Rather than returning a signed or unsigned Ia{Z, Q, R} in many cases, a more useful
implementation of the square root can be given in interval arithmetic (let us denote
the set of intervals with rational endpoints by IQ):

{va} if /e Q
Q10(q) == ¢ [q1.92] q1,92 € Qg if /4 & Q,q >0,,/q € [q1,q] (8)
NaN (Not a Number) if g <0

As announced in the introduction, this last implementation will be the subject of future
work. It is clear that at any time during the computation, the programmer must be able
to specify which of the two definitions (5) or (8) should be applied, in the same way as
it must be possible to specify the rounding mode at any time during the computation.
How this can be achieved in a uniform manner will be detailed in Section 3.9.

3.4 Relations

The supported relational operators are <, <,>,>, =, #, and unordered. The last one
is used when at least one operand is undefined or unspecified because it is either
NaN, IaR, TaQ or IaZ. Every undefined or unspecified value compares unordered with
everything, including itself. The unordered relation is not available in any of the other
implementations.

<

.S PN
= | = @)
g = E ©) + | =
< < | < + | @
< Z = = — Ra) [am
= U ;| = |0 |5 |<

Relational operators

<> VIVIVIVIVIVIV
= VIVIVIVIVIVIV
<> VIVIVIVIVIVIV
VIVIVIVIVIVIV
unordered Vv

3.5 Conversions

With hardware integers and floating-point numbers of different precisions available in
rounded arithmetic, and big integers and rationals available in exact arithmetic, a lot
of conversions are possible. We only want to focus in somewhat more detail on the

conversions between F,Eﬂ) and Q.

Since Fgﬂ) C @Q, it follows that the exactly rounded conversion of a floating-point
number to a rational number (not to a floating-slash number with fixed k), always
equals the number itself. For example, if f is the single precision hardware represen-
tation (24 binary digits) of the decimal constant 0.1, then:

f = 1.100 1100 1100 1100 1100 1101 x 24
= 13421773/134217728 = ¢

is its exact conversion to a rational value. It is however well-known that the fraction
q usually has rather large numerator and denominator, as in the above example. For
Fﬁﬂ) to Q, which delivers simpler approx-
imating fractions, is recommendable in a computing environment supporting many
number types. Such a conversion could map every element f € Fgﬂ) to a floating-slash
number in Q, for some small value k£ independent of f and ¢. The value k£ could
even be a parameter of the conversion. Both the exact and approximate conversions
are, for example, already supported in LISP and will be included in a next release of
ARIGOMOX.

The conversion from Q to

rounded division in Fg’g) with ¢ being the precision necessary to represent numerator

and denominator of the rational operand exactly, without any additional rounding.

this reason, a non-exact conversion from

JF‘%’B) in the current release is done using the exactly

T
5 g
< | A —

g | = E @) + | =
<)

sl |2 |2z |48
Elz 2|22 |2
= |0 |m =2 |0 |= |«

Conversions

to a hardware integer Vv Vv

to a hardware long integer Vv Vv

to a multiprecision integer Vv N RVARIRV:

to a hardware float Vv Vv

to a hardware double Vv Vv

to a multiprecision floating-point Vv Vv Vv

to a string Vv Vv Vv

3.6 Miscellaneous functions

The sign, the numerator and the denominator of a rational object can be extracted.
The floor, the ceiling, the absolute value and the inverse of a rational object can be
calculated. The power function of two rational objects is also supported. The special
value TaZ is for instance returned when computing |IaQ| where TaQ can be the result
of a division of operands from 1.

Mathematical
GNU MP
SIMATH
MIRACL
CLN

libg++
ARIOMOX

Miscellaneous

extracting sign

<X

extracting numerator / denominator

floor and ceiling

absolute value

inverse

<
ENEANAN AN

N] <
SN AN

n'™ power
th

SN AN
ENAANAN AN
AN AN AN

n"" root

3.7 Special values

In the same way as the IEEE 754 and 854 standards would not have been complete
without a description of all exceptional situations and the introduction of the necessary
exceptional values (such as +oo, NaN and +0), the ARIOMOX programming environ-
ment is not complete without a listing of the exceptional cases that can occur and the
actions that need to be taken.

A lot has been said and written about the representation of 0. Depending on the
number set one considers, three different representations for 0 are in use: the exact
mathematical or unsigned zero and the signed zeroes +0 and —0. In exact arithmetic,
when computing in [and Q, only the exact value of zero needs to be represented.

In inexact or rounded arithmetic, one not only needs to represent the exact zero
value but, much more often, ()(%e€), with € too small to be itself represented as a
machine number. Floating-point implementations that follow the principles of the
IEEE standards use £0 to represent (O(=£e). The values +0 are then identified with the
exact zero value. In the set of floating-slash rational numbers, the situation is slightly
different since computations in (J; can yield both exact rational as well as approximate
rational values. Hence an implementation of arithmetic in @ should support all three
representations of 0, as is the case in [14]. The inexact, signed representation of zero
is needed in case of underflow, when € is too small to be represented in Q. The
exact representation of zero is needed to represent the result of t © £ = £ — x when
z itself is exact. Since in the future the three values of zero have to coexist in our
system environment, the rule +0 = —0 of rounded arithmetic should be extended for
conversion purposes to +0 = —0 = 0. Nevertheless, the unsigned representation of
zero has a stronger mathematical meaning than the signed representation of 0.

The need to represent +oo is clear when overflow can occur, as is the case in Fg’g) , Qg
and also in the sets of hardware integers I, ¢ # oo, although in the latter sets overflow
is ignored in current hardware implementations and usually a negative, meaningless
integer number is returned. While overflow cannot occur in [, and QQy,, providing a
representation for +oc in these sets is necessary, for example when the argument of
a conversion to [or Qy is itself +o0o. Furthermore, when moving to the interval
plane and considering intervals with exact integer or rational endpoints, one is able to
represent a halfline only if the representations for +oc are provided.

Last but not least, the introduction of Not-a-Number is thoroughly motivated in
[7] for floating-point arithmetic. Many of these arguments also apply here. The need
to also introduce +IaZ (Is an Integer), £IaQ (Is a Rational) and IaR (Is a Real) has
already been touched upon in Section 3.2 and will become apparent as we discuss ex-

ceptions in Section 3.10. Several rules for the propagation of Ia{Z, Q, R} and NaN
(which should actually be split into Is-a-Complex and Not-a-Number) can be formu-
lated [22]. Since this discussion is a subject in its own, it lies beyond the scope of this
paper.

Besides supporting the representation of these special values for exceptional results,
a rational object can also be initialized with any of these special values and the special
values can be checked for.

S
< ol —
| = E O + | =
15 = D
sl (S |=z | h|S
< Z = — — e} ~
= |0 |;m | = |0 |&E <

Special value support

setting and testing infinities V4 Vv

setting and testing NaN’s, Ta{Z, Q, R}’s Vv

signed zeroes Vv

exception handling (Section 3.10) Vv

3.8 Status words

The notion of status word was introduced in the framework of the IEEE standardization
in order to keep track of exceptions in floating-point arithmetic. The five exceptions
that, according to IEEE 754 and IEEE 854, should be signaled when detected, are (i)
Zero divide, (ii) Overflow, (iii) Underflow, (iv) Inexact result and (v) Invalid operation.

Each flag in the status word of IEEE compliant hardware signals the exception
it corresponds to, independent of whether that exception occurs in F,, F; or F.. In
a hybrid computing environment like ARIOMO?Y, encompassing all the sets in Fig-
ure 1, providing only one status word would imply a severe loss of information. It
makes it for example impossible to retrace whether the exception has occurred during
the computations in exact or rounded arithmetic. Moreover, in each of the com-
puter arithmetic implementations from Figure 1, the set of exceptions that can arise
is different. Whether a separate status word should be provided for each arithmetic
implementation (multiprecision software floating-point, hardware floating-point, exact
rational, floating-slash rational, hardware integer, variable precision software integer,

..) or whether a status word could be commonly used by some of the arithmetic
implementations, is not a clear cut issue. The implementation under discussion here
has provided some insight in this matter and the conclusion is that at least two sta-
tus words are required: one for exact integer and rational arithmetic (in T, and in
Qx) and one for rounded arithmetic (in Fgﬂ) and Qk), with a separate status word for
floating-point and for floating-slash rational arithmetic as a valid option in the next
release. The exceptions arising in rational arithmetic are further discussed in Section
3.10 while those from floating-point arithmetic were thoroughly discussed in [1]. A
status word for the latter is provided in software in ARIOMOX for the sake of the
multiprecision computations.

The only sets that preclude a faithful representation of the special values in their
format are the hardware integers. Hence the use of a hardware integer type for numer-
ical results is not advisable. The parser available via the GUI of ARIOMOX therefore
works in rounded arithmetic only with integers faithfully represented in floats, and in
exact arithmetic only with so-called big integers.

In any case, when an operation ®¢ generates an exception, this shall be signaled
in the status word corresponding to the set C' in which the operation is performed.

This causes no ambiguity, even when operands of different types are involved in the
operation, when the principle of type promotion is applied. In the same way, for
conversions that raise an exception, it is the status word of the destination’s format
that should be set. Thus, exceptions arising in big integer arithmetic can be signaled
in the corresponding status word. This is more desirable than the situation where
exceptions arising from floating-point to hardware integer conversions, are signaled in
the floating-point status word because it is impossible otherwise.

3.9 Control words

In parallel with status flags to signal exceptions, an implementation should provide
control bits for trap handling and rounding specification, if applicable. We restrict our-
selves here to the rounding specifications, and the result specification in trap-disabled
mode for all exceptional situations.

In the same way as we have introduced different status words to signal exceptions
occurring in different number sets, it is appropriate that in a hybrid system also differ-
ent control words be supported. In line with the above, we provide at least two control
words: one for exact arithmetic in [, and in Q, and one for rounded arithmetic in JFg’B)
and Qf, with a separate control word for floating-point and for floating-slash rational
arithmetic as a recommendable option for the future.

Note that, in a control word for floating-point arithmetic only four out of the five
exception control bits are meaningful as trap enabling/disabling bits. Indeed, enabling
the inexact trap handler in floating-point arithmetic is not really an option, because
the system would trap on almost every floating-point operation. We therefore use the
inexact control bit in both control words not as a trap enable/disable bit, but in a
‘diluted’ way. It should always be set in floating-point arithmetic, to indicate that
inexact operations are ‘allowed’, while clearing or setting the inexact bit in the control
word for exact arithmetic will indicate whether only exact (in Q) or also approximate
(in Q) results are allowed. This use of the inexact control bit would then solve
the problem we have indicated in Section 3.3 concerning the two implementations of
the square root operation in Qy, and in [4. If the inexact bit in the control word
corresponding to Qu is set, definition (8) will be used, else (5) will be used.

This usage of the inexact control bit raises two new issues. First, when the bit
is set and approximate results are allowed, a rounding mode needs to be specified.
Therefore a control word should also provide bits to let the user specify the active
rounding mode. Here one needs to distinguish between rounding in I, on one hand
and rounding in Qy, on the other. In the former case, one of the four well-known
rounding modes, to nearest, up, down and to zero, can be applied. In the latter case
these four rounding modes have to be interpreted in Q; as mediant, up, down and to
zero. When rounding to elements in Q; additional precision control bits are needed to
specify the granularity of the set Q. These can be compared to the precision control
bits for temporary results available on the INTEL PC hardware.

Second, whereas operations in Fgﬂ)
the case for operations in Q. A programmer may want to disable inexact operations
in Q¢ while enabling inexact operations in IF'IE’B). This is only possible if two inexact
control bits are available in two different control words, one for floating-point and one
for floating-slash rational arithmetic.

In Section 3.10 we describe in more detail the exceptions that can occur in exact
arithmetic and the result that should be returned when an exceptional situation arises.
As already mentioned, we restrict ourselves to trap-disabled mode for all exceptions.

are almost always inexact, this is not necessarily

Zero divide: If the divisor is (unsigned) zero and the dividend is a finite
nonzero number, then the ‘zero divide’ exception shall be signaled. The
result shall be NaN, since division of a nonzero number by an exact zero is
mathematically undefined.

Overflow in [t # oo: that the inexact control bit is set (inexact opera-
tions are allowed), this exception shall be signaled when the destination’s
format largest finite number is exceeded in magnitude by what would have
been the (rounded) integer result, were ¢ unbounded. Depending on the
rounding mode and the sign of the intermediate result, the result shall be
+oc or the largest/most negative finite number in I,.

Inexact result: Under the condition that the inexact control bit is set, this
exception shall be signaled if the rounded result of an operation is inexact
or if it overflows. It is clear that inexact without overflow can only occur
for the operations that are not closed in Z (in casu / and /) and in Q (in
casu \[), as well as certain conversions to I;, I, or Q. In all cases the
rounded or overflowed result shall be delivered.

Invalid operation: Whenever the result of an operation is mathematically
undefined, the invalid exception should be signaled and a NaN returned.
This is the case in all arithmetic number representations. Moreover, in
integer and exact rational arithmetic, we propose to also raise the invalid
operation whenever the inexact control bit is cleared (no inexact operations
allowed) and the result of the operation overflows or cannot be delivered ex-
actly. In that case the result returned is the proper special value Ta{Z,Q,R},
possibly signed.

Table 1: Exception handling in I, T, and Q4

3.10 Exception handling

In this section we discuss the exceptions that can occur in the number sets I; (where
usually ¢ = 16,32 or 64), in [and in Q, in other words in integer and rational
arithmetic. These exceptions are: (i) Zero divide, (ii) Overflow (only for I), (iii)
Memory overflow (only for I, and Qu), (iv) Inexact result and (v) Invalid operation.

As pointed out in 3.8, the exceptional situations arising in I; cannot be intercepted
and hence one has to limit oneself to the discussion of exceptions in [, and Q.

Except for overflow (which can only occur in I;) and memory overflow (which can
only occur in I, and Qu), the exceptions (i-v) can arise in all three number sets.
Furthermore, these sets have in common that they need and provide only the unsigned
representation for zero. Hence we have grouped the status and control bits for [, and
Q in a single status, respectively control word.

Table 1 describes in detail the conditions for the raising of each arithmetic exception
in exact integer and rational arithmetic, and the result returned in that case. When
any of these exceptions is detected, the corresponding status flag is set and the specified
result returned. In case of Memory overflow, the system halts.

4 Implementation of the class library

The rational class library is based on a big integer class library for storing and ma-
nipulating integer numbers. As will be indicated in 4.1, the rational class library in
ARIOMOY is currently the most performant implementation of rational arithmetic,
when compared to the libraries described in Section 2. In addition, as described in
Section 3, it offers several new features such as exception handling and support for
special representations. This functionality is indispensable from the point of view of a
hybrid computational system.

4.1 Performance

One must take great care in designing the core of the C+-+-library to benefit from the
advantages of C++ and OO design, without incurring too much overhead.

Such overhead can occur every time a function returns a value, since this involves
constructing an object of the return value type. This (temporary) object is passed to
the calling routine and is typically destroyed at the end of the statement in which the
function was called. In fact, the lifetime of such an object is typically shorter than
that of an object explicitly declared in the calling routine.

Consider for example the expression A = B + C. The subexpression B + C returns a
temporary object which is then used as the operand for the assignment operator. The
assignment operator places a verbatim copy of its operand into the target operand,
possibly returning a reference of the target object. The temporary object is then
destroyed.

The overhead incurred by the creation of a temporary object can be considerable:
allocation of the required memory, initialization of the object, copying of the infor-
mation before the temporary is destroyed and deallocation of memory at the time of
destruction. This is especially the case if the objects that need to be constructed are
large integers or rationals.

To avoid this considerable overhead, the principle of ‘copy-by-assumption’ [6] can
be applied whereby at every function call the memory allocated to a temporary object
can be reused. The data of a temporary object is transferred to the target object in
three steps. First, any data that is currently pointed to by the target object is released.
Second, the data pointer in the temporary object is copied to the data pointer in the
target object. And third, the data pointer in the temporary object is set to the null
pointer.

Nevertheless, copy-by-assumption will never be as performant as ‘bare’ C program-
ming, because when evaluating C = A + B, the previous data of C has to be freed before
it will be replaced by the new result. The C-style expression sum (C, A, B) allows
the sum function to reuse the memory which might already have been allocated for C.
Keeping this in mind, C-style expressions were used to generate intermediate results
for the implementation of the classes.

When the memory needed for these intermediate results can be allocated on the
stack instead of the heap, expensive heap memory management will be avoided. This
also improves the computation time, but possible stack overflow must be taken into
account.

Use of the above in the design of our classes for rational arithmetic, results in
a significantly better performance than a straightforward C++ implementation of the
same algorithms. In the Figures 2 and 3, the performance of our new ‘all C++ without
assembler’ library is compared to the other libraries.

30
Addition of rational numbers
251 ‘A
7/
/
7
/.
s libg++
/
20 , i
7/
/
/
IV
Ve
15 L7 .
7/
Ve
7/
7/
e
7
10+ s -
e
s SIMATH
-
7
Ve .
_ - CLN
5 . .
7 DR — _GNUMP
PR o ARITHMOS
0 2—%—*, — |
0 100 200 300 400 500 600 700 800 900 1000

Figure 2: Addition of rationals

25
7/
T . /
Multiplication of rational numbers /
/
/
20 / -
/ libg++
/
/7
7
7
/
151 / .
/
/
/
7
7
/
/
e -

- SIMATH

101
Z

1000

Figure 3: Multiplication of rationals

As can be seen, the rational library of ARIOMOX is the most performant of all
implementations discussed in Section 2. It outperforms both libg+4 as well as the
speed efficient rational library CLN, two C++ implementations of rational arithmetic.

The latter is remarkable, especially if one takes into account that the performance of
CLN is boosted by assembly language code in the kernel. Furthermore, our object-
oriented implementation performs better than GNU MP, which is the fastest C library
for rational arithmetic.

All performance tests were carried out on a Sun 5.6 platform equipped with two
Ultrasparc 167 Mhz processors. For each integer s between 32 to 960, fourty rationals
were generated with random s-bit numerator and denominator. Addition and multi-
plication was performed for all 1600 combinations of these 40 rationals and the CPU
time was measured in seconds.

4.2 Class structure

The most important class in the library is the bigint class; it is used to represent
(almost) arbitrarily large integers. The most interesting class members of bigint are
listed below :

class bigint

{

protected:
unsigned long size;
unsigned long datasize;
signed char sign;
unsigned char special;
atom* data;

/* member functions and static members are omitted */

}

An atom is just an integer, which can be 32-bit, 16-bit or 8-bit. This is automatically
determined at compile time, depending on the availability of respectively 64-bit, 32-bit
or 16-bit integers on the platform.

The special byte is used to represent special values, which are described in section
3.7 while sign indicates whether the integer is strictly positive (sign = 1), strictly
negative (sign = -1) or unsigned (sign = 0), which is the case for zero and some
special values.

The magnitude of a bigint number is given by

Z data[ﬂ . 27Z-(#bits per atom)

Finally, the member datasize indicates how many atoms are allocated for the array
data. When a result becomes too big to fit in datasize atoms, the array will be
resized. Since datasize is a long integer, a bigint has to be smaller than

2(#bits per atom)-(2LONG-BITS _1)

where LONG_BITS is the number of bits in a long integer (usually 32).

Two classes inherit from bigint : tbigint and stackbigint. The tbigint class
represents a temporary large integer, which typically appears as return value of a
function. When a tbigint is used as the right hand side in an assignment, its value
will disappear, as can be read in the previous section. When one writes a function which
has a big integer as return value, it is recommended to let this value be a tbigint.

A stackbigint is a bigint which has its data on the call stack of the program.
This avoids expensive memory management, but does not allow the integer to ‘grow’.
Since this class is designed for internal use only, the user should not bother about it.

Finally the rational class is a record, consisting of two bigints (numerator and
positive denominator) with no common non-trivial divisors. Similar to the above, a
trational is a temporary instance of the rational class.

4.3 Cross-platform interface

The reliable arithmetic library was developed while keeping two other goals in mind:
speed and availability on a large range of platforms. Therefore the library was de-
veloped in ANSI C/C++ and makes use of the latest techniques to reduce the C++-
overhead. No assembly code was used to boost the performance, but great care has
been taken when choosing the data structure and the algorithms that work on this
structure.

In parallel with the implementation of the class library, a cross-platform graphical
user interface (GUI) has been developed in Qt [20]. The Qt-library makes it possible to
develop GUI software for both the X Window System and Microsoft Windows in one
sweep. By using Qt, our GUI is automatically available on a wide range of platforms
without the need of recoding. Qt is also used by leading software companies like HP,
IBM, Intel, Siemens, and it is the basis of the KDE desktop environment in Linux.

5 ARIGOMOX V1.0

The implementation was initially developed for didactical purposes, in the framework
of the course Computer Arithmetic and Numerical Techniques [4], which is taught
at the University of Antwerp. But it was soon further extended into a full-fledged,
performant and powerful arithmetic environment called ARIOMOX..

To summarize, the following number representations are provided in ARIOMOX
V1.0: exactly rounded multiprecision floating-point arithmetic in the four traditional
rounding modes (up, down, trunc, nearest), interval arithmetic with multiprecision
floating-point endpoints and exact rational arithmetic. The complete functionality of
ARIOMOY is available both at the class library/programming language level (for use
with a C++-compiler) as well as through a GUIT (the easiest way to parse and evaluate
some expressions). To illustrate the latter some screen dumps of the GUI can be found
in the Figures 4 and 5 which we shall discuss now.

As shown in Figure 4, one can easily specify in which of the number sets the com-
putations should be performed through the ‘Parameters’ dialog box. When computing
in floating-point or interval arithmetic, the base, the precision and the exponent range
of the floating-point numbers, as well as the rounding mode (nearest, zero, up, down or
interval) can be specified. In rational mode, at this time only exact rational arithmetic
is supported. Floating-slash rational arithmetic (based on mediant rounding) as well
as rational interval arithmetic, which are grayed in the ‘Parameters’ dialog box, will be
provided in ARIOMOY V2.0. Through the ‘Output format’ dialog box, the user can
specify the required output format. For didactical purposes for example, when choos-
ing a small precision and exponent range, the binary representation of (intermediate)
floating-point results may be very helpful to zoom in on computer arithmetic issues.
Furthermore, as has been described in the previous sections, the exceptions occurring
during the computations are signaled through flags. Whether or not these flags should
be output can also be specified in the ‘Output format’ dialog box.

B Arnithmetic Explorer - Untitled =] =]
File Edit Search Buttons Program Options Help

R i a0 o) el |

& Paise I mF‘a'rsa_Alll xCJearAlll . Help |

rmode: F
seti{precision=24;exponent=58; rounding=I}
a=77a17
bh=3302a
Z=333 .75 E64+at 2 (11*at2 *b 2-hb " 6-1Z1*%kh™~4-2)
print(z)
Parameateis !EE ®=5.5%h"8
0% Floating-point | | £ Rational | print (x]
-~ Parameters —————————————— -~ Parameters T=mu
Bage (¥ 2 € 10 2724 print (¥}

Precision I1 22 _—l Feyhad (275
E'xponent-{e _vl print (¥)
%

) seti{precision=53;exponent=11;rounding=N}
Fange | L

z=333.75%b 64+atZ ¥ (11*a*2*b 2-b " 6-1Z1*kb"4-2)
print(z)
X=5.5%b"5

- Fioundiﬁg_— o Fii:}[mding_
£+ Mearest (M) " Upweard (U} Lo Hatiorali=] DEINti)
o Zew(@ C Downward (D] £ edient (] FEx

A |rterval [F1] e (Freraal 1E print(¥)

w=v+a/ (2 *h)]
print (¥
;/ QK I G gppl_l,ll xgemc_ell ‘? Help rmode @ X
- z=333.75%*h*64+a*Z* (11*a*2 *b 2-hb" 6-121*%h"4-2)
printiz]
x=5.5*b" 5

print (%)
F=z4x
print (¥)
v=y+a/s (2 %)
Duput format =l B print (¥v)
Floating-paint - Rational prode: F
¥ Decimal Float - [Decimal Flaat set{precision=122 ;exponent=5;rounding=N}
IV Binar Float ¥ Ratianal 2=333.75%b*6+at2* (11*a*2*b 2-b" 6-121%b"4-2]
" Binarw Bepresentation " Flags print (=)
[Hewadecimal Representation | | [T Paiancios x=$.5%h* 5
" Rational print (x)
" Flags FEE4xK
I Parameters print (¥)
- w=y+a/ (27%b]
[Werbose autput print (¥}
0k | omdeen | ganeel| P uep

= Input string stack 2

Float stack
- Rational stack, A

|Rspest |

| Exponent OF | Prec:122 Exp:® | Rnd: W | Oper + | Rel: NOME | Canw: MOME | Elem: NONE

Figure 4

The expression that is evaluated in Figure 4 is a remarkable example of catastrophic
cancellation that was first published in [15]:

a =T7617

b = 33096

y = 333.750° + a®(11a?b® — b° — 121b* — 2) + 5.50° + &
= —0.827396...

The output generated by ARIOMOX V1.0 for y, in different number representations,
is displayed in Figure 5. It confirms what is already known [15, 5]: it requires either
exact rational arithmetic or floating-point arithmetic with at least 122 bits of binary
precision to obtain any significant digits in the computed result.

2 Arithmetic Explorer - Edit Untitled

File Edit

e g e I R [N R R

Search Buttons

Programn Options Help

2| = 2|

sl
r— |=inx

+=|<3
%

=,
2 st

Parser Argument
DecFloat
EinFloat

Parser Argqument

EinFloat 1
Parser Argument
DecFloat
EinFloat 1

DecFloat HE

6.

HEE -4

—7.9171111555001066129353255912082420531203 6
—1.01111101001100011110111+1111010

HE 4]
91711182372 54057 270476595531 752805"3 6

.01111101001100011111000+1111010

2 ¥}
338253001141147007482E160252229

. 00000000000000000000000~1100011

Parser Argument :
DecFloat
BinFloat

(¥}
D G.338253001141147007453351602633"29
: 1.000000000000000000000001100011
Parser Argqument :
DecF loat I —-7.91711134066589605959037611915032226"3 6
EinF loat : —-1.0111110100110001111011100111100111001010010001001011"1111010
Parser Argument @ (=}
DecFloat : 7.917111340668960295903751191202225:"3 6
EinFloat 1

iz}

.0111110100110001111011310011110011100101001000100101141111010
Parser Argument : (¥}
DecFloat s
BinFloat o
Parser Argument : (¥}

DecFloat : 1.172603940053 1786545244406 055 7353551573751 58586553355575
EinF loat : 1.0010110000101111110001011001010110110000011010111111
Parser Argument : (=}
Rational : —=79171113406658961361101134701524942350
Parser Argument @ (=}
Rational : 7E171113406658961361101134701524942548
Parser Argument : (¥}
Fational i -2
Parser Argument @ (¥}

Rational : —54767/66192
Parser Argument :
DecF loat @ —7.91711134066896136110113470152494285™36
BinF loat : —1.011111010011000111101110011110011100101001000100101101100100001110010001101
1101110011000010110010110000000000000000000001~1111010
Parser Argument : (=}
DecF loat : 7.91711134066596136110113470152494254=2"36
EBEinF loat : 1.0111110100110001111011100111100111001010010001001011011001000011100100011011
101110011000010110010110000000000000000000000~1111010
Parser Argument : (¥}
DecFloat : —EZ.00000000000000000000000000000000000
EinF loat : —1.000
001
Parser Argument : (¥}
DecFloat : —8.273960599446532136581411650954798 1628200545221 088804000408 241 907027 120546000841 8598
4E27EZ1E1 34806691 77E843E0109100341 7282764 —1
EinFloat : —1.101001111010000001110100110101001001111100101000001010010001011010110101110
0111000011131113100111001111110110110101110131110*-1

iz}

| Exponent OF. | Preci122 Exp:& [Rnd: M | Oper: + | Riel: MNOME | Canw: MOME | Elem: NOME

Figure 5

Future plans for ARIOMOZY include polynomial arithmetic (with coefficients of all
real number types as well as intervals), complex arithmetic, circular arithmetic, reli-
able graphics and hybrid expression evaluation. More information on the ARIOGMOX
environment can be found at http://win-www.uia.ac.be/u/cuyt/ or can be obtained
from the authors.

References

[1] ANSI/IEEE Std 754-1985. IEEE standard for binary floating-point arithmetic.

ACM SIGPLAN, 22(2):9-25, 1987.

[2] D.H. Bailey. A FORTRAN-90 Based Multiprecision System.
21(4):379 387, 1995.

ACM TOMS,

3]

R.P. Brent. A FORTRAN multiple-precision arithmetic package. ACM Trans.
Math. Software, 4:57-70, 1978.

A. Cuyt and B. Verdonk. Computational science and engineering at Belgian
universities. IEEE Computational Science and Engineering, 4(4):79-83, 1997.

A. Cuyt and B. Verdonk. A remarkable example of catastrophic cancellation
unraveled. Technical report, 1999. Submitted for publication in Computing.

A. Dingle and T. Hildebrandt. Improving C++ performance using temporaries.
IEEE Computer, 31(3):31-41, 1998.

D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surveys, 23:5-48, 1991.

T. Granlund. The GNU Multiple Precision Arithmetic Library Edition 2.0.2. Free
Software Foundation, Inc., June 1996.

B. Haible. CLN, a Class Library for Numbers. Available at http://clisp.cons.org/
~haible/packages-cln.html.

R.B. Kearfott, M. Dawande, K. Du, and Ch. Hu. Algorithm 737:INTLIB: a
portable FORTRAN-77 elementary function library. ACM Trans. Math. Software,
20(4):447 459, 1994.

R. Klatte, U. Kulisch, A. Wiethoff, et al. C-XSC: a C++ class library for extended
scientific computing. Springer Verlag, Berlin, 1993.

O. Kniippel. PROFIL/BIAS-a fast interval library. Computing, 53:277-287, 1994.
D. Lea. Libg++. Copyright (C) 1988 Free Software Foundation.

D. Matula and P. Kornerup. Finite precision rational arithmetic: slash number
systems. IEEE Trans. Comput., C-34:3-18, 1985.

S. Rump. Algorithm for verified inclusion - theory and practice. In R.E. Moore,
editor, Reliability in Computing, pages 109 126, 1988.

S. Rump. Fast and parallel interval arithmetic. BIT, 39(3):534-554, 1999.

M. Scott. Fast Rounding in Multiprecision Floating-Slash Arithmetic. [EEE
Trans. Comput., 38(7):1049 1052, 1989.

Shamus Software Ltd. MIRACL, Multiprecision Integer and Rational Arithmetic
C/C++ Library. Available at http://indigo.ie/~mscott.

D. Smith. A FORTRAN package for floating-point multiple-precision arithmetic.
ACM Transactions on Mathematical Software, 17(2):273-283, 1991.

Troll Tech AS. QT, Cross-platform C++4 GUI Application Framework. Available
at ftp://ftp.troll.no/qt/pdf/qt-whitepaper-v10.pdf, 1999.

D. Verschaeren and A. Cuyt. A class library for multiprecision IEEE floating-point
arithmetic. Technical report, University of Antwerp, Dept. Math. and Comp.
Science, 1999. In preparation.

J. Vervloet. Rationale en polynomiale aritmetiek: een implementatie. University
of Antwerp (UIA), 1999. Master’s Thesis.

H. G. Zimmer. SIMATH, a computer algebra system for number theoretic appli-
cations. Available at http://emmy.math.uni-sb.de/~simath/.

