
THE CLASS LIBRARY FOR EXACT RATIONALARITHMETIC IN ARI�MO�A. Cuyt � P. Kuterna B. Verdonk y J. VervloetDept Mathematics and Computer ScienceUniversity of Antwerp (UIA)Universiteitsplein 1, B{2610 Antwerpen, BelgiumTel: +32 3 8202401, Fax: +32 3 820 24 21Email: fcuyt, kuterna, verdonk, jvvloetg@uia.ua.ac.beHomepage: win-www.uia.ac.be/u/cant/AbstractARI�MO� consists of a family of class libraries (fully IEEE compliant multipreci-sion 
oating-point, sharp multiprecision 
oating-point interval and exact rational arith-metic in V1.0, 
oating-slash, rational interval and complex arithmetic in V2.0) that areavailable at programming language level as well as through a GUI with parser. In thispaper we discuss the rational class library from ARI�MO�. Besides o�ering additionalfunctionality when compared to other rational arithmetic software, the implementa-tion is fully cross-platform (no assembler), object-oriented (operator overloading) andcurrently the most performant rational library available (on 64-bit platforms even out-performing well-known C libraries).1 IntroductionIn the past decade the interest in alternative implementations of computer arith-metic, besides the well-known IEEE 754 hardware 
oating-point arithmetic, has growntremendously. Among others we mention in particular interval arithmetic, multipreci-sion arithmetic and rational arithmetic.Rational arithmetic can mostly be found in computer algebra systems, where theuser has access to the exact arithmetic via a GUI simulating the usual pencil and paperstyle of calculations. Of course these interpreters are much less performant than someC- or C++-libraries that o�er a similar functionality and operate on an abstract datatype. The most popular of these libraries [8, 13, 23, 9] will be discussed in Section 2.Interval arithmetic [16, 12, 11, 10] has been very successful at solving some hardproblems and is now even available directly through a Sun f90 compiler. One of themain drawbacks of this type of automatic error analysis and result veri�cation is the�Research Director FWO{VlaanderenyPostdoctoral Researcher FWO{Vlaanderen



fact that the interval enclosures tend to grow very fast, especially when calculatednaively. Hence the success of interval arithmetic ultimately lies in the combination withmultiprecision arithmetic. This is in sharp contrast with most interval implementationsthat are around and make use of the underlying hardware.As far as multiprecision arithmetic is concerned, several packages can be found[3, 8], even for extremely large precisions [19, 2], but none of them adheres to theprinciples of the IEEE 754 
oating-point standard that exists for the smaller standardprecisions, such as exact rounding of the basic operations, special representations forsigned zeroes and in�nities, denormals and exception handling. Hence the packagescannot o�er the same reliability and portability and certainly do not allow for aninterval implementation. Moreover, the big number arithmetic o�ered in for instanceMathematica follows an obscure formal model that is largely undocumented.In short, for the numerical programmer who wants to make use of several of thealternatives above, there is no single platform that o�ers the best of all worlds. Thenew rational class library that we describe in this paper must be seen in that context.It accompanies a recently developed and very performant multiprecision class library,that fully complies with the principles of the IEEE 754-854 standards for 
oating-pointarithmetic [21]. O�ering all the required rounding modes, the latter allows to builda sharp interval library on top. Besides the rational class library described here inSection 3, future work will include mediant rounding in rational arithmetic and theimplementation of rational interval arithmetic. Complex and polynomial arithmeticbuilt on each of the basic number types are also planned.We have chosen to keep the implementation fully cross-platform and not include anyplatform-speci�c optimizations. Notwithstanding this choice, the rational class libraryin ARI�MO� is the fastest library currently available, as will be indicated in Section4. A simple GUI with parser for the quick evaluation of expressions, complementsthe set of class libraries and is presented in Section 5. ARI�MO� aims at o�ering afast, fully portable, object-oriented alternative for numerical computing, inbetween thecomputer algebra systems on one hand and the plain C-libraries on the other hand.2 Overview and functionality of existing imple-mentationsIn this section we brie
y describe some of the more popular implementations o�eringrational arithmetic. Detailed information on the functionality o�ered by each imple-mentation, as well as on the added functionality o�ered by the new implementation inARI�MO� V1.0, is given in the next section. It is typical for most implementationsthat can be found, that little or no communication exists between the supported ra-tional number type and other number types such as multiprecision or hardware 
oats,hardware integers, complex numbers, intervals etc. As explained before, this is pre-cisely one of the goals of the ARI�MO� project.2.1 MathematicaThe computer algebra system Mathematica is available for all major operating systems.The core of Mathematica is built into a kernel which can be accessed by means of aGUI. Mathematica is a powerful and easy-to-use environment which is being appliedto a wide range of sectors.Mathematica o�ers a wide range of functions, algorithms and graphics as well as aprogramming language. Its greatest drawback however is its performance.



2.2 GNU MPThe GNU Multiprecision arithmetic library [8] is a portable C-library for arbitraryprecision arithmetic on integers, rational numbers, and 
oating-point numbers. GNUMP supports di�erent implementations for each of the operations, depending on thesize of the operands in order to achieve a reasonably good performance in all cases.Furthermore it uses optimized assembly code on many di�erent CPU's for the mostcommon inner loops of the algorithms.For rational arithmetic this library o�ers initialization and assignment of operands,the basic arithmetic and relational operators, and functions operating on the numeratorand denominator of a rational operand.2.3 SIMATHSIMATH [23], which stands for SInix-MATHematik, is essentially a computer algebrasystem focusing mainly on algebraic number theory. SIMATH is known to run onmost 32-bit UNIX platforms. The arithmetic library in SIMATH contains algorithmsto perform computations over the integers I (representing the mathematical set Z), therational numbers Q , (�xed precision) multiprecision 
oating-point numbers, the �niterings I=mI, the �nite Galois �elds, the p-adic number �elds, algebraic number �eldsand function �elds. For all these domains, basic arithmetic as well as higher algorithmsare available.The SIMATH-library can be accessed in two ways. Either by calling the SIMATHfunctions from a SIMATH-program, for which the SIMATH-preprocessor generates acorresponding C-program, or by using the interactive calculator Simcalc, which featuresmany of the SIMATH algorithms, comprehensive error checking, and detailed helpfacilities.2.4 MIRACLMIRACL stands for Multiprecision Integer and Rational Arithmetic C/C++ Library[17, 18]. MIRACL is in fact a C-library, but a C++-wrapper is provided. Optimizedassembly code is used on certain processors for the most time-critical routines, but aportable C-version of these routines is still available. The developers state that it iscurrently the fastest library available on an 80x86 or Pentium platform.MIRACL uses irreducible 
oating-slash numbers to approximate data and results.For �xed k, each signed 
oating-slash number occupies k+ dlog2 ke+1 bits of memoryto store the sign, an unsigned i-bit integer numerator and an unsigned j-bit integerdenominator with i + j = k, the position of the slash separating numerator and de-nominator, and the status of the fraction which can be exact or approximate. In whatfollows we will denote the set of 
oating-slash numbers by Qk .For multiprecision integer arithmetic MIRACL includes all the primitives that arenecessary for public key cryptography. On the rational side MIRACL supports func-tions for initialization and assignment of rational numbers, as well as the basic arith-metic and relational operators. Besides this, MIRACL also supports the power func-tion, the square root, the extraction of the numerator and denominator, and elementaryfunctions like sine, cosine, tangent.2.5 CLNCLN stands for Class Library for Numbers [9] and is a portable C++-library. CLNis capable of representing integers, rational numbers, 
oating-point numbers, complex



numbers, modular integers and univariate polynomials. CLN claims to be memorye�cient by using immediate allocation for small integers and short 
oats and has anautomatic, non-interruptive garbage collection for heap-allocated memory. Further-more CLN claims to be speed e�cient by using assembly language in the kernel forsome processors, low-level routines from GNU MP, the Karatsuba multiplication andthe Sch�onhage-Strassen multiplication for very large numbers.For rational arithmetic the following operations are supported: initialization andassignment, the basic arithmetic and relational operators, the square, the exponential,the absolute value and the sign of an operand. Four rounding functions of an operandx are available: the 
oor function delivering the largest integer smaller than or equalto x, the ceiling function delivering the smallest integer greater than or equal to x, thetrunc function for the nearest integer to x among 0 and x (inclusive), and the roundfunction for the nearest integer to x with break to even. The square root and the n-throot are also supported but a result is only delivered when the root is exact.2.6 libg++The implementation libg++ is a library for the GCC-compiler [13] with support forinteger and rational arithmetic. As of version 2.8.1 the library is an add-on, because therequired portion of libstdc++ is separated from libg++. The libray is still available,but enhancements to it should not be expected.2.7 OverviewFrom the above it should be clear that a fully portable, object-oriented yet performantset of class libraries, o�ering several number representations and complemented witha simple GUI to o�er the look and feel of writing mathematical formulas, would �ll avoid.
Mathematica GNUMP SIMATH MIRACL CLN libg++ ARI�MO�Implementation and number typesC p p pC++ p p p pmultiprecision IEEE compliant prational p p p p p p pmultiprecision interval pcomplex p pGUI p p3 Functionality o�ered in the new rational classlibraryIn the next sections we discuss one by one the extra functionality that is available inthe new implementation. The fact that the new class library is part of an integratedcomputational system, motivates for the following new features:



� exactly rounded conversions from and to hardware and multiprecision 
oats (seeSection 3.5) and hence more constructors;� special values like signed in�nities, non-integer and non-rational values (see Sec-tions 3.3 and 3.7);� the unordered relation to compare with non-integer and non-rational values (seeSection 3.4);� the power function for rational operands (see Section 3.6);� a rational control word and status word (see Sections 3.8 and 3.9), among otherthings for exception handling (see Section 3.10) and to prepare for rational intervalarithmetic.3.1 NotationsThe number sets that are available to the user in the ARI�MO� V1.0 programmingenvironment, and that hence appear in our discussion besides the set of rational num-bers, are the following:� The sets of binary hardware 
oats Fs , Fd and Fe , where s, d and e refer tothe IEEE 754 single, double and double extended precision respectively [1]. Ofcourse a single extended precision inbetween single and double precision can alsobe included, but such a fourth precision is rare.� The set of multiprecision software 
oats with base � and precision t, denoted byF(�)t . Usually � is 2k or 10` and in case � = 2, the superscript will be omitted ifno confusion can arise. The set F(�)t is also dependent on a range [L;U ] for theexponent which we shall usually not specify explicitly.� The sets of decimal 
oating-point numbers F(10)s ; F(10)d and F(10)e where the sub-scripts s; d and e now respectively refer to the single, double and double extendedprecisions speci�ed in the IEEE 854 radix-independent standard.� The sets of signed hardware integers I16, I32 and I64 where the subscript denotesthe number of bits provided to represent the integer and its sign in one or othernotation.� The set of signed big integers denoted by I1. Here the subscript 1 indicatesthat as much memory as needed can be allocated to represent the integer, as longas the limit on machine memory is not exceeded. In the sequel this subscript willusually be omitted.� The set of rational numbers Q1 that can be represented in machine memory. Inthe sequel, we shall often omit the subscript 1 too. We assume, without loss ofgenerality, that the rational numbers are represented as a tuple of irreducible bigintegers in I1 and that the denominator is positive.� The set Qk of 
oating-slash rational numbers [14]. The elements of Qk are thesigned irreducible fractions with an unsigned i�bit integer numerator and anunsigned j�bit integer denominator where i+j � k. Each element of Qk occupiesk + dlog2 ke+ 1 bits of memory in which are stored the unsigned numerator anddenominator, the position of the slash separating numerator and denominator,the sign of the fraction and the status of the fraction which can be exact orapproximate.



Each of the sets listed so far is an exactly representable �nite subset of the set ofreal numbers R. The graph given in Figure 1, is the analogue for machine numbersof the inclusion relation between the mathematical sets Z � Q � R. In contrast withthese mathematical sets however, we remark that there is only a partial order relationbetween the di�erent sets of machine numbers.F(10)s //F(10)d //F(10)e t>e //F(10)t
&&N

NN
NN

NN
NN

NN
N I

��
//
//
//I16 //

��9
99

99
9

CC������ I32 m>32 //

��9
99

99
9

CC������ Imt�dlog10 2m�1e CC������ t�m�1
��9

99
99

9

k�m�1
//

77nnnnnnnnnnnnnnn Qk // Q // RFs // Fd // Fe t>e // Ft 77oooooooooooooFigure 1: Inclusion relation for the participating subsets of REach node in this directed acyclic graph represents one of the number sets listedabove. Each arrow corresponds to the strict inclusion relation �. If an arrow isaccompanied by a condition, the inclusion relation only holds in case the conditionholds. Note that the inclusion of I16 in F(10)s and of I32 in F(10)d is guaranteed by therequirement in the IEEE 854 standard that the single precision decimal 
oating-pointformat has a signi�cand of at least 6 decimal digits wide and the double precisiondecimal 
oating-point format one of at least 13.It is well-known that the operations discussed in the next sections are not neces-sarily closed in the number sets listed above. Yet when adding for instance two singleprecision 
oating-point numbers, everybody is expecting a single precision result asreturn value, not a real number. Hence the notions of rounding and machine operationhave to be introduced and are indispensable.A rounding
C : R �! C that associates with each real value its representation inthe set C � R, is called an exact rounding if it is monotone and exact for the elementsof C, meaning that 8x 2 C :
C(x) = x (1)8x; y; z 2 R : x � y � z )
C(x) � 
C(y) � 
C(z) (2)The machine operation ~C denotes the operation � applied to two elements of amachine number set C and yielding an element of C as result. Hence the operation~C is closed in C. Here � can be any one of +;�;�; =; rem;p or the supportedconversions. Clearly we want x ~C y to be as accurate as possible. The principleof exactly rounded machine operation achieves this. The adoption of this principlefor 
oating-point computation in the IEEE 754 standard is one of the standard's keyachievements: it states that, if C is any of Fs ; Fd or Fe then~C :=
C � � (3)3.2 Constructing a rational numberA rational object can be constructed in several ways. The default constructor createsa rational object which is initialized with the value zero. All the other constructorsgive the programmer the possibility to initialize the rational object with a value whichis passed on to the constructor via parameters.When two parameters are passed to the constructor, the �rst parameter stands forthe numerator and the second parameter stands for the denominator. In this case the



parameters can be of the big integer type or the hardware integer type. A hardwaredouble, a string representing a fraction, or a multiprecision 
oat can also be passed tothe constructor for creation of a rational object.
Mathematica GNUMP SIMATH MIRACL CLN libg++ ARI�MO�Construction of a rationalfrom a hardware integer p p p p pfrom a hardware long integer p p p p p pfrom a multiprecision integer p p p p p pfrom a hardware 
oat pfrom a hardware double p p p pfrom a multiprecision 
oating-point p p pfrom a string p p p p p3.3 Basic operations and square rootExact rounding of the basic operations in Q is easy because these binary operationsare closed in Q . The overview shows that each implementation o�ers the four basicoperations but not necessarily the square root.
Mathematica GNUMP SIMATH MIRACL CLN libg++ ARI�MO�Basic operations and Square rootaddition p p p p p p psubtraction p p p p p p pmultiplication p p p p p p pdivision p p p p p p psquare root p p p pIn a 
oating-point context, the implementation of the square root is required tobe exactly rounded. This is achieved by de�ning the machine implementation of thesquare root for C 6= Q as >C :=
C � p (4)The above de�nition cannot be applied when C = Q , because when for instance q 2 Qis such that pq 2 R n Q , then the exactly rounded value of pq in Q is mathematicallynot well-de�ned.In order to de�ne >Q , we observe that for other number sets such as for exampleFt , the de�nition of >Ft is such that if 
Ft (px) is mathematically well-de�ned inFt , then >Ft returns this value. If, on the other hand, this value is mathematicallynot well-de�ned, which can only occur if x < 0, then >Ft returns NaN (Not a Num-ber). Applying a similar philosophy to C = Q , the following de�nition of >Q seemsappropriate if it is essential that all computations in Q1 be implemented exactly:>Q(q) := 8<: pq if pq 2 Q+IaR (positive Is a Real) if pq 62 Q ; q > 0NaN (Not a Number) if q < 0 (5)



Indeed, in all cases where pq 62 Q , the value 
Q(pq) is not well-de�ned. The fun-damental reason to return a special value such as IaR or �IaR (and not return anunde�ned NaN or abort the program) comes from the fact that we found it useful toreturn as much information on the result as possible, in case a representation cannotbe given. The underlying reason being that in subsequent computations such specialvalues can sometimes vanish while mathematically unde�ned results persist. Considerfor instance (+IaR)
 (�1) = �1 (6)gcd(1; b+IaQc) = 1 (7)Generally speaking, returning IaD or �IaD (where D can be Z for integers, Q forrationals and R for reals) for the operation ~C , means that the result of the operation� cannot be represented in the set C (taking the speci�cations in the control word intoaccount) but does exist in the mathematical set D � C. Here the set D is the smallestof Z;Q;R .It is clear, however, that a de�nition such as (5) is not very informative for the user.Rather than returning a signed or unsigned IafZ, Q, Rg in many cases, a more usefulimplementation of the square root can be given in interval arithmetic (let us denotethe set of intervals with rational endpoints by IQ):>IQ(q) := 8<: fpqg if pq 2 Q[q1; q2] q1; q2 2 Qk if pq 62 Q ; q > 0;pq 2 [q1; q2]NaN (Not a Number) if q < 0 (8)As announced in the introduction, this last implementation will be the subject of futurework. It is clear that at any time during the computation, the programmer must be ableto specify which of the two de�nitions (5) or (8) should be applied, in the same way asit must be possible to specify the rounding mode at any time during the computation.How this can be achieved in a uniform manner will be detailed in Section 3.9.3.4 RelationsThe supported relational operators are <;�; >;�;=; 6=, and unordered. The last oneis used when at least one operand is unde�ned or unspeci�ed because it is eitherNaN, IaR, IaQ or IaZ. Every unde�ned or unspeci�ed value compares unordered witheverything, including itself. The unordered relation is not available in any of the otherimplementations.
Mathematica GNUMP SIMATH MIRACL CLN libg++ ARI�MO�Relational operators<;> p p p p p p p= p p p p p p p�;� p p p p p p p6= p p p p p p punordered p



3.5 ConversionsWith hardware integers and 
oating-point numbers of di�erent precisions available inrounded arithmetic, and big integers and rationals available in exact arithmetic, a lotof conversions are possible. We only want to focus in somewhat more detail on theconversions between F(�)t and Q .Since F(�)t � Q , it follows that the exactly rounded conversion of a 
oating-pointnumber to a rational number (not to a 
oating-slash number with �xed k), alwaysequals the number itself. For example, if f is the single precision hardware represen-tation (24 binary digits) of the decimal constant 0:1, then:f = 1:100 1100 1100 1100 1100 1101 � 2�4= 13421773=134217728 = qis its exact conversion to a rational value. It is however well-known that the fractionq usually has rather large numerator and denominator, as in the above example. Forthis reason, a non-exact conversion from F(�)t to Q , which delivers simpler approx-imating fractions, is recommendable in a computing environment supporting manynumber types. Such a conversion could map every element f 2 F(�)t to a 
oating-slashnumber in Qk , for some small value k independent of f and t. The value k couldeven be a parameter of the conversion. Both the exact and approximate conversionsare, for example, already supported in LISP and will be included in a next release ofARI�MO�.The conversion from Q to F(�)t in the current release is done using the exactlyrounded division in F(�)t with t being the precision necessary to represent numeratorand denominator of the rational operand exactly, without any additional rounding.
Mathematica GNUMP SIMATH MIRACL CLN libg++ ARI�MO�Conversionsto a hardware integer p pto a hardware long integer p pto a multiprecision integer p p p pto a hardware 
oat p pto a hardware double p p p pto a multiprecision 
oating-point p p pto a string p p p p3.6 Miscellaneous functionsThe sign, the numerator and the denominator of a rational object can be extracted.The 
oor, the ceiling, the absolute value and the inverse of a rational object can becalculated. The power function of two rational objects is also supported. The specialvalue IaZ is for instance returned when computing bIaQc where IaQ can be the resultof a division of operands from I.



Mathematica GNUMP SIMATH MIRACL CLN libg++ ARI�MO�Miscellaneousextracting sign p p p p p p pextracting numerator / denominator p p p p p p p
oor and ceiling p p p p pabsolute value p p p p p pinverse p p p pnth power p p p p p pnth root p p p p3.7 Special valuesIn the same way as the IEEE 754 and 854 standards would not have been completewithout a description of all exceptional situations and the introduction of the necessaryexceptional values (such as �1, NaN and �0), the ARI�MO� programming environ-ment is not complete without a listing of the exceptional cases that can occur and theactions that need to be taken.A lot has been said and written about the representation of 0. Depending on thenumber set one considers, three di�erent representations for 0 are in use: the exactmathematical or unsigned zero and the signed zeroes +0 and �0. In exact arithmetic,when computing in I1 and Q1 , only the exact value of zero needs to be represented.In inexact or rounded arithmetic, one not only needs to represent the exact zerovalue but, much more often, 
(��), with � too small to be itself represented as amachine number. Floating-point implementations that follow the principles of theIEEE standards use �0 to represent
(��). The values �0 are then identi�ed with theexact zero value. In the set of 
oating-slash rational numbers, the situation is slightlydi�erent since computations in Qk can yield both exact rational as well as approximaterational values. Hence an implementation of arithmetic in Qk should support all threerepresentations of 0, as is the case in [14]. The inexact, signed representation of zerois needed in case of under
ow, when � is too small to be represented in Qk . Theexact representation of zero is needed to represent the result of x 	 x = x � x whenx itself is exact. Since in the future the three values of zero have to coexist in oursystem environment, the rule +0 = �0 of rounded arithmetic should be extended forconversion purposes to +0 = �0 = 0. Nevertheless, the unsigned representation ofzero has a stronger mathematical meaning than the signed representation of 0.The need to represent�1 is clear when over
ow can occur, as is the case in F(�)t , Qkand also in the sets of hardware integers It, t 6=1, although in the latter sets over
owis ignored in current hardware implementations and usually a negative, meaninglessinteger number is returned. While over
ow cannot occur in I1 and Q1 , providing arepresentation for �1 in these sets is necessary, for example when the argument ofa conversion to I1 or Q1 is itself �1. Furthermore, when moving to the intervalplane and considering intervals with exact integer or rational endpoints, one is able torepresent a hal
ine only if the representations for �1 are provided.Last but not least, the introduction of Not-a-Number is thoroughly motivated in[7] for 
oating-point arithmetic. Many of these arguments also apply here. The needto also introduce �IaZ (Is an Integer), �IaQ (Is a Rational) and IaR (Is a Real) hasalready been touched upon in Section 3.2 and will become apparent as we discuss ex-



ceptions in Section 3.10. Several rules for the propagation of IafZ, Q, Rg and NaN(which should actually be split into Is-a-Complex and Not-a-Number) can be formu-lated [22]. Since this discussion is a subject in its own, it lies beyond the scope of thispaper.Besides supporting the representation of these special values for exceptional results,a rational object can also be initialized with any of these special values and the specialvalues can be checked for.
Mathematica GNUMP SIMATH MIRACL CLN libg++ ARI�MO�Special value supportsetting and testing in�nities p psetting and testing NaN's, IafZ, Q, Rg's psigned zeroes pexception handling (Section 3.10) p3.8 Status wordsThe notion of status word was introduced in the framework of the IEEE standardizationin order to keep track of exceptions in 
oating-point arithmetic. The �ve exceptionsthat, according to IEEE 754 and IEEE 854, should be signaled when detected, are (i)Zero divide, (ii) Over
ow, (iii) Under
ow, (iv) Inexact result and (v) Invalid operation.Each 
ag in the status word of IEEE compliant hardware signals the exceptionit corresponds to, independent of whether that exception occurs in Fs , Fd or Fe . Ina hybrid computing environment like ARI�MO�, encompassing all the sets in Fig-ure 1, providing only one status word would imply a severe loss of information. Itmakes it for example impossible to retrace whether the exception has occurred duringthe computations in exact or rounded arithmetic. Moreover, in each of the com-puter arithmetic implementations from Figure 1, the set of exceptions that can ariseis di�erent. Whether a separate status word should be provided for each arithmeticimplementation (multiprecision software 
oating-point, hardware 
oating-point, exactrational, 
oating-slash rational, hardware integer, variable precision software integer,. . . ) or whether a status word could be commonly used by some of the arithmeticimplementations, is not a clear cut issue. The implementation under discussion herehas provided some insight in this matter and the conclusion is that at least two sta-tus words are required: one for exact integer and rational arithmetic (in I1 and inQ1) and one for rounded arithmetic (in F(�)t and Qk ), with a separate status word for
oating-point and for 
oating-slash rational arithmetic as a valid option in the nextrelease. The exceptions arising in rational arithmetic are further discussed in Section3.10 while those from 
oating-point arithmetic were thoroughly discussed in [1]. Astatus word for the latter is provided in software in ARI�MO� for the sake of themultiprecision computations.The only sets that preclude a faithful representation of the special values in theirformat are the hardware integers. Hence the use of a hardware integer type for numer-ical results is not advisable. The parser available via the GUI of ARI�MO� thereforeworks in rounded arithmetic only with integers faithfully represented in 
oats, and inexact arithmetic only with so-called big integers.In any case, when an operation ~C generates an exception, this shall be signaledin the status word corresponding to the set C in which the operation is performed.



This causes no ambiguity, even when operands of di�erent types are involved in theoperation, when the principle of type promotion is applied. In the same way, forconversions that raise an exception, it is the status word of the destination's formatthat should be set. Thus, exceptions arising in big integer arithmetic can be signaledin the corresponding status word. This is more desirable than the situation whereexceptions arising from 
oating-point to hardware integer conversions, are signaled inthe 
oating-point status word because it is impossible otherwise.3.9 Control wordsIn parallel with status 
ags to signal exceptions, an implementation should providecontrol bits for trap handling and rounding speci�cation, if applicable. We restrict our-selves here to the rounding speci�cations, and the result speci�cation in trap-disabledmode for all exceptional situations.In the same way as we have introduced di�erent status words to signal exceptionsoccurring in di�erent number sets, it is appropriate that in a hybrid system also di�er-ent control words be supported. In line with the above, we provide at least two controlwords: one for exact arithmetic in I1 and in Q1 and one for rounded arithmetic in F(�)tand Qk , with a separate control word for 
oating-point and for 
oating-slash rationalarithmetic as a recommendable option for the future.Note that, in a control word for 
oating-point arithmetic only four out of the �veexception control bits are meaningful as trap enabling/disabling bits. Indeed, enablingthe inexact trap handler in 
oating-point arithmetic is not really an option, becausethe system would trap on almost every 
oating-point operation. We therefore use theinexact control bit in both control words not as a trap enable/disable bit, but in a`diluted' way. It should always be set in 
oating-point arithmetic, to indicate thatinexact operations are `allowed', while clearing or setting the inexact bit in the controlword for exact arithmetic will indicate whether only exact (in Q) or also approximate(in Qk ) results are allowed. This use of the inexact control bit would then solvethe problem we have indicated in Section 3.3 concerning the two implementations ofthe square root operation in Q1 and in I1. If the inexact bit in the control wordcorresponding to Q1 is set, de�nition (8) will be used, else (5) will be used.This usage of the inexact control bit raises two new issues. First, when the bitis set and approximate results are allowed, a rounding mode needs to be speci�ed.Therefore a control word should also provide bits to let the user specify the activerounding mode. Here one needs to distinguish between rounding in I1 on one handand rounding in Q1 on the other. In the former case, one of the four well-knownrounding modes, to nearest, up, down and to zero, can be applied. In the latter casethese four rounding modes have to be interpreted in Qk as mediant, up, down and tozero. When rounding to elements in Qk additional precision control bits are needed tospecify the granularity of the set Qk . These can be compared to the precision controlbits for temporary results available on the INTEL PC hardware.Second, whereas operations in F(�)t are almost always inexact, this is not necessarilythe case for operations in Qk . A programmer may want to disable inexact operationsin Qk while enabling inexact operations in F(�)t . This is only possible if two inexactcontrol bits are available in two di�erent control words, one for 
oating-point and onefor 
oating-slash rational arithmetic.In Section 3.10 we describe in more detail the exceptions that can occur in exactarithmetic and the result that should be returned when an exceptional situation arises.As already mentioned, we restrict ourselves to trap-disabled mode for all exceptions.



Zero divide: If the divisor is (unsigned) zero and the dividend is a �nitenonzero number, then the `zero divide' exception shall be signaled. Theresult shall be NaN, since division of a nonzero number by an exact zero ismathematically unde�ned.Over
ow in It; t 6= 1: that the inexact control bit is set (inexact opera-tions are allowed), this exception shall be signaled when the destination'sformat largest �nite number is exceeded in magnitude by what would havebeen the (rounded) integer result, were t unbounded. Depending on therounding mode and the sign of the intermediate result, the result shall be�1 or the largest/most negative �nite number in It.Inexact result: Under the condition that the inexact control bit is set, thisexception shall be signaled if the rounded result of an operation is inexactor if it over
ows. It is clear that inexact without over
ow can only occurfor the operations that are not closed in Z (in casu = and p ) and in Q (incasu p ), as well as certain conversions to It, I1 or Q1 . In all cases therounded or over
owed result shall be delivered.Invalid operation: Whenever the result of an operation is mathematicallyunde�ned, the invalid exception should be signaled and a NaN returned.This is the case in all arithmetic number representations. Moreover, ininteger and exact rational arithmetic, we propose to also raise the invalidoperation whenever the inexact control bit is cleared (no inexact operationsallowed) and the result of the operation over
ows or cannot be delivered ex-actly. In that case the result returned is the proper special value IafZ,Q,Rg,possibly signed.Table 1: Exception handling in It, I1 and Q13.10 Exception handlingIn this section we discuss the exceptions that can occur in the number sets It (whereusually t = 16; 32 or 64), in I1 and in Q1 , in other words in integer and rationalarithmetic. These exceptions are: (i) Zero divide, (ii) Over
ow (only for It), (iii)Memory over
ow (only for I1 and Q1), (iv) Inexact result and (v) Invalid operation.As pointed out in 3.8, the exceptional situations arising in It cannot be interceptedand hence one has to limit oneself to the discussion of exceptions in I1 and Q1 .Except for over
ow (which can only occur in It) and memory over
ow (which canonly occur in I1 and Q1), the exceptions (i{v) can arise in all three number sets.Furthermore, these sets have in common that they need and provide only the unsignedrepresentation for zero. Hence we have grouped the status and control bits for I1 andQ1 in a single status, respectively control word.Table 1 describes in detail the conditions for the raising of each arithmetic exceptionin exact integer and rational arithmetic, and the result returned in that case. Whenany of these exceptions is detected, the corresponding status 
ag is set and the speci�edresult returned. In case of Memory over
ow, the system halts.



4 Implementation of the class libraryThe rational class library is based on a big integer class library for storing and ma-nipulating integer numbers. As will be indicated in 4.1, the rational class library inARI�MO� is currently the most performant implementation of rational arithmetic,when compared to the libraries described in Section 2. In addition, as described inSection 3, it o�ers several new features such as exception handling and support forspecial representations. This functionality is indispensable from the point of view of ahybrid computational system.4.1 PerformanceOne must take great care in designing the core of the C++-library to bene�t from theadvantages of C++ and OO design, without incurring too much overhead.Such overhead can occur every time a function returns a value, since this involvesconstructing an object of the return value type. This (temporary) object is passed tothe calling routine and is typically destroyed at the end of the statement in which thefunction was called. In fact, the lifetime of such an object is typically shorter thanthat of an object explicitly declared in the calling routine.Consider for example the expression A = B + C. The subexpression B + C returns atemporary object which is then used as the operand for the assignment operator. Theassignment operator places a verbatim copy of its operand into the target operand,possibly returning a reference of the target object. The temporary object is thendestroyed.The overhead incurred by the creation of a temporary object can be considerable:allocation of the required memory, initialization of the object, copying of the infor-mation before the temporary is destroyed and deallocation of memory at the time ofdestruction. This is especially the case if the objects that need to be constructed arelarge integers or rationals.To avoid this considerable overhead, the principle of `copy-by-assumption' [6] canbe applied whereby at every function call the memory allocated to a temporary objectcan be reused. The data of a temporary object is transferred to the target object inthree steps. First, any data that is currently pointed to by the target object is released.Second, the data pointer in the temporary object is copied to the data pointer in thetarget object. And third, the data pointer in the temporary object is set to the nullpointer.Nevertheless, copy-by-assumption will never be as performant as `bare' C program-ming, because when evaluating C = A + B, the previous data of C has to be freed beforeit will be replaced by the new result. The C-style expression sum (C, A, B) allowsthe sum function to reuse the memory which might already have been allocated for C.Keeping this in mind, C-style expressions were used to generate intermediate resultsfor the implementation of the classes.When the memory needed for these intermediate results can be allocated on thestack instead of the heap, expensive heap memory management will be avoided. Thisalso improves the computation time, but possible stack over
ow must be taken intoaccount.Use of the above in the design of our classes for rational arithmetic, results ina signi�cantly better performance than a straightforward C++ implementation of thesame algorithms. In the Figures 2 and 3, the performance of our new `all C++ withoutassembler' library is compared to the other libraries.



0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Addition of rational numbers 

libg++ 

SIMATH 

CLN 

GNU MP 

 ARITHMOS Figure 2: Addition of rationals

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

 ARITHMOS 

GNU MP 

CLN 

SIMATH 

libg++ 

Multiplication of rational numbers 

Figure 3: Multiplication of rationalsAs can be seen, the rational library of ARI�MO� is the most performant of allimplementations discussed in Section 2. It outperforms both libg++ as well as thespeed e�cient rational library CLN, two C++ implementations of rational arithmetic.



The latter is remarkable, especially if one takes into account that the performance ofCLN is boosted by assembly language code in the kernel. Furthermore, our object-oriented implementation performs better than GNU MP, which is the fastest C libraryfor rational arithmetic.All performance tests were carried out on a Sun 5.6 platform equipped with twoUltrasparc 167 Mhz processors. For each integer s between 32 to 960, fourty rationalswere generated with random s-bit numerator and denominator. Addition and multi-plication was performed for all 1600 combinations of these 40 rationals and the CPUtime was measured in seconds.4.2 Class structureThe most important class in the library is the bigint class; it is used to represent(almost) arbitrarily large integers. The most interesting class members of bigint arelisted below :class bigint{protected:unsigned long size;unsigned long datasize;signed char sign;unsigned char special;atom* data;/* member functions and static members are omitted */} An atom is just an integer, which can be 32-bit, 16-bit or 8-bit. This is automaticallydetermined at compile time, depending on the availability of respectively 64-bit, 32-bitor 16-bit integers on the platform.The special byte is used to represent special values, which are described in section3.7 while sign indicates whether the integer is strictly positive (sign = 1), strictlynegative (sign = -1) or unsigned (sign = 0), which is the case for zero and somespecial values.The magnitude of a bigint number is given bysize�1Xi=0 data[i] � 2i�(#bits per atom)Finally, the member datasize indicates how many atoms are allocated for the arraydata. When a result becomes too big to �t in datasize atoms, the array will beresized. Since datasize is a long integer, a bigint has to be smaller than2(#bits per atom)�(2LONG BITS�1)where LONG BITS is the number of bits in a long integer (usually 32).Two classes inherit from bigint : tbigint and stackbigint. The tbigint classrepresents a temporary large integer, which typically appears as return value of afunction. When a tbigint is used as the right hand side in an assignment, its valuewill disappear, as can be read in the previous section. When one writes a function whichhas a big integer as return value, it is recommended to let this value be a tbigint.



A stackbigint is a bigint which has its data on the call stack of the program.This avoids expensive memory management, but does not allow the integer to `grow'.Since this class is designed for internal use only, the user should not bother about it.Finally the rational class is a record, consisting of two bigints (numerator andpositive denominator) with no common non-trivial divisors. Similar to the above, atrational is a temporary instance of the rational class.4.3 Cross-platform interfaceThe reliable arithmetic library was developed while keeping two other goals in mind:speed and availability on a large range of platforms. Therefore the library was de-veloped in ANSI C/C++ and makes use of the latest techniques to reduce the C++-overhead. No assembly code was used to boost the performance, but great care hasbeen taken when choosing the data structure and the algorithms that work on thisstructure.In parallel with the implementation of the class library, a cross-platform graphicaluser interface (GUI) has been developed in Qt [20]. The Qt-library makes it possible todevelop GUI software for both the X Window System and Microsoft Windows in onesweep. By using Qt, our GUI is automatically available on a wide range of platformswithout the need of recoding. Qt is also used by leading software companies like HP,IBM, Intel, Siemens, and it is the basis of the KDE desktop environment in Linux.5 ARI�MO� V1.0The implementation was initially developed for didactical purposes, in the frameworkof the course Computer Arithmetic and Numerical Techniques [4], which is taughtat the University of Antwerp. But it was soon further extended into a full-
edged,performant and powerful arithmetic environment called ARI�MO�.To summarize, the following number representations are provided in ARI�MO�V1.0: exactly rounded multiprecision 
oating-point arithmetic in the four traditionalrounding modes (up, down, trunc, nearest), interval arithmetic with multiprecision
oating-point endpoints and exact rational arithmetic. The complete functionality ofARI�MO� is available both at the class library/programming language level (for usewith a C++-compiler) as well as through a GUI (the easiest way to parse and evaluatesome expressions). To illustrate the latter some screen dumps of the GUI can be foundin the Figures 4 and 5 which we shall discuss now.As shown in Figure 4, one can easily specify in which of the number sets the com-putations should be performed through the `Parameters' dialog box. When computingin 
oating-point or interval arithmetic, the base, the precision and the exponent rangeof the 
oating-point numbers, as well as the rounding mode (nearest, zero, up, down orinterval) can be speci�ed. In rational mode, at this time only exact rational arithmeticis supported. Floating-slash rational arithmetic (based on mediant rounding) as wellas rational interval arithmetic, which are grayed in the `Parameters' dialog box, will beprovided in ARI�MO� V2.0. Through the `Output format' dialog box, the user canspecify the required output format. For didactical purposes for example, when choos-ing a small precision and exponent range, the binary representation of (intermediate)
oating-point results may be very helpful to zoom in on computer arithmetic issues.Furthermore, as has been described in the previous sections, the exceptions occurringduring the computations are signaled through 
ags. Whether or not these 
ags shouldbe output can also be speci�ed in the `Output format' dialog box.



Figure 4The expression that is evaluated in Figure 4 is a remarkable example of catastrophiccancellation that was �rst published in [15]:a = 77617b = 33096y = 333:75b6 + a2(11a2b2 � b6 � 121b4 � 2) + 5:5b8 + a2b= �0:827396 : : :The output generated by ARI�MO� V1.0 for y, in di�erent number representations,is displayed in Figure 5. It con�rms what is already known [15, 5]: it requires eitherexact rational arithmetic or 
oating-point arithmetic with at least 122 bits of binaryprecision to obtain any signi�cant digits in the computed result.



Figure 5Future plans for ARI�MO� include polynomial arithmetic (with coe�cients of allreal number types as well as intervals), complex arithmetic, circular arithmetic, reli-able graphics and hybrid expression evaluation. More information on the ARI�MO�environment can be found at http://win-www.uia.ac.be/u/cuyt/ or can be obtainedfrom the authors.References[1] ANSI/IEEE Std 754-1985. IEEE standard for binary 
oating-point arithmetic.ACM SIGPLAN, 22(2):9{25, 1987.[2] D.H. Bailey. A FORTRAN-90 Based Multiprecision System. ACM TOMS,21(4):379{387, 1995.



[3] R.P. Brent. A FORTRAN multiple-precision arithmetic package. ACM Trans.Math. Software, 4:57{70, 1978.[4] A. Cuyt and B. Verdonk. Computational science and engineering at Belgianuniversities. IEEE Computational Science and Engineering, 4(4):79{83, 1997.[5] A. Cuyt and B. Verdonk. A remarkable example of catastrophic cancellationunraveled. Technical report, 1999. Submitted for publication in Computing.[6] A. Dingle and T. Hildebrandt. Improving C++ performance using temporaries.IEEE Computer, 31(3):31{41, 1998.[7] D. Goldberg. What every computer scientist should know about 
oating-pointarithmetic. ACM Comput. Surveys, 23:5{48, 1991.[8] T. Granlund. The GNU Multiple Precision Arithmetic Library Edition 2.0.2. FreeSoftware Foundation, Inc., June 1996.[9] B. Haible. CLN, a Class Library for Numbers. Available at http://clisp.cons.org/�haible/packages-cln.html.[10] R.B. Kearfott, M. Dawande, K. Du, and Ch. Hu. Algorithm 737:INTLIB: aportable FORTRAN-77 elementary function library. ACM Trans. Math. Software,20(4):447{459, 1994.[11] R. Klatte, U. Kulisch, A. Wietho�, et al. C-XSC: a C++ class library for extendedscienti�c computing. Springer Verlag, Berlin, 1993.[12] O. Kn�uppel. PROFIL/BIAS-a fast interval library. Computing, 53:277{287, 1994.[13] D. Lea. Libg++. Copyright (C) 1988 Free Software Foundation.[14] D. Matula and P. Kornerup. Finite precision rational arithmetic: slash numbersystems. IEEE Trans. Comput., C-34:3{18, 1985.[15] S. Rump. Algorithm for veri�ed inclusion - theory and practice. In R.E. Moore,editor, Reliability in Computing, pages 109{126, 1988.[16] S. Rump. Fast and parallel interval arithmetic. BIT, 39(3):534{554, 1999.[17] M. Scott. Fast Rounding in Multiprecision Floating-Slash Arithmetic. IEEETrans. Comput., 38(7):1049{1052, 1989.[18] Shamus Software Ltd. MIRACL, Multiprecision Integer and Rational ArithmeticC/C++ Library. Available at http://indigo.ie/�mscott.[19] D. Smith. A FORTRAN package for 
oating-point multiple-precision arithmetic.ACM Transactions on Mathematical Software, 17(2):273{283, 1991.[20] Troll Tech AS. QT, Cross-platform C++ GUI Application Framework. Availableat ftp://ftp.troll.no/qt/pdf/qt-whitepaper-v10.pdf, 1999.[21] D. Verschaeren and A. Cuyt. A class library for multiprecision IEEE 
oating-pointarithmetic. Technical report, University of Antwerp, Dept. Math. and Comp.Science, 1999. In preparation.[22] J. Vervloet. Rationale en polynomiale aritmetiek: een implementatie. Universityof Antwerp (UIA), 1999. Master's Thesis.[23] H. G. Zimmer. SIMATH, a computer algebra system for number theoretic appli-cations. Available at http://emmy.math.uni-sb.de/�simath/.


