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MODEL REDUCTION AND STABILITY
OF TWO-DIMENSIONAL RECURSIVE SYSTEMS

ANNIE CUYT1,2 WILLIAM B. JONES3 AND BRIGITTE VERDONK1

ABSTRACT. Many approaches can be found in the liter-
ature for the realization of two-dimensional recursive digital
filters using both ordinary [12, 17, 18] and branched con-
tinued fraction expansions [3, 4]. In this paper we introduce
a new type of branched continued fraction expansion which
has specific advantages when considering the model reduction
problem. The form of the new BCF is such that, when the
expansion is constructed for the transfer function of a stable
system, convergents of the BCF expansion automatically sat-
isfy one part of the Huang stability theorem [6, 9]. In Section
1 we shall first briefly review the one-dimensional case, and
in Section 2 we shall give the algorithm for the new BCF ex-
pansion and indicate how the simplification of the stability
test for the “reduced” systems follows in a natural way. We
conclude Section 2 with an example.

1. One-dimensional recursive systems. Consider a one-
dimensional linear shift-invariant (LSI) recursive system T satisfying
a finite difference-equation of the form

(1) yn =
N∑

k=0

akxn−k −
M∑

k=1

bkyn−k.

Then it is well known [15] that the transfer function H(z) of the system
is a rational function given by

(2a) H(z) =
∑N

k=0 akz−k∑M
k=0 bkz−k

, b0 = 1.
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If we let w = z−1, also in the sequel of the text, we can write

(2b) H(z) = H(w−1) =
∑N

k=0 akwk∑M
k=0 bkwk

=
A(w)
B(w)

.

A system is said to be bounded input-bounded output (BIBO) stable
if and only if, for any bounded input sequence, the output sequence is
bounded:

∀n, |x(n)| ≤ B =⇒ ∃B′, ∀n, |y(n)| ≤ B′.

Theorem 1 gives a necessary and sufficient condition for BIBO stability
in case one is dealing with systems described by (1).

Theorem 1 [15]. Let T be an LSI recursive system whose transfer
function H(z) is given by (2). Then the following statements are
equivalent:

(i) T is BIBO stable.

(ii) B(w) �= 0 for |w| ≤ 1.

In the sequel of the text, when referring to a stable system, we mean
that it satisfies the condition for BIBO stability. The next theorem
gives a relation between stable LSI recursive systems and continued
fractions. First, we introduce the notation Rm(w, t) to denote a Schur
continued fraction [10]:

Rm(w, t) := γ0 +
(1 − |γ0|2)w

∣∣
| γ̄0w

+
m−1∑
k=1

(
1|
|γk

+
(1 − |γk|2)w

∣∣
| γ̄kw

)
+

1|
|t .

If the Schur coefficients γk satisfy |γk| < 1, for k = 0, 1, . . . , and if
γ0 ∈ R, then the continued fraction Rm(w, t) is called a positive Schur
fraction.

Theorem 2 [11]. (i) Let T be an LSI recursive system whose
transfer function H(z) is given by

H(z) = αRm(z−1, γm),
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with |γk| < 1, for k = 0, 1, . . . , m − 1, |γm| = 1 and α an arbitrary
complex number. Then T is a stable system.

(ii) Let T be a recursive and stable system, and let H(z) denote its
transfer function.

Then one of the following statements holds: Either there exists
uniquely a finite sequence γ0, . . . , γm with |γk| < 1, for k = 0, . . . , m−1,
|γm| = 1 and a positive constant β such that

(3) H(z) = βRm(z−1, γm),

or there exists uniquely an infinite sequence {γk} with |γk| < 1, for
k = 0, 1, . . . and a positive constant β such that

(4) H(z) = β lim
k→∞

Rk(z−1, 1) for |z| > 1.

For each r with 0 < r < 1, the convergence is uniform on |z| ≥ 1/r.

Remark. From the proof given in [11], it is easy to verify that we
can choose the constant β by

(5) β =
{

1, if max|w|≤1 |H(w−1)| ≤ 1,
max|w|≤1 |H(w−1)|, if max|w|≤1 |H(w−1)| > 1.

Although Theorem 2 is not of real practical use if one wants to test the
stability of the system, it turns out to be useful if one is interested in
the model reduction problem defined in [2] as: given some information
about a rational transfer function (of a high degree), find a system
with a lower degree rational transfer function that in some sense
approximates the original system. Moreover, the reduced system should
as much as possible satisfy the same properties as the original system.

Let us assume from now on that the original system T is an LSI
recursive and stable system. Then we know from Theorem 2 that
its transfer function H(z) can be written in the form (3) or (4). If
we construct the approximate system in such a way that its transfer
function H̃(z) is a modified convergent of (3) or (4), i.e.,

(6) H̃(z) = βRn(z−1, 1),
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where n < m if H(z) is given by (3), then the following theorem
summarizes the properties of the approximate system.

Theorem 3. Let H(z) be the transfer function of a stable LSI
recursive system. If H̃(z) is given by (6), then:

(i) H̃(z) is a rational function of degree [n/n];

(ii) H(z) − H̃(z) = O(z−n);

(iii) H̃(z) is the transfer function of a stable system.

Proof. Statement (i) can very easily be verified (see also [10]). In
order to prove the correspondence result (ii), we introduce the notation
Ck/Dk, k = 0, 1, . . . , for successive convergents of the continued
fraction (4) and C̃k/D̃k, k = 0, 1, . . . , 2n, for successive convergents
of H̃(z) given by (6). In this way, H̃(z) = C̃2n/D̃2n. It is easy to see
that

Ck = C̃k, Dk = D̃k, k = 0, . . . , 2n − 1,

C2n = γnC2n−1 + C2n−2,

D2n = γnD2n−1 + D2n−2

and
C̃2n = C2n−1 + C2n−2 = (1 − γn)C2n−1 + C2n,

D̃2n = D2n−1 + D2n−2 = (1 − γn)D2n−1 + D2n.

We now have
(7)
H(z) − H̃(z)

=
(

H(z) − C2n

D2n

)
−
(

C̃2n

D̃2n

− C2n

D2n

)

= H(z) − C2n

D2n
− (1 − γn)

C2n−1D2n − C2nD2n−1

D2nD̃2n

= H(z) − C2n

D2n
− (1 − γn)

(1 − |γ0|2) · · · (1 − |γn−1|2)z−n

D2nD̃2n

.

From [10] we know that the order of correspondence of the even
convergents C2n/D2n to H(z) is

(8) H(z) − C2n

D2n
= O(z−(n+1)),
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while it is easily verified that

D2nD̃2n = 1 + · · · + γ̄2
0γnz−2n.

This, together with (7) and (8), proves statement (ii). For part (ii) of
the theorem, we point out that, since H(z) is the transfer function
of a stable system, the coefficients γk in (6) satisfy |γk| < 1 for
k = 0, . . . , n−1. Statement (iii) now immediately follows from Theorem
2.

The above theorem states that if the original system is stable, choos-
ing the approximate transfer function H̃(z) to be a modified convergent
of the Schur continued fraction expansion of the original transfer func-
tion, guarantees that the approximate system is stable. However, the
degree of correspondence to the original transfer function is lower than
the degree one would obtain by constructing a Padé approximant with
the same numerator and denominator degree for H(z). The drawback
of using Padé approximants is that there is no guarantee that the con-
structed Padé approximant will realize a stable system. The way to
compute the Schur continued fraction for H(z), and, hence, the ap-
proximate transfer function H̃(z), depends on the information given.
If the rational transfer function H(z) is given explicitly, then the Schur
coefficients γk can be computed by means of the algorithm as given in
[10]:

f0(w) =
H(w−1)

β
,

fk+1(w) =
1
w

fk(w) − γk

1 − γ̄kfk(w)
, γk = fk(0), k ≥ 0.

If, on the other hand, H(w−1) is given by its Taylor series, another way
to compute the coefficients γk is to start a Viscovatov-type algorithm.
Let

H(w−1)
β

= f(w) =
∞∑

i=0

ciw
i,

and put

(9a)
γ0 = c0,

f0(w) = f(w) − γ0,

f1(w) = (1 − |γ0|2)w − γ̄0wf0(w).
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In this way, we have

f0(w) = w
∞∑

i=0

c
(0)
i wi,

f1(w) = w
∞∑

i=0

c
(1)
i wi,

with

(9b)

c
(0)
i = ci+1, i ≥ 0,

c
(1)
0 = 1 − |γ0|2,

c
(1)
i = −γ̄0c

(0)
i−1, i ≥ 1.

In a similar way, choose, for k ≥ 1,

(9c)
γk =

c
(2k−2)
0

c
(2k−1)
0

,

f2k(w) = f2k−2(w) − γkf2k−1(w),
f2k+1(w) = (1 − |γk|2)wf2k−1(w) − γ̄kwf2k(w).

Then

f2k(w) = wk+1
∞∑

i=0

c
(2k)
i wi,

f2k+1(w) = wk+1
∞∑

i=0

c
(2k+1)
i wi,

with

(9d)

c
(2k)
i = c

(2k−2)
i+1 − γkc

(2k−1)
i+1 , i ≥ 0,

c
(2k+1)
0 = (1 − |γk|2)c(2k−1)

0 ,

c
(2k+1)
i = (1 − |γk|2)c(2k−1)

i − γ̄kc
(2k)
i−1 , i ≥ 1.

Finally we obtain, if c
(2k−1)
0 �= 0 in (9c), the Schur continued fraction

of the form

(10) γ0 +
(1 − |γ0|2)w

∣∣
| γ̄0w

+
∞∑

k=1

(
1|
|γk

+
(1 − |γk|2)w

∣∣
| γ̄kw

)
.
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Denoting the successive convergents of the continued fraction (10) by
Ck/Dk, it is easy to see that [13]

H(w−1)
β

Dk − Ck = f(w)Dk − Ck = (−1)kfk(w).

It is easily verified (see also [10]) that, for k = 0, 1, . . . ,

D2k = 1 + · · · + γ̄0γkwk,

D2k+1 = γ̄kw + · · · + γ̄0w
k+1.

Hence, (10) corresponds to H(w−1)/β in the sense that

H(w−1)
β

− C2k

D2k
= O(wk+1),

and, when |γk| �= 0 for k ≥ 0,

H(w−1)
β

− C2k+1

D2k+1
= O(wk).

Using this correspondence result it is also easy to prove that if (10)
exists, it is unique. In order to see that the formulas (9) can always be
applied if H(z) is the transfer function of a stable system, it is sufficient
to note from (9) that

c
(1)
0 = 1 − |γ0|2,

c
(2k+1)
0 = (1 − |γk|2)c(2k−1)

0

and to make use of the results of Theorem 2: either ∃m with |γm| = 1,
in which case the Schur fraction for H(z) is finite and there is no need
to compute γm+1 from (9c), or, ∀k, |γk| < 1, and, hence, c

(2k−1)
0 �= 0

for all k. It is the Viscovatov-type algorithm (9) that we will generalize
to the two-dimensional case.

2. Two-dimensional systems. As in the one-dimensional case,
we will consider two-dimensional first-quadrant LSI recursive systems
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satisfying a finite difference equation of the form

(11)

y(n1, n2) =
∑

(k1,k2)∈N

N⊂N2

a(k1, k2)x(n1 − k1, n2 − k2)

−
∑

(k1,k2)∈M

M⊂N2\{(0,0)}

b(k1, k2)y(n1 − k1, n2 − k2).

The transfer function of the system (11) is then given by [7]:

H(z1, z2) =

∑
(k1,k2)∈N a(k1, k2)z−k1

1 z−k2
2

1 +
∑

(k1,k2)∈M b(k1, k2)z−k1
1 z−k2

2

=

∑
(k1,k2)∈N a(k1, k2)z−k1

1 z−k2
2∑

(k1,k2)∈M∪{(0,0)} b(k1, k2)z−k1
1 z−k2

2

.

where we have set b(0, 0) = 1. Using the notation w1 = z−1
1 and

w2 = z−1
2 , one can write

(12)

H(z1, z2) = H(w−1
1 , w−1

2 )

=

∑
(k1,k2)∈N a(k1, k2)wk1

1 wk2
2∑

(k1,k2)∈M∪{(0,0)} b(k1, k2)wk1
1 wk2

2

=
A(w1, w2)
B(w1, w2)

.

A two-dimensional system is said to be BIBO stable if the output
signal corresponding to a bounded input signal is bounded. As in the
one-dimensional case, this definition of stability can be reformulated in
terms of the transfer function of the system. The following theorem
summarizes some of the existing results.

Theorem 4 [7, 14]. Let T be a two-dimensional first-quadrant LSI
system with a rational transfer function given by (12) and having no
nonessential singularities of the second kind on the unit bicircle. Then
the system is stable if and only if

(i) B(w1, w2) �= 0 for |w1| ≤ 1, |w2| ≤ 1 if and only if
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(ii)(a) B(w1, w2) �= 0 for |w1| ≤ 1, |w2| = 1

(b) B(w1, w2) �= 0 for |w1| = 1, |w2| ≤ 1 if and only if

(iii)(a) B(w1, w2) �= 0 for |w1| = 1, |w2| ≤ 1,

(b) B(w1, 0) �= 0 for |w1| ≤ 1 if and only if

(iv)(a) B(w1, w2) �= 0 for |w1| ≤ 1, |w2| = 1,

(b) B(0, w2) �= 0 for |w2| ≤ 1.

Proof. For the proof of the theorem, we refer to [6, 9, 16].

We remark that conditions (iii iv) consist on one hand of a one-
dimensional condition ((iii)(b),(iv)(b)), while the other part is two-
dimensional in nature. In [1, 8] it was shown how the two-dimensional
condition (iii)(a) (or (iv)(a)) can be tested, while condition (iii)(b)
(respectively, (iv)(b)) states that the projected system with trans-
fer function H1(w−1) = A(w, 0)/B(w, 0) (respectively, H2(w−1) =
A(0, w)/B(0, w)) should be stable. With this theorem and the results
of Section 1 in mind, we propose to construct a BCF expansion for a bi-
variate function f(w1, w2) as follows. In view of simplifying conditions
(iii), the proposed BCF will be of the form

(13a)

(
γ0 +

∞∑
i=1

δ
(0)
i0 w2 |
| 1

)
+

(1 − |γ0|2)w1|
| γ̄0w1

+
∞∑

k=1

⎛
⎜⎜⎜⎜⎜⎝

1 |∣∣∣∣∣γk +
∞∑

i=1

δ
(k)
i0 w2

∣∣∣
| 1

+
(1 − |γk|2)w1

∣∣∣∣∣∣ γ̄kw1

⎞
⎟⎟⎟⎟⎟⎠

such that, after projection (w2 = 0), the BCF reduces to a Schur
fraction in w1. When considering conditions (iv) the roles of w1 and
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w2 are interchanged and the BCF will be of the form

(13b)

(
γ0 +

∞∑
i=1

δ
(0)
i0 w1 |
| 1

)
+

(1 − |γ0|2)w2|
| γ̄0w2

+
∞∑

k=1

⎛
⎜⎜⎜⎜⎜⎝

1 |∣∣∣∣∣γk +
∞∑

i=1

δ
(k)
i0 w1

∣∣∣
| 1

+
(1 − |γk|2)w2

∣∣∣∣∣∣ γ̄kw2

⎞
⎟⎟⎟⎟⎟⎠ .

In both BCF forms the even partial denominators are themselves
continued fractions in w2, respectively w1. In the sequel of the text,
we shall restrict ourselves to the form (13a). Results for the other form
can be obtained in a completely analogous way. The coefficients in
the BCF (13a) can be computed from the Taylor series expansion for
f(w1, w2) as follows. Let

(14a)

f(w1, w2) =
∞∑

i=0

( ∞∑
j=0

cijw
j
2

)
wi

1,

γ0 = c00,

h0(w2) =
∞∑

j=0

c0jw
j
2 = γ0 +

∞∑
j=1

c0jw
j
2,

f0(w1, w2) = f(w1, w2) − h0(w2),
f1(w1, w2) = (1 − |γ0|2)w1 − γ̄0w1f0(w1, w2).

In this way

f0(w1, w2) = w1

∞∑
i=0

( ∞∑
j=0

c
(0)
ij wj

2

)
wi

1,

f1(w1, w2) = w1

∞∑
i=0

( ∞∑
j=0

c
(1)
ij wj

2

)
wi

1,
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with

(14b)

c
(0)
ij = ci+1,j , i ≥ 0, j ≥ 0,

c
(1)
00 = 1 − |γ0|2,

c
(1)
0j = 0, j ≥ 1,

c
(1)
ij = −γ̄0c

(0)
i−1,j , i ≥ 1, j ≥ 0.

In a similar way choose, for k ≥ 1,

hk(w2) =
∞∑

j=0

d
(k)
j wj

2 = γk +
∞∑

j=1

d
(k)
j wj

2,

f2k(w1, w2) = f2k−2(w1, w2) − hk(w2)f2k−1(w1, w2),
f2k+1(w1, w2) = (1 − |γk|2)w1f2k−1(w1, w2) − γ̄kw1f2k(w1, w2),

where the d
(k)
j are obtained by equating coefficients of equal powers of

w2 in
∞∑

j=0

c
(2k−2)
0j wj

2 −
∞∑

j=0

d
(k)
j wj

2

∞∑
j=0

c
(2k−1)
0j wj

2 = 0

or, explicitly,

(14c)

d
(k)
0 = γk =

c
(2k−2)
00

c
(2k−1)
00

,

d
(k)
j =

1

c
(2k−1)
00

(
c
(2k−2)
0j −

j−1∑
i=0

c
(2k−1)
0,j−i d

(k)
i

)
, j > 0.

Then

f2k(w1, w2) = wk+1
1

∞∑
i=0

( ∞∑
j=0

c
(2k)
ij wj

2

)
wi

1,

f2k+1(w1, w2) = wk+1
1

∞∑
i=0

( ∞∑
j=0

c
(2k+1)
ij wj

2

)
wi

1,

with

(14d)

c
(2k)
ij = c

(2k−2)
i+1,j −

j∑
l=0

d
(k)
l c

(2k−1)
i+1,j−l, i ≥ 0, j ≥ 0,

c
(2k+1)
0j = (1 − |γk|2)c(2k−1)

0j , j ≥ 0,

c
(2k+1)
ij = (1 − |γk|2)c(2k−1)

ij − γ̄kc
(2k)
i−1,j , i ≥ 1, j ≥ 0.
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For uniformity of notation we set c0j = d
(0)
j in h0(w2) so that, for

each k ≥ 0, the coefficients d
(k)
j are associated with hk(w2) and always

d
(k)
0 = γk.

We remark that if we set w2 = 0 in algorithm (14) it reduces to the
one-dimensional algorithm (9) applied to f(w1, 0) and the BCF (13a)
reduces to the Schur continued fraction (10). Hence, the coefficients γk

in (14) are equal to the Schur coefficients γk for f(w1, 0).

Assuming that all c
(2k−1)
00 �= 0 in (14c), we can use the formulas (14)

to construct a BCF of the form

(15) h0(w2) +
(1 − |γ0|2)w1

∣∣
| γ̄0w1

+
∞∑

k=1

(
1 |

|hk(w2)
+

(1 − |γk|2)w1

∣∣
| γ̄kw1

)
.

If we denote by Ck/Dk the kth convergent of (15), where the even par-
tial denominators are the infinite expressions hk(w2), then, in analogy
with the univariate case,

(16) f(w1, w2) − C2k

D2k
=

f2k(w1, w2)
D2k

= O(wk+1
1 wl

2, l ≥ 0),

where O(wk+1
1 wl

2, l ≥ 0) means that the only terms occurring are of
the form wk+1+i

1 wj
2 with i ≥ 0 and j ≥ 0. We shall now show that if

the BCF (15) for f(w1, w2) exists, it is unique. Assume we can write

(17a)

f(w1, w2) = h0(w2) +
(1 − |γ0|2)w1

∣∣
| γ̄0w2

+
∞∑

k=1

(
1 |

|hk(w2)
+

(1 − |γk|2)w1

∣∣
| γ̄kw1

)

and

(17b)

f(w1, w2) = g0(w2) +
(1 − |η0|2)w1

∣∣
| η̄0w1

+
∞∑

k=1

(
1 |

|gk(w2)
+

(1 − |ηk|2)w1

∣∣
| η̄kw1

)
.
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We use the notation C̃k/D̃k for the kth convergent of (17b), where the
even partial denominators are the infinite expressions gk(w2). Setting
w1 = 0 in (17a) (17b) it follows immediately that g0(w2) = h0(w2).
Now, assuming that hk(w2) = gk(w2), and hence also γk = ηk for
k = 0, . . . , m − 1, we shall show that this also holds for k = m. By
induction,

C2m

D2m
− C̃2m

D̃2m

= (hm(w2) − gm(w2))
(C2m−1D2m−2 − C2m−2D2m−1)

D2mD̃2m

= (hm(w2) − gm(w2))
(1 − |γ0|2) · · · (1 − |γm−1|2)wm

1

D2mD̃2m

.

On the other hand, we know from (16) that

C2m

D2m
− C̃2m

D̃2m

=
O(wm+1

1 wl
2, l ≥ 0)

D2mD̃2m

.

This proves the uniqueness of the BCF (15). We still need to indicate
how the coefficients δ

(k)
j0 in (13a) can be computed from the coefficients

d
(k)
j in the Taylor series of hk(w2). This can be done by means of the

well-known univariate Viscovatov scheme [5]:

(18)

δ
(k)
00 = 1,

δ
(k)
0i = 0, i ≥ 1,

δ
(k)
1i = d

(k)
i+1, i ≥ 0,

δ
(k)
ji = δ

(k)
j−2,i+1 −

δ
(k)
j−2,0

δ
(k)
j−1,0

δ
(k)
j−1,i+1, i ≥ 0, j ≥ 2.

From (14) and the Viscovatov algorithm (18) it is clear that a sufficient
condition for the existence of the BCF (13a) is that, for k = 0, 1, . . . ,

c
(2k+1)
00 �= 0,

δ
(k)
j0 �= 0, j = 1, 2, . . . .

We now go back to the model reduction problem. Let H(z1, z2) be
the transfer function of a stable system for which we want to find a
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reduced model. We shall indicate how modified convergents of the
BCF (13a) for H(z1, z2) all satisfy condition (iii)(b) of the stability
Theorem 4. Hence, checking the stability of two-dimensional systems
represented by modified convergents of (13a) is reduced to checking
condition (iii)(a), and this can be done as described in [ 1, 8]. We shall
also indicate the degree of correspondence of the modified convergents
of (13a) to H(z1, z2).

Let H(z1, z2), given by (12), represent a stable digital filter. As
before, we assume that H(z1, z2) has no nonessential singularities of
the second kind on the unit bicircle. As in the univariate case, we shall
construct a BCF (13a) for H(z1, z2)/β instead of for H(z1, z2) itself,
where it will become clear in a moment how the positive constant β
should be chosen. In order to construct the BCF (13a) for H(z1, z2)/β,
we first compute the Taylor series expansion

H(z1, z2)
β

=
H(w−1

1 , w−1
2 )

β
=

1
β

A(w1, w2)
B(w1, w2)

=
∞∑

i=0

∞∑
j=0

cijw
i
1w

j
2

and then apply the Viscovatov-type algorithms (14) and (18). We have
mentioned above that the coefficients γk in (14) when applied to

1
β

A(w1, w2)
B(w1, w2)

are equal to the Schur coefficients for A(w1, 0)/(βB(w1, 0)). Now, since
H(z1, z2) represents a stable two-dimensional system, we know from
Theorem 4 that A(w1, 0)/B(w1, 0) is the transfer function of a stable
one-dimensional system. Let us choose β according to (5) by

(19) B =

⎧⎨
⎩

1, if max|w1|≤1

∣∣∣A(w1,0)
B(w1,0)

∣∣∣ ≤ 1,

max|w1|≤1

∣∣∣A(w1,0)
B(w1,0)

∣∣∣ , if max|w1|≤1

∣∣∣A(w1,0)
B(w1,0)

∣∣∣ > 1.

Then, using Theorem 2 we know that the Schur coefficients γk for
A(w1, 0)/(βB(w1, 0)) either satisfy ∃ l with |γk| < 1, for k = 0, . . . , l−1
and |γl| = 1, or, ∀k, |γk| < 1. In this last case we set l = ∞. In any
case, we have |γk| < 1 for k < l. Hence, it is now clear from formulas
(14b) (14d) that we can apply the Viscovatov-type algorithm (14) to
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A(w1, w2)/(βB(w1, w2)), with β given by (19), to construct

Rn,m(w1, w2, t) =

(
γ0 +

m∑
i=1

δ
(0)
i0 w2 |
| 1

)
+

(1 − |γ0|2)w1|
| γ̄0w1

+
n−1∑
k=1

⎛
⎜⎜⎜⎜⎜⎝

1 |∣∣∣∣∣γk +
m∑

i=1

δ
(k)
i0 w2

∣∣∣
| 1

+
(1 − |γk|2)w1

∣∣∣∣∣∣ γ̄kw1

⎞
⎟⎟⎟⎟⎟⎠+

1|
|t ,

where, clearly, n ≤ l and where we have assumed that the one-
dimensional Viscovatov algorithm can be applied to each of the
functions hk(w2), for k = 0, . . . , n − 1. The rational functions
Rn,m(w1, w2, t) are modified convergents of the BCF expansion (13a)
for H(w−1

1 , w−1
2 )/β. If we choose the reduced system to have a transfer

function H̃(z1, z2) given by

(20) H̃(z1, z2) = βRn,m(z−1
1 , z−1

2 , 1),

then the following holds. For simplicity, but without loss of generality,
we set β = 1 in the sequel of the text.

Theorem 5. Let H(z1, z2) represent a stable two-dimensional first-
quadrant LSI recursive system having no nonessential singularities of
the second kind on the unit bicircle. The following statements hold for

H̃(z1, z2) = Rn,m(z−1
1 , z−1

2 , 1).

(i) H̃(z1, z2) is a rational function of the form

H̃(z1, z2) = H̃(w−1
1 , w−1

2 ) =
Ã(w1, w2)
B̃(w1, w2)

,

where

Ã(w1, w2) =
n∑

i=0

n	m+1
2 
∑

j=0

ã(i, j)wi
1w

j
2,

B̃(w1, w2) =
n∑

i=0

(n−1)	m+1
2 
+	m

2 
∑
j=0

b̃(i, j)wi
1w

j
2,

with 
·� denoting the integer part of its argument.



202 A. CUYT, W.B. JONES AND B. VERDONK

(ii) H(z1, z2) − H̃(z1, z2) = O(z−n
1 z−j

2 , z−j
1 z

−(m+1)
2 , j ≥ 0).

(iii) Given that H̃(z1, z2) has no nonessential singularities of the
second kind on the unit bicircle, H̃(z1, z2) is the transfer function of a
stable system if and only if

B̃(w1, w2) �= 0, for |w1| = 1, |w2| ≤ 1.

Proof. The proof of (i) is by induction on n. For n = 1, it is clear
that

(
γ0 +

m∑
i=1

δ
(0)
i0 w2 |
| 1

)
+

(1 − |γ0|2)w1|
| γ̄0w1

+
1|
|1 =

1∑
i=0

	m+1
2 
∑

j=0

ã(i, j)wi
1w

j
2

1∑
i=0

	m
2 
∑

j=0

b̃(i, j)wi
1w

j
2

.

Now assume that

(
γ1 +

m∑
i=1

δ
(1)
i0 w2 |
| 1

)
+

(1 − |γ1|2)w1|
| γ̄1w1

+
n−2∑
k=2

⎛
⎜⎜⎜⎜⎜⎝

1 |∣∣∣∣∣γk +
m∑

i=1

δ
(k)
i0 w2

∣∣∣
| 1

+
(1 − |γk|2)w1

∣∣∣∣∣∣ γ̄kw1

⎞
⎟⎟⎟⎟⎟⎠+

1|
|1

=

n−1∑
i=0

(n−1)	m+1
2 
∑

j=0

c(i, j)wi
1w

j
2

n−1∑
i=0

(n−2)	m+1
2 
+	m

2 
∑
j=0

d(i, j)wi
1w

j
2

.
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Then, clearly,

H̃(w−1
1 , w−1

2 ) =
(
γ0 +

m∑
i=1

δ
(0)
i0 w2|

| 1

)
+

(1 − |γ0|2)w1|
| γ̄0w1

+

n−1∑
i=0

(n−2)	m+1
2 
+	m

2 
∑
j=0

d(i, j)wi
1w

j
2

n−1∑
i=0

(n−1)	m+1
2 
∑

j=0

c(i, j)wi
1w

j
2

=

n∑
i=0

n	m+1
2 
∑

j=0

ã(i, j)wi
1w

j
2

n∑
i=0

(n−1)	m+1
2 
+	m

2 
∑
j=0

b̃(i, j)wi
1w

j
2

which proves statement (i). From (16) it is easy to see that

H(z1, z2) − Rn,m

(
z−1
1 , z−1

2 , γn +
m∑

i=1

δ
(n)
i0 w2|

| 1

)

= O(z−(n+1)
1 z−j

2 , z−j
1 z

−(m+1)
2 , j ≥ 0).

Using this result, the proof of the correspondence result (ii) is com-
pletely analogous to the one given in Theorem 3. To prove (iii) it
is sufficient to show, according to Theorem 4, that Ã(w1, 0)/B̃(w1, 0)
represents a stable one-dimensional system. We have

Ã(w1, 0)
B̃(w1, 0)

= γ0 +
(1 − |γ0|2w1|
| γ̄0w1

+
n−1∑
k=1

(
1|
|γk

+
(1 − |γk|2)w1|
| γ̄kw1

)
+

1|
|1 .

We have already pointed out that, since H(z1, z2) represents a stable
two-dimensional system, |γk| < 1 for k = 0, . . . , l − 1. This, together
with Theorem 2, guarantees the stability of Ã(w1, 0)/B̃(w1, 0).

We shall conclude this section with an example, but first we recall
the definition of root map which, as indicated in [7], can be quite
useful to investigate the stability of a two-dimensional LSI system. We
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shall write B[w1](w2) to indicate that we interpret the two-dimensional
polynomial B(w1, w2) as a one-dimensional polynomial of the variable
w2 with coefficients which are themselves one-dimensional polynomials
of the variable w1. The root map of B(w1, w2) consists of two root
images one root image shows the loci of the roots of B[w1](w2) as
the parameter w1 traverses the unit circle w1 = eiϕ for −π ≤ ϕ1 ≤ π.
The other root image shows the loci of the roots of B[w2](w1) as the
parameter w2 traverses the unit circle w2 = eiϕ2 . We remark that the
conditions (ii) of Theorem 4 will be satisfied if both root images of
B(w1, w2) lie outside the respective unit circles.

Now consider the LSI system given by the transfer function

(21a) H(z1, z2) =
1

B(z−1
1 , z−1

2 )
,

where
(21b)
B(w1, w2) = (w2 − w1 + 3)(w2 − w1 − 3)(w2 + w1 + 3)(w2 + w1 − 3)

× (w2 − w1 + 4)(w2 − w1 − 4)(w2 + w1 + 4)(w2 + w1 − 4)
× (w2 − w1 + 5)(w2 − w1 − 5)(w2 + w1 + 5)(w2 + w1 − 5).

The root image of B[w2](w1) is given in Figure 1. Note that since
B(w1, w2) = B(w2, w1), the root image of B[w1](w2) is identical to
the one given in Figure 1. From the root map given in Figure 1
and Theorem 4(ii) it immediately follows that (21) represents a stable
system.

In order to construct a reduced model for (21), we compute the BCF
(13a) for H(z1, z2)/β, where β is given by (19). It is easy to check that

max
|w1|≤1

∣∣∣∣ 1
B(w1, 0)

∣∣∣∣ ≤ 1,

and, hence, we have β = 1. The Taylor series expansion of H(z1, z2) =
1/B(z−1

1 , z−1
2 ) is given by

1
B(w1, w2)

=
1

(3 · 4 · 5)4
+

1538
.606

w2
2 + O(w4

2)

+ w2
1

(
1538
606

+
3753610

608
w2

2 + O(w4
2)
)

+ O(w4
1w

j
2, j ≥ 0).
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Im[w1]

Re[w1]

1

FIGURE 1.

We can now apply the formulas (14) to compute the BCF (15) for
1/B(w1, w2). This gives

γ0 =
1

604

d
(0)
0 = γ0 d

(0)
1 = 0 d

(0)
2 =

1538
606

· · ·
c
(0)
00 = 0 c

(0)
01 = 0 c

(0)
02 = 0 · · ·

c
(0)
10 =

1538
606

c
(0)
11 = 0 c

(0)
12 =

3753610
608

· · ·
...

c
(1)
00 = 1 − 1

608
c
(1)
01 = 0 c

(1)
02 = 0 · · ·

c
(1)
10 = 0 c

(1)
11 = 0 c

(1)
12 = 0 · · ·

c
(1)
20 = −1538

6010
c
(1)
21 = 0 c

(2)
22 = −3753610

6012
· · ·

... .
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For k = 1 in (14), we find

γ1 = 0,

d
(1)
0 = γ1, d

(1)
j = 0, j ≥ 0,

and so
c
(2)
ij = c

(0)
i+1,j

c
(3)
ij = c

(1)
ij ,

i ≥ 0, j ≥ 0,

while, for k = 2,

γ2 =
5536800
608 − 1

d
(2)
0 = γ2 d

(2)
1 = 0 d

(2)
2 =

3753610
608 − 1

· · · .

Grouping these results we find that the BCF (15) for 1/B(w1, w2)
becomes

(22)
1

604
+

1538
606

w2
2 + · · · + (1 − 1

608 )w1

∣∣∣∣ 1
604 w1

+
1|
|0 +

w1|
| 0

+
1

∣∣∣∣∣∣5536800608−1 + 3753610
608−1 w2

2 + · · ·
+

(
1 −

(
5536800
608−1

)2 )
w1

∣∣∣∣∣∣ 5536800
608−1 w1

+
1|

|· · · .

Note that, in this case, applying the formulas (18) to h0(w2) and
h2(w2), gives that δ

(0)
10 = δ

(2)
10 = 0. This implies that we have to

apply the “singular rules” of the Viscovatov-scheme [5, p. 55] to h0(w2)
and h2(w2). Doing this leaves (22) unchanged. In order to obtain
reduced models for the system represented by (21), consider modified
convergents of the BCF (22). If we take n = 3 and m = 2 in (20), we
find that the transfer function of the reduced system is given by
(23)

H̃(z1, z2) = R3,2(z−1
1 , z−1

2 , 1) =
Ã(w1, w2)
B̃(w1, w2)

=
1

604
+

1538
606

w2
2 +

(
1 − 1

608

)

×
5536800
608−1 w2

1+w3
1+ 3753610

608−1 w2
1w

2
1(1+ 5536800

608−1 w1)

1+ 5536800
608−1 w1+ 5536800

604(608−1)w
2
1+ 1

604 w3
1+ 3753610

604(608−1)w
2
1w

2
2(1+ 5536800

608−1 w1)
.
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Since the conditions of Theorem 5 are satisfied, we can conclude the
following for the reduced system (23). The order of correspondence of
H̃(z1, z2) to H(z1, z2) is

H(z1, z2) − H̃(z1, z2) = O(z−3
1 z−j

2 , z−j
1 , z−3

2 , j ≥ 0),

and, whereas the number of terms in the numerator and denominator
polynomial of the original transfer function equals 92, for H̃(z1, z2),
this number amounts to 16. From the theorem it also follows that
Ã(w1, 0)/B̃(w1, 0) represents a stable one-dimensional system, and,
hence, testing the stability of H̃(z1, z2) is reduced to verifying that

(24) B̃(w1, w2) �= 0, |w1| = 1, |w2| ≤ 1.

As mentioned above, this condition can be checked using the technique
described in [1, 8]. We have not used this technique here but instead
consider the root image of B̃[w1](w2) as w1 traverses the unit circle.
Condition (24) will be satisfied if this root image lies outside the unit
circle in the complex w2-plane. From (23) we have that the roots of
B̃[w1](w2) as a function of w1 are given by

w2
2 = −604(608 − 1)

3753610
·
1 + 536800

608−1 w1 + 536800
604(608−1)w

2
1 + 1

604 w3
1

w2
1(1 + 536800

608−1 w1)
.

If we set w1 = eiϕ1 in the above expression, it can easily be verified that
the corresponding values of w2 satisfy |w2| > 106. Hence, it is clear
that the root image of B̃[w1](w2) lies outside the unit circle and we
can conclude that H̃(z1, z2) given by (23) represents a stable reduced
system for the system (21).
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