
Applied lVumerica1 Mathematics 4 (1988) 253-262 
North-Holland 

253 

INSTABILITY AND MODIFICATION OF THIELE NTEmOLATING 
CONTINUED FRACTIONS 

Annie A.M. CUYT * 
Department of Mathematics and Computer Science, University of Antwerp (UIA), B-2610 Wilrijk, Be&iunt 

Lisa JACOBSEN 
Department of Mathematics and Statistics, University of Trondheim. IV- ?OYi Drq@l. Norwa): 

Brigitte M. VERDONK 
Department of Mathematics and Computer Science, University of Antwerp (UIA), B-2610 Wilrij' , Relgilrnt 

1. Stability questions for Thiele interpolation 

For the sake of completeness we shall first repeat the construction of rational interpolants 
using Thiele-type continued fractions. Let a sequence of distinct complex points (xi), E N be given 
and let a complex-valued function f(x) be known by its function values f( Xi) which we shall 
denote by f;:. A continued fraction of the form 

with d, = 

generates 

satisfies 

qi[x,, . *. 7 Xi], where the inverse differences cp,[x,. . . . , Xi] are computed as 

%[Xil =hv i 2 0, 

0 1) . 
‘Pi[x o,...,x,] = xi - Xi-1 

‘pi-*[x()7a*a7 xi-2, Xi] -<P,-~[X()rmmsY xi-l] ’ 
i>l, 

rational interpolants if you consider its successive convergents. The nth convergent 

c,(x) =%[%I + 

if C,,( Xi) is defined. 
Numerical experiments have shown that in some cases we have little or no control over the 

inverse differences q,[x,, . . . , Xi]. The values <pi[xo,. . . , x,] do not only depend upon the function 
values fi but also highly on the interpolation points x,. For some sequences (x, ), E N the 
computation of the inverse differences q, [ x0, . . . , x,] can be highly unstable. In Table 1 we 
computed the inverse differences cpi[x,, . . . , xi] both in single and double precision for f, = 
I/Ji+i, once using Xi= l/(i + 1) and once using x, = 3-l. It is easy to see that the process is 
much more stable in the second case than it is in the first case. 
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Table 1 
Inverse differences q,[ x,,. . . . . x,] for I, = l/d=. lim, _, p fi = 0 

i x, =I/(i +l) x, = 3-l 

56 bit 24 bit 56 bit 24 bit 

0 l.oooooooO 1.~ l.OOOOOOo@ 1.OOOOOO00 

1 1.70710678 1.70713659 2.27614237 2.27614212 

2 1.28445705 1.28446293 1.28445705 1.28445530 

3 1.07735027 1.07727909 0.16895710 0.16895831 

4 0.94721360 0.94756573 2.08340788 2.08326054 

5 0.85546189 0.85502332 0.01358570 0.01358765 

6 0.78621276 0.80851626 2.11327925 2.11257172 
7 0.73151786 0.40478480 0.00184995 0.00185089 
8 0.68688672 - 0.30210978 1.28884001 1.28764153 
9 0.64956112 - 0.28439111 0.00040401 0.00040466 

10 0.61773931 0.00164387 0.55758997 0.55608720 
11 0.59018166 0.41945827 0.00011427 0.00011470 
12 0.56608079 - 3.41882515 0.20481832 0.20391613 
13 0.54418441 - 0.0010.1~22 0.00003595 0.00003613 
14 0.52725694 3.93979073 0.07061846 0.07017231 
15 0.51709121 - 0.027 12743 0.00001175 0.00001184 

That we still have stability in the computation of C,(x) in most cases is due to the fact that to 
compute ~,Jx,, . . . , s,] we in fact solve the eqlmation f,l = C,I(x,), in other words 

fn=943lxol + i m* 
r=l i I 

0 2) . 

where q,,,,[ Q), . . . , x,,] is the only unknown. Any perturbations in the previous ‘pi[xO,. . . , xi] may 
increase the inaccuracy of pn[x,,, . . . , x,] in order to have the equation satisfied, in other words, 
in order to increase the accuracy of C,(X,~). 

Table 2 shows results of this kind for xi = 3-l and f;. = C& 2j/j!. Both the inverse 
differences q,[ x0,. . . , xi] and the convergents C,(O) evaluated at the origin are displayed in single 
as well as in double precision. 

It is not a general rule that the computation of the convergent C,(x) is more stable for 211 
values of x, but we experienced that in all cases (stable and unstable behaviour), the value 
] f,I - C,,( x,,) ] is of the magnitude of machine precision. 

An explicit formula for the solution of (1.2) Is 

(1 3) . 

which makes it clear why the recursive computation scheme for the inverse differences works 
since 
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Table 2 
f, = Zf,,,-,2’/j!, x, = 3-‘, lim, ._.oo f, = 7.3890561... 

i cpj[X(),...,~jl 

. 56 bit 24 bit 

0 l.oooooooO 1 .OOOOooOO 
1 - 0.33333333 -- 0.33333331 
2 - 2.00000000 - 2.00000000 
3 - 1.22222222 - 1.22224236 
4 -0.11764706 - 0.11763608 
5 2.07845480 2.07713890 
6 0.00248986 0.00249246 
7 - 16.99596714 - 17.14669800 
8 0.00003679 0.00003627 
9 6.46101997 6.48843670 

10 0.00012860 0.00013029 
11 0.75097220 1.06083012 
12 0.00007661 0.00001180 
13 0.20302655 - 0.30383861 
14 0.00003311 - 0.00002824 
15 0.06793047 - 0.00012451 

c, (0) 

56 bit 

1 .oooooooo 
4.00000000 
7.00000000 
7.30000000 
7.41860465 
7.41079895 
7.38824763 
7.39077232 
7.38977832 
7.38914616 
7.38907589 
7.38905889 
7.38905653 
7.38905615 
7.38905610 
7.38905610 

24 bit 

1 .oooooooo 
4.00000000 
7.00000095 
7.29999542 
7.41860771 
7.41079903 
7.38827038 
7.39076519 
7.38977909 
7.38914394 
7.38907337 
7.38906384 
7.38905144 
7.38905621 
7.38905907 
7.38905621 

SO the right-hand side of (1.3) could also be computed using continued fraction algorithms. Of 
course using the backward algorithm for formula (1.3) is equivalent to computing 

(Pi+I[%--*~ xi, x,] by means of (1.1). 
To summarize, since the inverse differences and successive convergents in a Thiele interpolat- 

ing continued fraction can suffer from instabilities, it is important to obtain the value of that 
Thiele interpolating continued fraction in as few steps as possible. The next section will indicate 
several ways to achieve this. 

2. Modified Thiele interpolation 

Let us now co lsider a sequence of distinct points (xi); E iU converging to a finite value 
3=limi+ac xi. As in the previous section the function f(x) is only known by its funtion values 
f(xi) denoted by h. An approximation for the value f(z) can be computed by considering 
consecutive convergents of the interpolating continued fraction 

aJ~01 + E i=* ~. (2 0 . 

Since a convergent C, is a rational expression we can write it as C,, = A,,/&, where 

We know 

Ai=cp,[&l,..., +L, + (z- Xi-I)Ai-2, A,=cp,[-& A-, = 1‘ 
Bi=q+,,...,xi]B,_, + (Z-Xi_&_2, i 

i_ 1 ,...,,? 

B,= 1, IL,=0 - * 

that the limiting value of (2.1), if it exists, is given by 1 

A +f’“‘A _1 

l?; + f’“‘B:_ * ’ 
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where ftn) is the n th tail of (2.1), given by 

f 
(n) = 

j+, sy* 
Since these tails are not known exactly, the limiting vah: of (2.1) can only be obtained 
approximately by computing modified convergents 

where the modifying factor p”’ approximates the tail f (‘) The ordinary convergents C, result . 

by taking p”’ = 0. With a good choice for pn), modified convergents can be more accurate than 
ordinary convergents [3]. If the asymptotic behaviour of 

is known, 

4. --x,-1 

‘p,[x,..... +P,-I[-b--~ X,-l] 
procedures for choosing pn) such that 

I I f-C +O 

f-c, 

exist. For the Thiele interpolating fraction we Lave z - xi_ 1 -+ 0, but in general we do not know 
much about the asymptotic behaviour of Cpi[X,, . . . , x,]. For the inverse difQrences it is even true 
that the instabilities can hide the asymptotic behaviour in the sense that the displayed numerical 
results consist merely of rounding errors and data perturbations. However, we shall further on 
suggest some choices for p”) which apply to the Thiele interpolating case. If we want to obtain 
as accurate approximations to f(z) as possible, we can use one of the following techniques to 
improve on the convergents C,, of (2.1). 

(A) Starting a convergence acceleration method such as Aitken’s &process, the &-algorithm, 
or the E-algorithm, essentially also reduces to modification. In [2] Brezinski showed that 
sequence transformations of the form 

where hL?)nEN is an auxiliary sequence, can be viewed as modifications of continued fractions 
with modifying factor 

For instance, for Aitken’s &process, gn = AC, and p”) = (z - x,) BK/B,+l. The advantage of 
using this modifying factor has been proved if one is dealing with limit periodic continued 
fractions. It is important to note that tEs modifying factor p”) can be computed without much 
extra effort. If we use the forward algorithm to compute the continued fraction, then B,, is 
known and B,, 1 is given by 

B PI+1 =~~+l[Xo~--.~Xn+,]B,1+(Z-Xn)Bn-~. 
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Otherwise, Bn + ,/Bn can be computed by the recurrence relation 

B n+l B, 

Bn 
=%+l[xO,..*~ xtz+l] + tz -xn) 9 - =%[%I~ Xl]. 

Bo 

(B) Another way to improve the accuracy of the convergents C,, is not to rewrite existing 
convergence accelerators as modification methods but to introduce new modifying factors for the 
particular case of a Thiele interpolating continued fraction. The infinite expression (2.1) can be 
reduced to a finite expression using the definition for the inverse differences q+[x,, . . . , xi_ I, z]: 

f(z) = 'pobl 

=‘po[x,] + 

='po[x,l + 

Z -X0 

(2 3) . 

It is easy to see that an approximation for f(z) can now also be obtained by plugging in an 
approximate value en+i for (pn+i[xo,. . . , x,, z]. In fact, since (z - x,~)/~~+~[x~, . . . , x,, z] is the 
n th tail of the continued fraction (2.1) this amounts to approximating the n th tail by (z - x,)/ 
@,,+i, which can then be regarded as a modifying factor for the n th convergent of (2.1). Remark 
that the use of this modifying factor does not affect the interpolation properties in the points 

x0 , . . . , x, which were satisfied by C,(x), while using the Aitken A2-modifying factor fnJ = 
- B, + ,g, + ,/B, g, disturbs the interpolation property in x,. Let us now discuss several approxi- 
mations for ~D,+~[x~,. . ., x,, z]. 

(a) If we put 

then 

f Tn> = Z - xn 

%+l[xO****~ xn+1] ’ 

and calculating the modified convergent is just taking the next convergent of (2.1). 
(b) If we use the fact that q,,+Jx,,. .., x,, z] can be written as 

and insert the approximation 
previous modified convergents, 
instance the approximation ~OI 

Then 

for qo[z] =f( z) which we got from previous convergents or 
then we must be very careful not tc go around in circles. Take fcr 
qo[z] which you get from the last convergent, i.e. &z] = C,C z). 

n- 1 

%+I= C 
z-xn-i 1, 

Z - x0 

j=O I- (P,*-j[XO~.*.~ xn-i] r ,-%[xol+rp,[x,l+ c j:** =Ool 
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and hence p”) = 0 which results in no modification at all. Even inserting the approximation for 
rp,[z] which we got from the last modified convergent, i.e. q&] = en_,(z), where 

does not help us because then 
2 

@rf+l= 
- %I 

-(PJx(p..., xn] + z ;ax-“lT1 
, 

f 

and hence 

which produces 
-tn, 

6,=cpo[xo] + i z-xxi-1 $5 
;=1 q+ x0,..., [ Xi] 

=To[xo] + y z-xi-l 
n-l} 

i=l vi xov.., [ Xi] 
+ fl 

This lack of progress is due to the fact that a lot 
po[ z] = C,(z) or qo[z] = Cn__ i( z) in (2.4). This can only 
in (2.4) for instance z = x,,+& and vo[z] =fn+k with k 

%z+1 =(Pn+l[XoYrXnr X,+k] 
and 

of terms cancel out when we plug in 
be helped by replacing z as well as cpo[ z] 
> 0. In this way 

f -in, = Z-X n 
%+l[XoY*r x,9 &I+k] - (2 5) . 

Following this idea, we can also approximate the continued fraction (2.4) by a linear 
expression as given in [4], namely 

+ h?+*[xo~*-~ xn, z] 
aZ 

( z - X,,k). 
,’ = x ll+l, 

Rather lefngthy but simple computations [4] show that 

a’pn+*[xo9...9 x,9 z] 
az 

= 
Z=X n+A 

n+i 
= c (_,)i-1 ~[-~Ov***, X,-i+19 X,+k] iff (P2[xO~am*~ Xn-j’ xtt+k] 

i=l X ?I+& - xn-i+l j=O X n+k - Xn-j 

+(-l)n+lfPi+n+kl n n ~2[x09.*-* Xn-j9 x,+k] 
. 

j=O X r,+k - Xn-j 
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Hence another modifying factor could be 

(c) Another way to proceed is to approximate cpn+ i[ x0,. . . , x,, z] by using a convergence 
acceleration method for the seqtience ( q,, + 1 [ x,, . . . , x,, x, + i + J) i E N because if q, + 1 [ x0,. . . , x,, z ] 

is not undefined, then by a continuity argument 

(pn+i[X()9*a=9 Xn9 z] = lim (pn+*[X0,.*=9 Xn9 Xn+i+i]* 
i-+00 

For our choice of a convergence accelerator we keep in mind that q,, + J x0,. . . , x,, z] is a 
rational expression in z. If we take for instance Aitken’s A2-process or the c-algorithm, we 
perform in the following computations: 

E(i) = 0 .- 
-1 ’ Z- 0 ,...,2k + I+ 1, 

e(d)= qn+i[x, ,..., x,, xn+,+i], i = 0 ,..., 2k + I, 

(0 1 
&j+l - 

= e;i+;j + 
(i+l) 

‘i 
- $3 .I ’ 

j=O,..., 2k-1, i=O ,..., 2k+l-j- 1. 

For Aitken’s A2-process we take k = 1 and t& + 1 = E(:). For the E-algorithm I= 0 and @n + 1 = &:Ok). 

Consequently, 

f 
Tn> _ ’ - xn 

E$? 
. (2 6) . 

The next theorem will prove the usefulness of this modifying factor if one is dealing with 
Thiele interpolating continued fractions. We remind the reader that the &-algorithm and Aitken’s 
A2-process are frequently used convergence accelerators, although conditions under which their 
application is proved to be successful are very restrictive. The same reasoning holds here. 

Theorem 2.1. Let f be a real-valued function of a real variable x and let the continued fraction (2.1) 
converge for X = Z= lim.,,x,. Let (Si)i~N be a monotonically decreasing sequence of strictly 

positive numbers. 
If for all n >, 0. 

(Pn+*[XfJ9**09Xn9 z]Bnzo9 

and if for all n 2 0 there exist real numbers a,, # 0 and b,, such that the sequence 

( anQ)n+l xQT..*y xnv xn+i+i [ I + bn)iEN 

is total& oscillating or totally monotone, then for every n there exist k, and 1, such that for 

f 
7n) - ’ - xn Z - xn 

8” 

and p”J = - 
(4, 

&2 

we have 
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Proof. We know that 
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f(z) - en 
f(z) - G 

E$ - q&+,[xo .a.., -qp =] 
= 

(1) 
EZk- LI ( --xn)Bn-l/Bn 

Eg 
. 

&g+(Z- -?A l 4-,/B, 

From this we can conclude that if (a.cp,+,[x,,..., x,, x,+,+J + b,),EN is a totally monotone or 
totally oscillating sequence, then for given & > 0 there exist k, and I, such that [l, p. 831 

Hence for I = 0 and k = k,, 

f(=) - G I I f(i)-Cn ’ - 

I 
&:Ok’” -%+l[XOl..-r xttv z] 1 

$ fiq,+,[X~,***,X,v Z] -JE~~~--(p.+~[Xo,...,X,, 21 I 

,CS,9 

n 1-O 

and analogously for k = 1 and I = I,. 0 

Note that in order to prove convergence acceleration we need to impose conditions on th 

sequences @&+Jxo*...9 X,+;+JiEN* Because of the instabilities in the computation of 
cpn+Jx,, . - - 9 x,, x,,,+ J it does not make sense to translate these hypotheses to conditions on 
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Table 3 
f, =2,=,2’/j!, x, =1/d=, lim,,, f, = 7.3890561... 

Equation (2.2) 

Equation (2.5) 

Equation (2.6) 

f?“’ = () 

gn = AC, 

k=5 

k=7 

k=landl=2 

k=land1=4 

l=Oand k=2 

l=Oand k=3 

56 bit 

c* = 6.492160 

Go = 4.216581 

i;4 = 6.612449 

c, = 6.885566 

cd = 7.047279 

ds = 7.180756 

c4 = 7.163015 

c4 = 7.325809 

C, = 6.760714 
Cl1 = 7.939311 

24 bit 

cg = 6.505295 

C,o = 2.231958 

cd = 6.612472 

cd = 6.885586 

Cd = 7.047497 

64 = 7.180896 

Cd = 7.165371 

c4 = 7.353887 

C, = 6.782696 
Cl1 = 8.790054 

the fi and xi. The best approach is to check the conditions nu erically during the computation 
of the continued fraction and if these are satisfied we can make 1 i - C,, I/ 1 f - Cn 1 small, which 
is definitely what we want. Because of the fact that the conditions on the sequences 

&%l+l[Xor * m-9 x,9 %+i+AEN cannot be checked beforehand for all n, it is not possible to claim 
convergence acceleration in the usual sense, i.e. 1 f - C, 1 /I f - C_ 1 + 0 as n approaches infinity. 

Table 4 

n C 
f-&=(-j 

en,. Cl, 
(2.2), g, = AC, (2.6), k = 1, i = 0 

10 0.7044702 1.411553 1.186592 
20 0.8993983 1.312232 1.229184 
30 0.9921064 1.286098 1.242457 
40 1.046538 1.275415 1.248361 
50 1.082410 1.270001 1.251523 
60 1.107859 1.266877 1.253424 

70 1.126862 1.264911 

80 1.141600 1.263593 

90 1.153365 1.262665 

100 1.162978 1.261988 

150 1.192955 1.260325 

200 1.208634 1.259715 

.254660 

.255512 

.256125 

.256582 

.257751 

.258206 

250 1.218280 1.259426 1.258432 

1900 1.248405 1.258926 1.258855 

2000 1.253617 1.258900 1.258881 

3000 1.255367 1.258895 1.258887 

1.256246 1.258894 1.258889 
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We remark also that it is a good investment to put more effort in the computation of the rzth 
tail for small n than in the further computation of ordinary convergents C,. The reason is simple. 
For the former we need the values ( vn + I[ x0,. . . , x,, x, +, + J), E N which are all as stable (or 
unstable) as (P~+~[x~,..., x,,+~ v ] while for the latter we need inverse differences with a growing 
number of arguments and hence a growing effect of data perturbations and rounding errors. Of 
course the method used to accelerate the convergence of ( qn+ r [ x0,. . . , x,,, x, +i_b I])i E N must be 
more stable than the computation scheme that generates inverse differences with more than 
n + 2 arguments. 

The results displayed in Table 3 illustrate that when the computation of the inverse differences 
is highly unstable, in other words if the number of digits common to single and double precision 
output is small, it may be a good idea to switch to modification. One has more significant digits 
with L f 0 than with f;, = 0. The results displayed in Table 4 illustrate that, even for a minor 
extra effort, in case of stability modification can be very successful. 
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