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1. Stability questions for Thiele interpolation

For the sake of completeness we shall first repeat the construction of rational interpolants
using Thiele-type continued fractions. Let a sequence of distinct complex points (x;), <5 be given
and let a complex-valued function f(x) be known by its function values f(x;) which we shall
denote by f.. A continued fraction of the form

[oe]
X = X;
dy+ =1
0 ; d.
i=1 U
with d, = ¢;[x,, ..., x;], where the inverse differences ¢,[x,...., x;] are computed as
q’O[xi] =_/;" I}O,
X, = X;_ .
— i i-1 . 12 1, (1 1)
(pi—l[xo""ﬁxi—z’ xi] _q):—lle*""xi—I]

generates rational interpolants if you consider its successive convergents. The nth convergent

n

Ca(x) = po[xo] + EI pi[ %0, x,]

wi[xo,...,xi]

X~ Xi1

satisfies
C/(x;))=f, i=0,....,n,
if C,(x;) is defined.

Numerical experiments have shown that in some cases we have little or no control over the
inverse differences ¢,[x,,..., x;]. The values ¢,[x,,..., x;] do not only depend upon the function
values f; but also highly on the interpolation points x,. For some sequences (x;);,cn the
computation of the inverse differences ¢;[x,,....x;] can be highly unstable. In Table 1 we
computed the inverse differences @,[x,,..., x;] both in single and double precision for f, =
1/Vi+ 1, once using x,=1/(i+ 1) and once using x, = 37", It is easy to see that the process is
much more stable in the second case than it is in the first case.
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Table 1
Inverse differences @,{x,..... xforfi=1/vi+1,lim,_ f,=0
i x,=1/(i+1) x;=3""'
56 bit 24 bit 56 bit 24 bit
0 1.00000000 1.00000000 1.00000000 1.00000000
1 1.70710678 1.70713659 2.27614237 2.27614212
2 1.28445705 1.28446293 1.28445705 1.28445530
3 1.07735027 1.07727909 0.16895710 0.16895831
4 0.94721360 0.94756573 208340788 2.08326054
5 0.85546189 0.85502332 0.01358570 0.01358765
6 0.78621276 0.80851626 2.11327925 2.11257172
7 0.73151786 0.40478480 0.00184995 0.00185089
8 0.68688672 —0.30210978 1.28884001 1.28764153
9 0.64956112 -0.28439111 0.00040401 0.00040466
10 0.61773931 0.00164387 0.55758997 0.55608720
11 0.59018166 0.41945827 0.00011427 0.00011470
12 0.56608079 —3.41882515 0.20481832 0.20391613
13 0.54418441 —0.00103522 0.00003595 0.00003613
14 0.52725694 3.93979073 0.07061846 0.07017231
15 0.51709121 —0.02712743 0.00001175 0.00001184

That we still have stability in the computation of C,(x) in most cases is due to the fact that to
compute @,[x,...., x,] we in fact solve the eqration f, = C,(x,,)., in other words

=@o[xo] +
fo = o xo] ,.;, @, [x0+--s x,]
where @,[x,.....: x, ] is the only unknown. Any perturbations in the previous ¢,[x,...., x;] may
increase the inaccuracy of p,[xq...., x,] in order to have the equation satisfied, in other words,
in order to increase the accuracy of C,(x,).

Table 2 shows results of this kind for x;=37' and f,=Y'_, 2’//j!. Both the inverse
differences @,[x,..... x,] and the convergents C;(0) evaluated at the origin are displayed in single
as well as in double precision.

It is not a general rule that the computation of the convergent C,(x) is more stable for all
values of x, but we experienced that in all cases (stable and unstable behaviour), the value
| fo — G,(x,)| is of the magnitude of machine precision.

An explicit formula for the solution of (1.2) is

Xy~ X

. (1.2)

_ Xn = Xp—y I
—cpn‘l[x()*"'*xn—ll —(pn—Z[xO"""xn—Z]
e 4 Xn ~ Xo s
l“‘Po[xo] + o[ x,]
which makes it clear why the recursive computation scheme for the inverse differences works
since

Xy~ Xp_2 |

(pn[xo”"‘xn

+ (1.3)

xn—xn—Z I xn_x(]
+ e+
|_(pn—2[x0""’xn—2] I—q)()[x()] +(p0[xn]

=q')n-l[x0*"" Xp—2s Xpf.
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Table 2
[i=Z_02%/j" x,=37", lim, ., f,=7.3890561...
i ‘pi[xov""xi] C:(O)
56 bit 24 bit 56 bit 24 bit
0 1.00000000 1.00000000 1.00000000 1.00000000
1 —0.33333333 --0.33333331 4.90000000 4.00000000
2 - 2.00000000 —2.00000000 7.00000000 7.00000095
3 —1.22222222 —1.22224236 7.30000000 7.29999542
4 —0.11764706 —0.11763608 7.41860465 7.41860771
5 2.07845480 2.07713890 7.41079895 7.41079903
6 0.00248986 0.00249246 7.38824763 7.38827038
7 —16.99596714 —17.14669800 7.39077232 7.39076519
8 0.00003679 0.00003627 7.38977832 7.38977909
9 6.46101997 6.48843670 7.38914616 7.38914394
10 0.00012860 0.00013029 7.38907589 7.38907337
11 0.75097220 1.06083012 7.38905889 7.38906384
12 0.00007661 0.00001180 7.38905653 7.38905144
13 0.20302655 —0.30383861 7.38905615 7.38905621
14 0.00003311 -0.00002824 7.38905610 7.38905907
15 0.06793047 —0.00012451 7.38905610 7.38905621

So the right-hand side of (1.3) could also be computed using continued fraction algorithms. Of
course using the backward algorithm for formula (1.3) is equivalent to computing
®i+1lXxgs---» X;, X,] by means of (1.1).

To summarize, since the inverse differences and successive convergents in a Thiele interpolat-
ing continued fraction can suffer from instabilities, it is important to obtain the value of that
Thiele interpolating continued fraction in as few steps as possible. The next section will indicate
several ways to achieve this.

2. Modified Thiele interpolation

Let us now ccasider a sequence of distinct points (x;);ey converging to a finite value
z=1im,_, x,. As in the previous section the function f(x) is only known by its funtion values

1 — 00

f(x,) lenoted by f,.. An approximation for the value f(z) can be computed by considering
consecutive convergents of the interpolating continued fraction

! ey | 2.1
tpo[xol"'i;I(_m[xo,—...,x,Tl -

Since a convergent C, is a rational expression we can write it as C, = A4, /B,, where

N

Ai=(pi[x0""’xi]Ai—l+(z—xi—])Ai~2’ A0=(P0[x0], A—1=1} i=1.....n.
Bi=q)i[x0""’xi]Bi—l+(z—xi—l)Bi—2’ B, =1, B_,=0

We know that the limiting value of (2.1), if it exists, is given by
A, +f"4,_,
B,+f"B, ;’
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where " is the nth tail of (2.1), given by

= I-X |
(n) i .
/ i=§+1!(pi[x0""’xi]

Since these tails are not known exactly, the limiting vali» of (2.1) can only be obtained
approximately by computing modified convergents

- A, 4,
G o= tntS T Aroy
Bn+f(")Bn-l

where the modifying factor /™ approximates the tail f™). The ordinary convergents C, result
by taking f*"’ = 0. With a good choice for {, modified convergents can be more accurate than
ordinary convergents [3]. If the asymptotic behaviour of

2T X
q)l[xo""‘xi](pl—I[xo“"‘xl—]]

is known, procedures for choosing /™ such that
f - C.n
f-cG

exist. For the Thiele interpolating fraction we hiave z — x,_; — 0, but in general we do not know
much about the asymptotic behaviour of ¢,[x,,..., x,,. For the inverse diff-rences it is even true
that the instabilities can hide the asymptotic behaviour in the sense that the displayed numerical
results consist merely of rounding errors and data perturbations. However, we shall further on
suggest some choices for /™ which apply to the Thiele interpolating case. If we want to obtain
as accurate approximations to f(z) as possible, we can use one of the following techniques to
improve on the convergents C, of (2.1).

(A) Starting a convergence acceleration method such as Aitken’s A’-process, the e-algorithm,
or the E-algorithm, essentially also reduces to modification. In [2] Brezinski showed that
sequence transformations of the form

C-' = Cn—lgn o Cngn—l

n bl

gn - gn—l

-0

where (g,),<n is an auxiliary sequence, can be viewed as modifications of continued fractions
with modifying factor

2 B.g
(n) non
- _ _ 2.2
f Bn—lgn-l ( )

For instance, for Aitken’s A’-process, g, = AC, and " =(z - x,)B,/B,,,. The advantage of
using this modifying factor has been proved if one is dealing with limit periodic continued
fractions. It is important to note that this modifying factor f"’ can be computed without much

extra effort. If we use the forward algorithm to compute the continued fraction, then B, is
known and B, ., is given by

Bn+1 =q7n+l[x0""* xn+l]Bn + (Z _xn)Bn—l'
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Otherwise, B,,,/B, can be computed by the recurrence relation

Bn+l
B

n

-1
= ‘Pn+1[xo,---s xn+l] +(z- xn)( BBn ) > % = (Pllxo, x1].
- 0
(B) Another way to improve the accuracy of the convergents C, is not to rewrite existing
convergence accelerators as modification methods but to introduce new modifying factors for the
particular case of a Thiele interpelating continued fraction. The infinite expression (2.1) can be
reduced to a finite expression using the definition for the inverse differences @,[x,...., x;_,, z]:

f(z) =el2]

=(Po[xo] + "

@[ xo0- 2]

n
- n |
%[XO] ¥ igl |(pi[x0""’ xi] ¥ I‘Pn+1[xo»- ces Xy Z] . 23)
It is easy to see that an approximation for f(z) can now also be obtained by plugging in an
approximate value ¢, for ¢, ,[x,..., x,, z]. In fact, since (z — x,,) /9, +1[ X0, - - -+ X,» 2] is the
nth tail of the continued fraction (2.1) this amounts to approximating the nth tail by (z — x,)/
®,+1, Which can then be regarded as a modifying factor for the nth convergent of (2.1). Remark
that the use of this modifying factor does not affect the interpolation properties in the points
Xg,-..» X, which were satisfied by C,(x), while using the Aitken A2-modifying factor (" =
—B,.18,+1/B,8, disturbs the interpolation property in x,. Let us now discuss several approxi-
mations for @, ;[xg,--.» X,, 2]
(a) If we put

(pn+l (P,H.][x(), s Xns xn+1]’

z—x,_; | z—x

then

z—x,

(pn+l[x09"" xn+1] |

and calculating the modified convergent is just taking the next convergent of (2.1).
(b) If we use the fact that @, ,[x,,-.., x,, z] can be written as

z—Xx

Fn) —

n Z— Xy |

+
|—q)n[x0’ o X ] ‘—(pn—l{xO""’xn—l:l
zZ— xO |
|—q)0[x0] + 2]
and insert the approximation for ¢u[z]=f(z) which we got from previous convergents or
previous modified convergents, then we must be very careful not tc go around in circles. Take fer

instance the approximation for g,[z] which you get from the last convergent, i.e. @y[z] = C,(2).
Then

«pn+1[x0’ ’xn’ Z]

+

(2.4)

n—1 z—x,_, z—xo
T o I—
i=0 noilmo X @l Xo] +q>0[x0] + Z

j]q)]
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and hence /™ = 0 which results in no modification at all. Even mserung the approximation for
o[ 2] which we got from the last modified convergent i.e. @,[z] = C,_,(2), where

1
n z - x' . f(n l)l

Zololxo x-] |1

G,-1(2) =g@o[x0] +

does not help us because then
- z—x
¢n+1= zZ—-X 4]
-q:,,[xo....,x,,] + T

and hence
Amy . .
fi"= (p,,[xo,...,vc,,]+—~"_” ,

which produces

C Xo| +
QJO[ 0] ’ZI ‘pl[xo’ ’x':] 1

- X._ f(" 1)
= 9o xo] + = S
<p0[ 0] :Zl (p,[xo, . x,—] 1

=C

n—1°
This lack of progress is due to the fact that a lot of terms cancel out when we plug in

tpo[z] C,(z) or gplz] = C,_(2) in (2.4). This can only be heiped by replacing z as well as g;[z]
in (2.4), for instance z = x,,,, and gy[z] =f,,, with k> 0. In this way

q)n+1 = (pn+1[x09'--9 x,,, xn+k]
and

T —
z-x,

(pn+l[x0""$ Xn» xn+k] )

Following this idea, we can also approximate the continued fraction (2.4) by a linear
expression as given in [4], namely

f"’)=

(2.5)

Pt Xor--os Xps 2] = @ii[Xoseens Xy Xpii]

N 39,11 X0s-es Xns 2]

9z :=x,,.,.,(z—xn+k)'
Rather lengthy but simple computations [4] show that
AP, 41[X0s--s X, z] _
9z = Xpay
- "il( 1)1 I‘P[’*Ov vy Xp_jr1s X n+k] l—[ 14 [xO’ <s Xn—j> x"+k]
Xn+k ~ Xp—i+1 Xn+k ~ Xp—j

n+l , P [x0s - Xy n—j» xn+k]
+( 1) ["-Lk]n Xpsk — Xp- ’
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Hence another modifying factor could be

fio=

z_x”
d
‘pn+l[x0"“’ Xns xn+k] + <pn+l[x0,az MLl z]

e (Z - xn+k)
=Xk

(c) Another way to proceed is to approximate ¢, [x,...,X,, z] by using a convergence
acceleration method for the sequence (¢, 1[xg ..., X,, X, +;+1])ien becauseif @, [xq,..., x,, 2]
is not undefined, then by a continuity argument

(p,,+1[x0,...,x,,, Z] = ililg‘pn+l[x01-°',xn’ xn+i+l]’

For our choice of a convergence accelerator we keep in mind that ¢@,.,[xg,...,X,, z] is a
rational expression in z. If we take for instance Aitken’s A’-process or the e-algorithm, we
perform in the following computations:

e¥) =0, j=0,...,2k+1+1,
e =@ui1[X0seeos Xus Xpriv1], i=0,....2k+1,

1
) — (l+1) —_
8]"' 8 + (i+1)___£(i)’
g J

j=0,...,2k—-1, i=0,....2k+1—j—1.

For Aitken’s A’-process we take k =1 and §,,, = €%. For the e-algorithm /=0 and @, = €3}
Consequently,
-x

Fmy _ 2 n
fom=2=2m (2.6)

&

The next theorem will prove the usefulness of this modifying factor if one is dealing with
Thiele interpolating continued fractions. We remind the reader that the e-algorithm and Aitken’s
AZ-process are frequently used convergence accelerators, although conditions under which their
application is proved to be successful are very restrictive. The same reasoning hoids here.

Theorem 2.1. Let f be a real-valued function of a real variable x cnd let the continued fraction (2.1)
converge for x =z =1lim, _, x,. Let (8;);cn be a monotonically decreasing sequence of strictly
positive numbers.

If for alln > 0.

@pi1]X0s---s Xns 2] B, #0,
and if for all n > 0 there exist real numbers a, # 0 and b, such that the sequerice
(an(pn+l[x09 cees Xy xn+i+‘.] + bn)ieN

is totally oscillating or totally monotone, then for every n there exist k, and I, such that for

z—Xx - X,

F(n) — n fln)y _2__7n
© and f
2k,

(/)

we have

1f(z) -G, 1 <8,-1f(2) - C,|.
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Proof. We know that

f(z)-G,
f(Z) - Cn
3 f(n)_f'(n) B,
- f(n) +f"(
z-Xx, =X,
(pn_,_,[xo,....x,,, Z] E(_\lk) 8(2113

z2-X,

q)n+l[x0""‘xn‘ Z]

S(ZIR)-!- (Z _xn) - Bn—l/Bn

) = @[ Xove s X 2]

8!,") (’_xn)Bn—l/Bn

5(211. ‘Pn+1[x0»---~xm Z]

(e(u q)n+l[x0*“'*xn’ z])"'%ﬂ[xm--- Xns ..]+(z—x )B,_ 1/B

It is easy to see that

q)n+i[x0""’xn’ Z]Bn+ (z—xn)Bw—l
=(pn+l[x0""‘xn’ zl((pn[xow"*xn—h Z]Bn—l+(z Xp— I) 2)

n
= l—!)<p,+l[.x0.....x,, z] #0.
i=

From this we can conclude that if (a,®,,[X¢.---+ Xu» Xns:41] T 8,)ien is a totally monotone or
totally oscillating sequence, then for given 8, > 0 there exist k, and /, such that [1, p. 83]

1 n
B l—[q)h»l[xo,---,x” z]
n i=0

n

I'Iw,”[xa»--- x;» 7]

‘(pn-trl[xoy...,xn, z] —8(0) l\

min(1, §,),

min(1, §,).

1
I(pn+l[x()a---, ",z]—e(’)l 5

Hence for /=0 and k=%,

f(2) -G,
f(2)-¢

|e5%2 = @uirlXo0.---s X, z]l

l—I(pH—l[xO"--’ Xis Z]

’ll_

<$é

n°

|0 _ .
|£2k,, ‘P,,+1[xo,-..,x,,, Z]l

and analogously for k=1and /=1/,. O

Note that in order to prove convergence acceleration we need to impose conditions on th-
sequences (@, [xg.---. X, 4, 41]);en- Because of the instabilities in the computation of
Qui1lXgs--os Xy X,4,41] 1t does not make sense to translate these hypotheses to conditions on
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56 bit 24 bit
Equation (2.2) g,=AC, C; = 6.492160 Cy = 6.505295
Cyo = 4.216581 Cio = 2.237958
Equation (2.5) k=5 C, = 6.612449 G, = 6.612472
k=17 C, = 6.885566 C, = 6.885586
Equation (2.6) k=land /=2 C, = 7.047279 C, = 7.047497
k=land /=4 C, = 1.180756 C, = 7.180896
I=0and k=2 G, = 7.163015 C, = 7.165371
I=0and k=3 G, = 7.325809 C, = 7.353887
ffm=0 C, = 6.760714 C, = 6.782696
C,, = 1.939311 C), = 8.790054

the f; and x;. The best approach is to check the conditions numerically during the computation
of the continued fraction and if these are satisfied we can make |/ — C,|/| f— C,| small, which
is definitely what we want. Because of the fact that the conditions on the sequences
(PusilXos---s Xps Xp+is1])ien cannot be checked beforehand for all a, it is not possible to claim
convergence acceleration in the usual sense, i.e. | f— C,|/| f— C.| — 0 as n approaches infinity.

Table 4 ,
fi= ;,ll(’—“;M, x;=—=1/(i +1)% lim, _, , f,=1.25889...
n C,, (f",,, C":,,
f™=0 (2.2, g, = AC, (2.6), k=1,1=0
10 0.7044702 1.411553 1.186592
20 0.8993983 1.312232 1.229184
30 0.9921064 1.286098 1.242457
40 1.046538 1.275415 1.248361
50 1.082410 1.270001 1.251523
60 1.107859 1.266877 1.253424
70 1.126862 1.264911 1.254660
80 1.141600 1.263593 1.255512
90 1.153365 1.262665 1.256125
100 1.162978 1.261988 1.256582
150 1.192955 1.260325 1.257751
200 1.208634 1.259715 1.258206
250 1.218280 1.259426 1.258432
1000 1.248405 1.258926 1.258855
2000 1.253617 1.258900 1.258881
3000 1.255367 1.258895 1.258887
4000 1.256246 1.258894 1.258889
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We remark also that it is a good investment to put more effort in the computation of the nth
tail for small » than in the further computation of ordinary convergents C,. The reason is simple.
For the former we need the values (@, ,[Xq,---5 X, Xp4i+1))ien Which are all as stable (or
unstable) as @, ,[Xg,- .., X,+1], While for the latter we need inverse differences with a growing
number of arguments and hence a growing effect of data perturbations and rounding errors. Of
course the method used to accelerate the convergence of (@, 1[Xgs---s Xps Xp1ir1])ien Mmust be
more stable than the computation scheme that generates inverse differences with more than
n + 2 arguments.

The results displayed in Table 3 illustrate that when the computation of the inverse differences
is highly unstable, in other words if the number of digits common to single and double precision
output is small, it may be a good idea to switch to modification. One has more significant digits
with f, # 0 than with f = 0. The results displayed in Table 4 illustrate that, even for a minor
extra effort, in case of stability modification can be very successful.
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