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Abstract. The search for sets of good interpolation points is highly motivated by the fact that, due to the finite precision of
digital computers, valid results can only be expected when the interpolation problem is well-conditioned. The conditioning
of polynomial interpolation and of rational interpolation with preassigned poles is measured by the respective Lebesgue
constants. Here we summarize the main results with respect to the Lebesgue constant for polynomial interpolation and we
present the best Lebesgue constants in existence for rational interpolation with preassigned poles. The new results are based
on a fairly unknown rational analogue of the Chebyshev orthogonal polynomials. We compare with the results obtained in [1]
and [2].
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UNIVARIATE POLYNOMIAL INTERPOLATION

Let the function f belong to C([−1,1]). When approximating f by an element from a finite-dimensional Vn =
span{φ0, . . . ,φn} with φi ∈ C([−1,1]) for 0 ≤ i ≤ n, we know that there exists at least one element p∗n in Vn that is
closest to f . This element is the unique closest one if the φ0, . . . ,φn are a Chebyshev system. Since the computation of
this element is more complicated than that of the interpolant

n

∑
i=0

αiφi(x j) = f (x j), j = 0, . . . ,n, −1≤ x j ≤ 1,

scientists have looked for interpolation points x j that make the interpolation error∣∣∣∣∣
∣∣∣∣∣ f (x)−

n

∑
i=0

αiφi(x)

∣∣∣∣∣
∣∣∣∣∣

as small as possible. In this presentation we focus on the infinity or Chebyshev norm on the unit interval [−1,1].

1.1 Minimizing the interpolation error bound

When φi(x) = xi and f is sufficiently differentiable, then for the interpolant

pn(x) =
n

∑
i=0

αix
i,

satisfying pn(x j) = f (x j), 0≤ j ≤ n, the error || f − pn||∞ is bounded by

|| f − pn||∞ ≤ max
x∈[−1,1]

(
| f (n+1)(x)|
(n+1)!

)
max

x∈[−1,1]

n

∏
j=0
|x− x j|.

It is well-known that the monic (x−x0) · · ·(x−xn) is minimal if the x j are the zeroes of the (n+1)-th degree Chebyshev
polynomial Tn+1(x) = cos((n+1)arccosx).
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1.2 Minimizing the Lebesgue constant

The procedure that associates with f its interpolant pn is linear and given by

Pn : C([−1,1])→Vn : f (x)→ pn(x) =
n

∑
i=0

f (xi)�i(x)

where the basic Lagrange polynomials �i(x),

�i(x) =
n

∏
j=0, i�= j

x− x j

xi− x j
,

satisfy �i(x j) = δi j. Hence another bound for the interpolation error is given by

|| f − pn||∞ ≤ (1+ ||Pn||) || f − p∗n||∞, ||Pn||= max
x∈[−1,1]

n

∑
i=0

|�i(x)| .

Here Λn := Λn(x0, . . . ,xn) = ||Pn|| is called the Lebesgue constant and it depends on the location of the interpolation
points x j. An explicit formula for the x j that minimize the Lebesgue constant is not known, and if no further constraints
are imposed on the interpolation points then the solution is not even unique. But it is proved in [3] that the minimal
growth of the Lebesgue constant is given by (2/π) log(n+1)+(2/π)(γ + log(4/π))≈ (2/π) log(n+1)+0.52125 . . .
with γ the Euler constant.

Several node sets x0, . . . ,xn come close to realizing this minimal growth, among which the Chebyshev zeroes from
Section 1.1 and the Fekete points from Section 1.3. The node set known in closed form that approximates the optimal
node set best is probably the so-called extended Chebyshev node set given by

x j =−
cos
(
(2 j+1)π
2(n+1)

)
cos
(

π
2(n+1)

) , j = 0, . . . ,n. (1)

The division by cos(π/(2n+ 2)) guarantees that x0 = −1 and xn = 1. The growth of the Lebesgue constant for the
extended Chebyshev nodes is bounded by [4]

Λn(x0, . . . ,xn)<
2
π

log(n+1)+0.5829 . . . , n≥ 4.

1.3 Maximizing the Vandermonde determinant

Because the basic Lagrange polynomials are given by the quotient of two Vandermonde determinants, namely

�i(x) =
|V (x0, . . . ,xi−1,x,xi+1, . . . ,xn)|

|V (x0, . . . ,xn)|
, V (x0, . . . ,xi, . . . ,xn) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x0 . . . xn
0

...
...

1 xi . . . xn
i

...
...

1 xn . . . xn
n

⎞
⎟⎟⎟⎟⎟⎟⎠
,

it can be expected that the interpolation points maximizing the Vandermonde determinant |V (x0, . . . ,xn)| yield a small
Lebesgue constant. This node set is given by

(1− x2)
dLn

dx
(x) = 0,

or in other words by x0 = −1, xn = 1 and x1, . . . ,xn−1 the extrema of the n-the Legendre polynomial Ln(x) and is
known as the Fekete node set.
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2. RATIONAL INTERPOLATION WITH FIXED POLES

When moving to rational interpolation, the above conclusions do not hold anymore. For instance, rational interpolation
using the Chebyshev nodes may yield worse results than using equidistant interpolation points. As an example
we mention f (x) = arctan(3x) on [−1,1] with the numerator and denominator degrees of the rational interpolant
respectively equal to 5 and 4. In addition, the approximation and interpolation problems become nonlinear unless one
considers the case of a priori fixed poles as we do in this section. So let qm(x) = ∏m−1

k=0 (1−x/ξk) with ξk �∈ [−1,1] and
interpolate

pn(x j) = f (x j)qm(x j), j = 0, . . . ,n (2)

with pn(x)∈ span{1, . . . ,xn}. In the sequel we restrict ourselves to polynomials qm(x) having real coefficients, in other
words having poles that are real or appear in complex conjugate pairs.

2.1 Minimizing the interpolation error bound

With x j ∈ [−1,1] and ξk �∈ [−1,1] the rational interpolation error is bounded above by

∣∣∣∣
∣∣∣∣ f − pn

qm

∣∣∣∣
∣∣∣∣
∞

≤ max
x∈[−1,1]

(
|( f qm)

(n+1)(x)|
(n+1)!

)
max

x∈[−1,1]

n

∏
j=0

|x− x j|

|qm(x)|
.

The factor (x− x0) · · ·(x− xn)/qm(x) has minimal absolute value if the x j are the zeroes of the orthogonal rational
function Tn+1(x) that is defined as follows [5]. If n≥ m then we first complement the set of poles ξk with ξm = . . .=
ξn = ∞. Consider the Joukowski transform

J : C→ C : z→ J(z) =
1
2

(
z+

1
z

)
.

For x= J(z) also x= J(1/z) and so we restrict the inverse of the Joukowski transform to |z| ≤ 1. Now take ζk, 0≤ k≤ n
such that ξk = J(ζk) and define

B0(z) = 1, Bk(z) =
z−ζk−1

1−ζ k−1z
Bk−1(z), k = 1, . . . ,n,

T0(x) =

√
1
π
,

Tn+1(x) =

√
1−|ζn|2

2π

(
zBn(z)
1−ζnz

+
1

(z−ζn)Bn(z)

)
.

This orthogonal Chebyshev rational function has the preassigned poles ξk �∈ [−1,1] and so is different from the classical
Chebyshev rational function with coinciding poles in −1: Tn+1(x) is of the form pn+1(x)/qm(x).

2.2 Minimizing the Lebesgue constant

The rational interpolant can also be seen as an element of span{1/qm(x),x/qm(x), . . . , xn/qm(x)}. Since ξk �∈
[−1,1],0≤ k≤m−1 these functions form a Chebyshev system and hence the existence of the unique best approximant
and of the interpolant are both guaranteed. The operator Rn that associates with f the rational interpolant pn/qm with
preassigned poles is linear and so we can define the Lebesgue constant Mn := Mn(x0, . . . ,xn;ξ0, . . . ,ξm−1) = ||Rn||,

Mn = sup
|| f ||∞≤1

||Rn f ||∞ = max
x∈[−1,1]

n

∑
i=0

|qm(xi)�i(x)|
|qm(x)|

.

In [1] the authors determine the location of the poles ξk,0 ≤ k ≤ n− 1 that minimize the Lebesgue constant Mn
for given interpolation points x j,0≤ j ≤ n. In [2] the asymptotic behaviour of the Lebesgue constant Mn is given for
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equidistant nodes x j and

qn(x) =
n

∑
i=0

(−1)i
n

∏
j=0,i�= j

(x− x j) (3)

also defined in terms of the nodes. In both studies m = n and qn(x) has real coefficients. When using rational
interpolants with preassigned poles, none of the above situations is very practical. The location and the number of
the poles is usually determined by the nature of the function f that one is modelling. Hence optimal interpolation
points need to be found in terms of the poles and not vice versa.

Another practical drawback is the following. The values for Mn obtained in [1] are optimal in the sense that they are
minimal for the considered (x0, . . . ,xn;ξ0, . . . ,ξn−1) combination: changing either the poles or the interpolation points
may increase Mn. Hence these values provide the rational analogue of the minimal growth behaviour in the polynomial
case. Note that neither these optimal poles ξ1, . . . ,ξn−1 nor the minimal value for Mn are known by an explicit formula.
All are obtained from the solution of a hefty optimization problem.

Our aim is to present a node set that doesn’t suffer from the mentioned drawbacks: we give interpolation points that
are nearly optimal for given arbitrary poles outside the interval of interpolation instead of vice versa, and our points
can easily be obtained from a generalized eigenvalue problem [6]. We make use of the formulas from Section 2.1.

If the preassigned finite poles ξk are real or appear in complex conjugate pairs, then for n+1≥m the zeroes of Tn+1(x)
are real, simple and belong to (−1,1) [5]. These zeroes are the rational counterpart of what the Chebyshev nodes are
in the polynomial case and hence are suitable interpolation points for (2). And as with other orthogonal functions,
they can be obtained from a generalized eigenvalue problem. Unless there is a pole ξk at a very small distance of the
interval [−1,1], the maximum value of the Lebesgue function

∑n
i=0 |qm(xi)�i(x)|
|qm(x)|

is not obtained near the endpoints of the interval. Hence extending the points as in the polynomial case to place x0 in
−1 and xn in +1 usually makes no sense.

In Figure 1 we compare

• (full line) the nearly optimal Lebesgue constant Λn(x0, . . . ,xn) for polynomial interpolation using the extended
Chebyshev nodes (1),

• (◦) the Lebesgue constant Mn(x0, . . . ,xn;ξ0, . . .ξn−1) for the Chebyshev nodes x j = −cos((2 j + 1)π/(2n+ 2))
with qn(x) and the ξk given by (3),

• (�) the Lebesgue constant Mn(x0, . . . ,xn;ξ0, . . .ξn−1) for equidistant interpolation points x j =−1+ j/n and with
qn(x) and ξk determined by (3),

• (+) the optimal Lebesgue constant obtained in [1] for the case of equidistant interpolation points and optimally
associated poles ξk,

• and our approach (�), where we take the ξk from the same polynomial (3) to be comparable, but take the
interpolation points for (2) from Tn+1(x) = 0.

In Figure 2 we present, from left to right, the Lebesgue functions for n = 10 associated with the Lebesgue constants
indicated by +, �, � respectively.

Note that the rational interpolants with preassigned poles all generate Lebesgue constants that are very comparable
to the one from the (almost) optimal polynomial interpolant. This comes in addition to the well-known ease of
rational interpolation to fit steep changes and asymptotic bahaviour and its tendency to oscillate less inbetween
interpolation points than polynomials. And the new technique allows to determine good interpolation points for any set
of preassigned poles {ξ0, . . . ,ξm−1}, also for m < n and not only for those determined by (3). Also, the new technique
leads to smaller Lebesgue constants Mn than the ones from [2].

The latter is better illustrated in the Tables 1 and 2 where we show the variation between

• on the one hand the Lebesgue constants of the linear rational interpolation (2) using equidistant (M�

n ), Chebyshev
(M◦

n ) or extended Chebyshev nodes (M•
n ), and

• on the other hand the Lebesgue constant from our technique (M�
n ) that takes the interpolation points from

Tn+1(x) = 0.
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FIGURE 1.

FIGURE 2.

In Table 1 we placed two poles at ±1.001 and we choose the remaining poles randomly in [−50,−1[∪]1,50]. For M�
n

we extended the zeroes to put x0 in−1 and xn in +1. In Table 2 all poles were complex conjugate pairs with real part in
[−1,1] and imaginary parts ±0.01. Here we did not use extended nodes for M�

n . The displayed results are typical. The
rate of growth is different between the situation illustrated in Table 1 and the one illustrated in Table 2. In the former
the extended Chebyshev nodes maintain a rather modest rate of growth while the Chebyshev nodes generate a clearly
faster growth and the equidistant nodes cause an explosion of the Lebesgue constant. In the latter both Chebyshev
sets perform equally bad. We stress that in [2] and [1] the poles ξk are preassigned but dictated by the interpolation
procedure. In our approach the poles are freely preassigned and the interpolation points are adapted as in Section 2.1.
In this more general setting our method offers a clear advantage.

In Figure 3 we graph the Lebesgue functions for n = 10 associated with the Lebesgue constants M�
10,M

•
10,M

�

10 of Table
1 respectively.

2.3. Maximizing the determinant of the Haar system

The rational interpolant pn/qm is a linear combination of the φi = xi/qm(x),0≤ i≤ n and therefore can be expressed
as

pn

qm
(x) =

n

∑
i=0

f (xi)λi(x),

TABLE 1.

M�
10 2.491×100 M�

20 3.006×100

M•
10 2.017×101 M•

20 7.743×101

M◦
10 3.586×102 M◦

20 4.846×102

M�

10 4.943×102 M�

20 5.354×105
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TABLE 2.

M�
10 3.515×100

M•
10 2.714×104

M◦
10 2.971×104

M�

10 1.702×109

FIGURE 3.

where the basic rational interpolants λi(x) equal the quotient of determinants

λi(x) =
|H(x0, . . . ,xi−1,x,xi+1, . . . ,xn)|

|H(x0, . . . ,xn)|
, H(x0, . . . ,xi . . . ,xn) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/qm(x0) . . . xn
0/qm(x0)

...
...

1/qm(xi) . . . xn
i /qm(xi)

...
...

1/qm(xn) . . . xn
n/qm(xn)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4)

The rational function λi(x) satisfies λi(x j) = δi j and further equals qm(xi)�i(x)/qm(x). Maximizing the value of
|H(x0, . . . ,xn| is an unsolved problem that may provide another explicitly knowns node set.

3. CONCLUSION

The (extended) zeros of the orthogonal rational function Tn+1(x) constructed in Section 2.1 provide interpolation
points for rational interpolation with poles prescribed by qm(x) = 0,m ≤ n+ 1, that are as good as the (extended)
Chebyshev zeroes for polynomial interpolation. In the case of poles close to the interval of interpolation, they clearly
outperform all other proposed sets of interpolation points.
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