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SPARSE MULTIDIMENSIONAL EXPONENTIAL ANALYSIS
WITH AN APPLICATION TO RADAR IMAGING\ast 
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Abstract. We present a d-dimensional exponential analysis algorithm that offers a range of
advantages compared to other methods. The technique does not suffer the curse of dimensionality
and only needs O((d + 1)n) samples for the analysis of an n-sparse expression. It does not require
a prior estimate of the sparsity n of the d-variate exponential sum. The method can work with
sub-Nyquist sampled data and offers a validation step, which is very useful in low SNR conditions.
A favorable computation cost results from the fact that d independent smaller systems are solved
instead of one large system incorporating all measurements simultaneously. So the method easily
lends itself to a parallel execution. Our motivation to develop the technique comes from 2-D and
3-D radar imaging and is therefore illustrated on such examples.
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1. Introduction. Over the past few years multidimensional exponential analysis
has attracted considerable attention from researchers trying to solve the problem from
the theoretical minimal number of samples, which equals the product of n, the number
of terms in the multivariate exponential sum (2.1), and d + 1, where d indicates
the dimension (see, among others, [10, 30, 11]). Contrary to other approaches, the
method presented in [10] does not need a full d-dimensional grid of data, nor does
it require the solution of the full-size structured generalized eigenvalue problem and
linear system of interpolation conditions. Instead, in [10] the linear algebra problems
are split up into smaller better conditioned problems. In this paper, we develop a
reliable numerical implementation, making use of this divide-and-conquer approach
and adding a sub-Nyquist sparse sampling feature to the basic theory to deal with
noisy data, tackle numerical sensitivity in case of closely spaced exponential terms,
offer output validation, and provide automatically a reliable estimate of n, the total
number of terms.

Multidimensional exponential analysis is a fundamental inverse problem in signal
processing, appearing in magnetic resonance spectroscopy, MIMO radar, sonar, wire-
less communication, antenna array processing, sensor networks, RFID, GNSS, and
automotive radar, to name just a few. It is also the basis of inverse synthetic aperture
radar (ISAR) imaging, where the challenge is to extract high resolution information
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from noisy data, optimally using a cost effective algorithmic solution rather than an
expensive advanced radar system. This application will serve as a guiding example
throughout the paper.

ISAR imaging is a system that consists of a real-aperture radar emitting a se-
quence of high frequency bursts, and a moving target in the far field of the radar,
causing backscattering. When the target is hit by an electromagnetic wave, a limited
number of locations on the object, such as edges and surface discontinuities, scatter
the energy back toward the observation point. The locations of these concentrated
sources of scattered energy are called scattering centers, each of which can be described
by a multivariate complex exponential. ISAR is widely used and plays an important
role in target identification, commercial aircraft classification, military surveillance,
and the like.

So the scattering center model in ISAR consists of a finite linear combination
of complex exponentials that describe the different scattering centers of the radar
target, where the number of these scattering centers is considerably lower than the
number of image pixels. Although the model is both simple and sparse, the inverse
problem of reliably extracting the location of the scattering centers is rather sensitive
to noise [37]. Therefore, the problem has generated a lot of research, which we roughly
summarize below.

Fourier-based methods require a large densely sampled 2-dimensional (2D) or
3-dimensional (3-D) data set, which may require a relatively long time to collect.
Also, these techniques are limited by the dilemma of time versus frequency resolution
and cannot distinguish closely spaced scatterers, as mentioned in [20]. So several re-
searchers have turned their attention to Prony-like spectral estimation or exponential
analysis algorithms. In [27] the authors also conclude that the latter are much more
accurate than Fourier based methods. But the performance of exponential analysis
methods can be seriously affected by a low signal-to-noise ratio (SNR), leading to
misclassifying noise as signals.

Here we present another Prony-like technique which allows one to overcome this
drawback. Here, the number of scatterers must not be estimated a priori, as pointed
out in [1] for other parametric methods. In addition, the new technique does not suffer
the well-known curse of dimensionality. A d-dimensional exponential analysis of an n-
term model can now be carried out from a mereO((d+1)n) regularly collected samples,
substantially fewer than in other Prony-based methods [28, 37, 30, 16, 24, 26], where
the sample usage explodes exponentially. In [37] the entailed complexity of these
numerical algorithms is improved by the use of a slicing technique. The computation
cost of the new method here compares much more favorably, as we solve several smaller
systems instead of one large system dealing with all measurements at the same time.

The theory of compressive sensing also works with sparsely located data, which
are, however, collected randomly instead of regularly. Moreover, in radar imaging the
results may be severely affected if the scattering centers on the target do not match
the prediscretized scene grid, which makes up the dictionary [5]. We emphasize that
methods of the Prony family do not work with a discretized grid and hence do not
suffer from this drawback.

Other optimization based ISAR techniques include genetic and evolutionary al-
gorithms [19, 6]. While they are quite robust and can work completely automatically,
without estimation of the model order, they require a lot of computation time, a
disadvantage shared by most optimization based methods. Several 2-D compressive
sensing or other optimization approaches [34, 36, 1] may not be feasible in higher
dimensions.
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The paper is organized as follows. The proposed d-dimensional exponential analy-
sis is presented in section 2. Further validation of the computed results, which proves
to be very useful when working with low SNR, is introduced in section 3. The details
of the exponential model governing ISAR imaging are given in section 4, together with
a first application and comparison of the new method to [16]. A way to recondition
and subsequently regularize the d-dimensional exponential analysis is explained in sec-
tion 5. The full-blown method, including validation and reconditioning, is illustrated
in section 6, where it is further compared to [30]. Among the existing d-dimensional
exponential analysis generalizations, we chose to compare our 2-D and 3-D numerical
illustrations to [16] and [30] for the following reasons. In section 4.2 we use the 2-D
Prony-like algorithm MEMP from [16] to illustrate the need for an automatic pairing of
the separately computed 1-dimensional (1-D) results, as made available by the new
method. In section 6 the multidimensional ESPRIT algorithm from [30] illustrates the
importance of obtaining an automatic estimation of the sparsity n, considered to be
a difficult problem but which we solve here.

2. Multidimensional exponential analysis. The problem of d-dimensional
exponential analysis consists of retrieving the linear parameters \alpha j \in \BbbC and the
nonlinear parameters \phi j \in \BbbC d in the exponential model

f(x) =

n\sum 
j=1

\alpha j exp (\langle \phi j , x\rangle ) , x = (x1, . . . , xd), \phi j = (\phi j1, . . . , \phi jd)(2.1)

from as few function samples as possible. Until recently, algorithms to solve the
problem required a number of samples on the order of O(nd) [16, 18, 24, 26] or O(2dn)
[30] or at most (d+ 1)n2 log2d - 2 n [31], all growing exponentially with the dimension
of the problem statement. In this section we present a reliable implementation which
is based on [10] and requires only O((d+ 1)n) regularly gathered samples.

Let \Delta 1 = (\Delta 11, . . . ,\Delta 1d) \not = (0, . . . , 0) and [22, 32]

| \Im (\langle \phi j ,\Delta 1\rangle )| < \pi , j = 1, . . . , n,(2.2)

where the function \Im (\cdot ) returns the imaginary part of a complex number. Let us
sample f(x) at the points s\Delta 1:

Fs := f(s\Delta 11, . . . , s\Delta 1d), s = 0, . . . , 2n - 1.(2.3)

For simplicity we also assume that the sampling direction \Delta 1 is such that the values
exp(\langle \phi j ,\Delta 1\rangle ), j = 1, . . . , n, are mutually distinct. The way to deal with collisions in
these values is described in [10].

The expressions exp(\langle \phi j ,\Delta 1\rangle ), j = 1, . . . , n are retrieved as the generalized eigen-
values \lambda j of the problem

(2.4)

\left(     
F1 F2 \cdot \cdot \cdot Fn

F2 \cdot \cdot \cdot Fn+1

...
...

Fn Fn+1 \cdot \cdot \cdot F2n - 1

\right)     vj = \lambda j

\left(     
F0 F1 \cdot \cdot \cdot Fn - 1

F1 \cdot \cdot \cdot Fn

...
...

Fn - 1 Fn \cdot \cdot \cdot F2n - 2

\right)     vj ,

vj \in \BbbC n,

where the vj denote the right eigenvectors. For the sake of completeness and for use
further on, we point out that the upper left element in the left- and right-hand side
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matrices need not carry the indices 1 and 0, respectively. We can start with a higher
index number instead of 0, as long as we have 2n consecutive samples lined up in (2.4)
[7]. So the sampling of f(x) in the direction of \Delta 1 need not start at the origin.

In applications, the generalized eigenvalue problem (2.4) is often solved as part
of a classic 1-D exponential analysis algorithm. In our numerical illustrations we use
the matrix pencil method studied in [17, 35] combined with the rank reduction step
described in [29]. In the literature this combination is often referred to as the ESPRIT
method, although the rank reduction is performed on the Hankel matrices directly
instead of the covariance matrices. For the practical details concerning this aspect,
the reader is referred to sections 4 and 6. In sections 2, 3, and 5 the mathematical
backbone of the new method is developed.

Because of (2.2), we can uniquely recover the inner products

\Phi j := \langle \phi j ,\Delta 1\rangle , j = 1, . . . , n,(2.5)

from the computed exp(\Phi j). Although we have not yet identified the individual
\phi ji, j = 1, . . . , n, i = 1, . . . , d, nothing prevents us from already computing the linear
coefficients \alpha j from the 2n\times n Vandermonde problem\left(     

1 \cdot \cdot \cdot 1
exp(\Phi 1) \cdot \cdot \cdot exp(\Phi n)

...
...

exp((2n - 1)\Phi 1) \cdot \cdot \cdot exp((2n - 1)\Phi n)

\right)     
\left(   \alpha 1

...
\alpha n

\right)   =

\left(   F0

...
F2n - 1

\right)   .(2.6)

Note that (2.6) reduces to a square Vandermonde system in the noisefree case, because
then n of the linear equations are linearly dependent as a consequence of the fact that
the values exp(\Phi j) already satisfy (2.4).

In order to extract the \phi ji, j = 1, . . . , n, i = 1, . . . , d, from the \Phi j , j = 1, . . . , n,
still under the assumption that the values exp(\Phi j), j = 1, . . . , n, are mutually distinct,
some extra samples are required. We choose an additional d - 1 linearly independent
vector \Delta 2, . . . ,\Delta d such that the set \{ \Delta 1,\Delta 2, . . . ,\Delta d\} is a basis. The additional sam-
ples are then taken along a linear combination of \Delta 1 and some \Delta i, i = 2, . . . , d:

Fsi := f(s\Delta 1 +\Delta i), s = 0, . . . , n - 1, i = 2, . . . , d.(2.7)

Note that only n additional samples are taken per \Delta i-shift, and that they are placed
equidistantly along independent shifts \Delta i with respect to the original vector \Delta 1. At
the same time we assume the Nyquist constraint [22, 32]

| \Im (\langle \phi j ,\Delta i\rangle )| < \pi , j = 1, . . . , n, i = 2, . . . , d.(2.8)

We call vectors \Delta i, i = 2, . . . , d identification shifts because they will allow one to
identify the individual \phi ji in the computed \Phi j from samples taken at shifted locations.
For this last step we make use of the fact that the \phi ji appear linearly in the \Phi j .

For i fixed, the additional samples Fsi can be written as

Fsi = f(s\Delta 1 +\Delta i) =

n\sum 
j=1

\alpha j exp (\langle \phi j ,\Delta i\rangle ) exp (\langle \phi j , s\Delta 1\rangle ) , s = 0, . . . , n - 1,

=

n\sum 
j=1

Aji exp (s\Phi j) , Aji = \alpha j exp (\langle \phi j ,\Delta i\rangle ) .
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So for i fixed, the Aji, j = 1, . . . , n, are obtained from the Vandermonde system\left(     
1 \cdot \cdot \cdot 1

exp(\Phi 1) \cdot \cdot \cdot exp(\Phi n)
...

...
exp((n - 1)\Phi 1) \cdot \cdot \cdot exp((n - 1)\Phi n)

\right)     
\left(   A1i

...
Ani

\right)   =

\left(   F1i

...
Fni

\right)   (2.9)

for which the coefficient matrix is part of the Vandermonde structured coefficient
matrix in (2.6). From the Aji and the \alpha j we obtain for i fixed

Aji

\alpha j
= exp (\langle \phi j ,\Delta i\rangle ) , j = 1, . . . , n,(2.10)

where in what follows we denote

\Phi ji := \langle \phi j ,\Delta i\rangle , j = 1, . . . , n.

Note that we have no problem pairing the \Phi ji to the \Phi j , j = 1, . . . , n since for each
i the Aji are paired to the \alpha j , j = 1, . . . , n, through the Vandermonde systems (2.6)
and (2.9).

These Aji and exp(\Phi ji) can be computed for each i = 2, . . . , d. The fact that the
vectors \Delta 1 and \Delta i, i = 2, . . . , d are linearly independent then leads for each separate
j = 1, . . . , n to the d\times d regular linear system\left(     

\Delta 11 \cdot \cdot \cdot \Delta 1d

\Delta 21 \cdot \cdot \cdot \Delta 2d

...
...

\Delta d1 \cdot \cdot \cdot \Delta dd

\right)     
\left(   \phi j1

...
\phi jd

\right)   =

\left(     
\Phi j

\Phi j2

...
\Phi jd

\right)     (2.11)

from which the individual \phi ji, j = 1, . . . , n, i = 1, . . . , d are computed.
So all unknowns in (2.1) can be obtained at the expense of 2n evaluations Fs

in (2.3) and (d  - 1)n evaluations Fsi in (2.7), or a mere total of (d + 1)n samples.
In practice, when dealing with noisy data, the value of n is overestimated by \eta >
n, as discussed in the next section. The minimal number of samples in an \eta -term
exponential model of the form (2.1), in the directions \Delta 1 and \Delta i, i = 2, . . . , d, which
are, respectively, 2\eta and \eta , is often again overestimated by N \geq 2\eta and n \geq \eta . The
square n \times n generalized eigenvalue problem (2.4), the 2n \times n Vandermonde system
(2.6), and the n \times n Vandermonde system (2.9) then, respectively, take the sizes
(N  - \eta )\times \eta ,N \times \eta , and n\times \eta and are all solved in the least squares sense. Sometimes
some of the samples are used in a preprocessing step, such as the computation of an
intermediate (N - \eta )\times \nu structured lower rank approximation to the Hankel matrices,
where \nu < \eta .

In the next sections we describe how this technique is combined with convergence
theorems from approximation theory on the one hand and sparse interpolation from
computer algebra on the other hand, in order to do the following:

\bullet filter unstructured noise in the data out of the structured exponential model
(2.1) via a connection to Pad\'e approximation theory;

\bullet automatically deduce and validate the sparsity n of expression (2.1), which
is usually regarded to be a hard problem;

\bullet separate exponential components that are contained in a cluster of similar
components, using a connection with sparse interpolation;

\bullet and as a result of all of the above, tighten the numerical estimates for the
parameters \phi j and \alpha j in case of a low SNR.
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3. Connection with Pad\'e approximation: Validation. From the theoreti-
cal mathematical presentation in section 2, we now switch to the practical situation
where the samples Fs and Fsi are contaminated by noise. For the reliable computa-
tion of the parameters \phi j and \alpha j we need to add some steps to the algorithm. The
first change is that we are going to interpret the samples as if they are coming from
an \eta -term exponential model of the form (2.1), where \eta > n is a safe overestimate of
n. A connection with Pad\'e approximation theory will then allow us to separate the
noise from the actual signal content.

Consider the function

f(z) =

\infty \sum 
s=0

Fsz
s.

With Fs given by (2.3) we can write [33, 2]

f(z) =

n\sum 
j=1

\alpha j

1 - exp(\Phi j)z
.(3.1)

The partial fraction decomposition (3.1) is related to the 1-D Laplace transform and
the Z-transform of (2.1), where the inner product \langle \phi j , x\rangle is regarded as the unknown.
It is a rational function of degree n  - 1 in the numerator and degree n in the de-
nominator with poles 1/ exp(\Phi j). Now let us perturb f(z) with Gaussian noise to
obtain

f(z) + \epsilon (z) =

\infty \sum 
s=0

(Fs + \epsilon s)z
s.

The theorem of Nuttall--Pommerenke states that if f(z) + \epsilon (z) is analytic throughout
the complex plane, except for a countable number of poles [21] and essential singu-
larities [25], then its sequence of Pad\'e approximants \{ r\eta  - 1,\eta (z)\} \eta \in \BbbN of degree \eta  - 1
over \eta converges to f(z) + \epsilon (z) in measure on compact sets. This means that for
sufficiently large \eta , the measure of the set where the convergence is disrupted, so that
| f(z) + \epsilon (z)  - r\eta  - 1,\eta (z)| \geq \tau for some given threshold \tau , tends to zero as \eta tends to
infinity. Pointwise convergence is disrupted by \eta  - n unwanted pole-zero combinations
of the Pad\'e approximants that are added to the n true poles and n  - 1 true zeros
of f(z) [13, 15], the pole and zero in the pair almost cancelling each other locally.
These pole-zero combinations are referred to as Froissart doublets. In practice, these
Froissart doublets offer a way to separate the noise \epsilon (z) from the underlying f(z)
[14, 15]. Because of the Pad\'e convergence theorem, the n true (physical) poles are
identified as stable poles in successive r\eta  - 1,\eta (z), while the \eta  - n spurious (noisy) poles
are distinguished by their instability. For different \eta [3, 23]:

\bullet the noisy poles lie scattered in the area around the complex unit circle, as
welll as for every different realization of the noise \epsilon (z);

\bullet and the true poles exp( - \Phi j), j = 1, . . . , n are forming clusters so that around
each exp( - \Phi j) cluster there is an almost Froissart doublet-free zone.

This characteristic of the true poles is precisely the key point on which our method
is based. After the computation of \eta > n generalized eigenvalues \lambda j = exp(\Phi j), we
discard the unstable ones and focus on the stable ones. Note the following:

\bullet In order to safely rely on this convergence result, it is clear that \eta should be
sufficiently large, as the result is more numerically accurate for \eta large. We
usually take \eta to be a multiple of (the so far unknown) n.
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\bullet To decide which generalized eigenvalues are the unstable ones, the computa-
tional scheme needs to be repeated a number of times with different sets of
N + (d - 1)n data, which can be achieved as follows.

We discuss the sampling along the \Delta 1 direction first. Instead of collecting Fs, s =
0, . . . , N  - 1, in the direction of \Delta 1, we collect some additional Fs, s = 0, . . . , N +
(\kappa  - 1)\lfloor pN\rfloor  - 1. Here 0 \leq p \leq 1 and 1 \leq \kappa \in \BbbN . From these samples we construct \kappa 
snapshots of N samples each, snapshot number k = 0, . . . , \kappa  - 1, starting at k\lfloor pN\rfloor ,
with an overlap of roughly (1 - p)N points with the previous and the next snapshot.
The case when p = 0 and \kappa = 1 delivers the single snapshot situation of the previous
section.

When putting all \kappa \eta generalized eigenvalues of the \kappa different eigenvalue problems
(2.4) together, then theoretically \kappa n of them cluster together in n clusters of each \kappa 
elements, and the other \kappa (\eta  - n) generalized eigenvalues lie scattered around as they
do not reflect true terms in the exponential model (2.1). Of course, the noise may
be such that the method does not work perfectly and that in an apparent cluster of
somewhat less than \kappa elements are found. We therefore accept a cluster as soon as a
sufficiently large fraction of the \kappa expected elements is found.

In the numerical examples we found it most useful to use a density-based cluster
analysis such as DBSCAN [12]. The DBSCAN implementation requires two parameters:
the density \delta of the clusters and the minimum numberm\delta of required cluster elements.
These parameters are chosen in terms of the noise in the signal:

\bullet Larger values of \delta allow the detection of wider clusters, for instance in cases
of a higher noise level. Smaller values of \delta lead to denser clusters with very
stable estimates for the generalized eigenvalues, for instance in cases of lower
levels of noise.

\bullet A value form\delta smaller than \kappa allows one to discard bogus estimates appearing
as a consequence of outliers in the data or too high noise levels. It makes
perfect sense, depending on the application, to relax m\delta to, for instance,
\kappa  - 1, \kappa  - 2 or \lfloor 0.9\kappa \rfloor , \lceil 0.8\kappa \rceil .

A very desirable side result of the technique described in this section is the fact that
the method automatically reveals the true number n of terms in the expression (2.1)
underlying all the samples: n equals the number of clusters detected by the cluster
analysis.

It remains to discuss the sampling along the linearly independent shifts of \Delta 1.
Here also, the data set needs to be enlarged in order to support the processing of \kappa 
snapshots. So at most we collect for each i = 2, . . . , d the samples Fsi, s = 0, . . . , n+
(\kappa  - 1)\lfloor pN\rfloor  - 1 (for some choices of the parameters N,\kappa , n, p not all consecutive
samples are used). Remember that each of the computed \Phi ji, j = 1, . . . , \eta , i = 2, . . . , d,
is connected to its \Phi j , j = 1, . . . , \eta , from the solution of the generalized eigenvalue
problem (2.4). For i fixed, we therefore know which \Phi ji are linked to a cluster element
\Phi j and which belong to a scattered \Phi j . When taking the m\delta values \Phi ji together that
are linked to a cluster element \Phi j , then we can improve the estimate for \Phi ji, j =
1, . . . , n, i = 2, . . . , d, by considering the center of gravity of the m\delta values \Phi ji that go
together. As the \Phi ji are obtained from the solution of two Vandermonde structured
linear systems through (2.10), their estimates are usually found to be somewhat less
accurate than the estimates computed for the clustered \Phi j .

Analysis of the \Phi ji values when taking \kappa snapshots can also serve an additional
purpose. Sometimes it is useful to run DBSCAN a consecutive number of times with
increasing values for \delta . In this way, very condensed clusters are detected right from
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the start, and more relaxed clusters are picked up in some later run. In case \delta is
relaxed too much, an inspection of the (at least) m\delta values \Phi ji associated with the
(at least) m\delta estimates for a particular \Phi j in the candidate cluster helps to accept or
refute the relaxed cluster. The latter can be done by looking at the spread (standard
deviation) of the associated \Phi ji. If this exceeds an acceptable threshold, the candidate
cluster is rejected. So while a cluster of m\delta estimates for some \Phi j is ``identified,"" it
is ``confirmed"" by the analysis of the m\delta associated values \Phi ji as well as for each
i = 2 . . . , d.

Let us illustrate the procedure described in sections 2 and 3 on some small-scale
numerical examples. In section 5 we further explain how to deal with the situation
where some of the clusters around the true \Phi j , j = 1, . . . , n partially overlap, for
instance because of very similar \phi j , j = 1, . . . , n in the exponential model (2.1).

4. Application to ISAR imaging. High frequency scattering toward an ob-
servation point is often modeled by means of a finite number of concentrated sources
of scattering energy, also called scattering centers. A radar signal backscattered from
a far-field target with n scattering centers at locations (xj , yj , zj), j = 1, . . . , n, in
a cartesian coordinate system, is then decomposed into n contributions, each with a
different phase and magnitude.

Assume the radar system emits a signal at frequency \omega h in the direction or line
of sight with azimuth angle \theta g and elevation angle \phi m. The backscattered signal
f(h, g,m) with (h, g,m) \in \BbbR 3

+ is approximated by the following sum of complex
exponentials:

f(h, g,m) \approx 
n\sum 

j=1

\beta j exp

\biggl( 
 - 4\pi i

c
(\omega hxj + \omega c\theta gyj + \omega c\phi mzj)

\biggr) 
,(4.1)

where \beta j is the scattering amplitude of the jth scattering center, c is the speed of
light, \omega c is the central frequency \omega c = (\omega 0 + \omega (N - 1)h)/2, and the parameters \omega h, \theta g,
and \phi m are defined by

\omega h = \omega 0 + h\delta \omega , \theta g = \theta 0 + g\delta \theta , \phi m = \phi 0 +m\delta \phi .

The remaining values \omega 0, \theta 0, \phi 0 and \delta \omega , \delta \theta , \delta \phi are set by the user and are system
dependent. We rewrite the exponential model (4.1) as

f(h, g,m) \approx 
n\sum 

j=1

\alpha j exp

\biggl( 
 - 4\pi i

c
(h\delta \omega xj + \omega cg\delta \theta yj + \omega cm\delta \phi zj)

\biggr) 
,

\alpha j = \beta j exp

\biggl( 
 - 4\pi i

c
(\omega 0xj + \omega c\theta 0yj + \omega c\phi 0zj)

\biggr) 
.

By means of the Prony-like method presented in section 2, the computation of the un-
known scattering locations (xj , yj , zj), j = 1, . . . , n and the unkown scattering ampli-
tudes \beta j , j = 1, . . . , n is then neatly separated, with the scattering locations delivered
first after applying (2.9) and (2.10).

4.1. 3-dimensional illustration of the new algorithm. To illustrate the
method on a synthetic small-scale 3-D example, we consider the 29-term exponential
expression (4.1), with (xj , yj , zj) and \beta j given in Table 1. We further set the following
radar parameters:

\omega 0 = 7.9GHz, \delta \omega = 0.0015GHz,

\theta 0 = \phi 0 =  - 0.024, \delta \theta = \delta \phi = 3.75\times 10 - 4.
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Table 1
29-term 3-D ISAR problem.

j xj yj zj \beta j j xj yj zj \beta j

1 -9.25 0.77 -9.10 53.40 16 -0.59 -8.07 2.44 38.80
2 -8.51 0.77 -7.34 52.50 17 1.93 9.00 4.18 37.6
3 -7.75 0.77 -5.65 51.30 18 1.93 7.22 4.18 36.90
4 -5.15 2.99 -3.19 50.60 19 1.93 -8.07 4.18 35.70
5 -5.15 -2.55 -3.19 49.30 20 1.93 -6.22 4.18 34.90
6 -4.31 4.33 -1.85 48.20 21 2.99 0.77 4.18 33.80
7 -4.31 -4.11 -1.85 47.50 22 4.46 0.77 5.50 32.60
8 -2.61 7.22 0.59 46.30 23 5.87 2.99 6.55 31.50
9 -2.61 -6.22 0.59 45.70 24 5.87 -2.55 6.55 30.80
10 -0.59 9.00 2.44 44.40 25 7.02 2.99 7.52 29.90
11 -0.59 4.33 2.44 43.20 26 7.02 -2.55 7.52 28.70
12 -0.59 2.99 2.44 42.00 27 8.67 2.99 8.42 27.60
13 -0.59 -0.80 2.44 41.20 28 8.67 0.77 8.42 26.50
14 -0.59 -2.55 2.44 40.50 29 8.67 -2.55 8.42 25.10
15 -0.59 -4.11 2.44 39.60

We choose (for no specific reason, except that (2.2) and (2.8) need to be satisfied): the
linearly independent vectors \Delta 1 = (1.17, 0.7, 1.87),\Delta 2 = ( - 1.00, - 1.00, - 1.00),\Delta 3 =
( - 2.10, 1.20, 3.29) as basis vectors for all (h, g,m), and furthermore, N = 450, \nu =
150, \eta = 100, n = 450, \kappa = 10, p = 0.1, and start the collection of the required samples.
To each evaluation of (4.1) we add a Gaussian noise term of a fixed prechosen SNR
(in dB). So

Fs = f(s\Delta 1) + \epsilon s, s = 0, . . . ,M  - 1 := N + (\kappa  - 1)\lfloor pN\rfloor  - 1,

Fs2 = f(s\Delta 1 +\Delta 2) + \epsilon M+s, s = 0, . . . ,m - 1 := n+ (\kappa  - 1)\lfloor pN\rfloor  - 1,

Fs3 = f(s\Delta 1 +\Delta 3) + \epsilon M+m+s, s = 0, . . . ,m - 1.

With our choices for the parameters, we sample at 855 points in the direction of \Delta 1

and another 855 at each of the shifted locations s\Delta 1 +\Delta i, i = 2, 3, or a total of 2565
points. This number is in sharp contrast with even the simplest (\Delta 1,\Delta 2,\Delta 3)-grid
structured data set of 35\times 35\times 35 = 42875 points, where we choose 35 as a very mild
overestimate of n = 29. In addition, a d-dimensional algorithm departing from a grid
structured data set [16] does not offer any of the advantages we have discussed so far,
among which are as follows:

\bullet the natural pairing of \Phi ji, i = 2, . . . , d to \Phi j , j = 1, . . . , n,
\bullet the automatic detection of the sparsity n, and
\bullet the validation of the computed locations (xj , yj , zj).

In Figure 1 we show the DBSCAN result for SNR = 10 dB, withm\delta = \kappa  - 2 and \delta varying
over 5\ell \times 10 - 4, \ell = 0, . . . , 4; among the 1000 computed generalized eigenvalues (\eta =
100, \kappa = 10) 29 clusters are indicated in color. They identify the stable generalized
eigenvalues which were detected and confirmed by the algorithm outlined in section
2. None of the groups of m\delta associated values exp(\Phi ji), j = 1, . . . , 29, i = 2, 3 exhibits
a standard deviation larger than 0.25.

We also run the above example for varying noise levels, from 40 dB SNR to 5
dB SNR, now with \kappa = 20, and each experiment repeated 100 times as the noise is
randomly generated. In Figure 2 we show the average true cluster radius over the 29
scattering locations for the generalized eigenvalues exp(\Phi j) with m\delta = \kappa  - 2. This
true radius is computed a posteriori with the exact exp(\Phi j) in the center. In Figure 3
we show, respectively, at the left and the right for i = 2, 3 the average cluster radius
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Fig. 1. The 29 clusters (red) identified by DBSCAN (left) and a zoom (right) on the stable
clustered (red) versus the unstable scattered (grey) generalized eigenvalues. (Figure in color online.)

over the 29 scattering locations for the \kappa  - 5 estimates closest to the true associated
exp(\Phi ji). With \kappa = 20, a ratio of \kappa  - 5 over the maximum number m\delta of associated
elements still represents 83.3\% of the associated values. In Figures 2 and 3 we also
show the smallest and largest cluster radius (dashed lines)---they differ by a factor of
about 2. It is quite clear that the computation of the exp(\Phi j) is more accurate than
that of the exp(\Phi ji). The estimates of the latter can be tightened, but this is not
really important at this point.

5 10 15 20 25 30 35 40
SNR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ra
di

us

×10-3

Fig. 2. Average radius of the exp(\Phi j), j = 1, . . . , 29 clusters.

4.2. 2-dimensional illustration of the validation aspect. In another ex-
periment we consider the 2-D example with 12 scattering centers (xj , yj) from Table
2. The dimension is reduced from three to two for the sole reason that in our figures
we want to use the third dimension to graph the impact of the SNR. The radar pa-
rameters \omega 0, \theta 0 and \delta \omega , \delta \theta are as in section 4.1. We further take N = 150, \nu = \eta =
50, n = 100, \kappa = 11, p = 0.054, and \Delta 1 = (1.38, 4.14),\Delta 2 = ( - 7.56, 5.67).

In order to reduce the cluster radius in the shift direction \Delta 2 we perform the shift
a number of times, over \Delta 2, 2\Delta 2, . . . , 8\Delta 2, and combine the results, since for s fixed,

f(s\Delta 1 +m\Delta 2) =

n\sum 
j=1

\alpha j exp(\langle \phi j ,m\Delta 2\rangle ) exp(\langle \phi j , s\Delta 1\rangle ).
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Fig. 3. Average radius of the exp(\Phi j2), j = 1, . . . , 29 clusters (left) and the exp(\Phi j3), j =
1, . . . , 29 clusters (right).

Table 2
12-term 2-D ISAR problem.

j xj yj \beta j

1 0.00 4.00 50.00
2 1.00 3.50 50.00
3 2.00 5.00 50.00
4 2.00 4.00 50.00
5 2.00 3.00 50.00
6 2.50 2.00 50.00
7 2.50 1.00 50.00
8 3.00 5.00 50.00
9 3.00 4.00 50.00
10 3.00 3.00 50.00
11 4.00 3.50 50.00
12 5.00 4.00 50.00

So the coefficients extracted from the different shifts are

\alpha j exp(\langle \phi j ,\Delta 2\rangle ), \alpha j exp(\langle \phi j , 2\Delta 2\rangle ), . . . , \alpha j exp(\langle \phi j , 8\Delta 2\rangle ).

The total number of collected samples then adds up to (\kappa  - 1)\lfloor pN\rfloor + N in the \Delta 1

direction and 8\times ((\kappa  - 1)\lfloor pN\rfloor + n) in the \Delta 2 shifts, or 1670 samples altogether.
In Figure 4 (right) we show the result of the computations after applying DBSCAN

with m\delta = \kappa  - 1 and \delta = 0.00001, 0.002505, 0.005 to each SNR result for the \Phi j , and
discarding cluster results when the standard deviation of the \Phi j2 exceeds 0.2. We let
the SNR vary from 40 dB to 5 dB, top to bottom. The SNR = 10 dB slice is presented
in Figure 5 (right), and a separate coordinate view is found in Figure 6 (right), where
the SNR varies from right to left. For each SNR the experiment is repeated 250 times.

We compare these results with the output in Figures 4 (left), 5 (left), and 6 (left)
of the 2-D Prony-like algorithm MEMP [16] using the same number of samples but now
laid out in a (\Delta 1,\Delta 2)-grid of size 40\times 42. We remark the main differences with the
new algorithm:

\bullet the matching in the MEMP algorithm between results computed in separate
dimensions is definitely not flawless, and as the noise increases erroneous
combinations give rise to nonexistent locations;

\bullet the matching through the indexing of the variables in (2.6) and (2.9) leaves
no room for error, and so does not introduce matching errors;
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\bullet for increasing noise, meaning decreasing SNR, the unvalidated MEMP algorithm
may return a few erroneous (xj , yj) despite the fact that the sparsity n = 12
was passed to the algorithm as well;

\bullet the correct sparsity n = 12 need not be passed to the new algorithm, which
detects it automatically as the number of identified and confirmed clusters;

\bullet in the new algorithm the results for very small SNR are either somewhat less
accurate or absent because of the high validation requirement, which can of
course be relaxed by the user.

Fig. 4. Unvalidated (xj , yj) locations from MEMP (left) and validated (xj , yj) from the new
algorithm (right).
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Fig. 5. Slice of Figure 4 (SNR = 10), with the color intensity indicating the frequency of
detection in the 250 runs.

4.3. 3-dimensional fighter jet example. In a larger scale example of 1000
scatterers depicting the surface of a fighter jet [37] (see Figure 7), we take the radar
parameters as in section 4.1, add noise with SNR = 20 dB, and further choose N =
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Fig. 6. Unvalidated xj and yj coordinates from MEMP (left) versus validated xj and yj coordi-
nates from the new algorithm (right).

6000, \nu = 2000, \eta = 1500, n = 6000, \kappa = 11, p = 0.4 with \Delta 1 = ( - 2.2371, 0.2796, 0.8389),
\Delta 2 = (1.6528, - 1.6528, 4.9584),\Delta 3 = (0.4744, 2.1350, 0.5535). The density \delta in DBSCAN
was varied over 2\ell \times 10 - 5, \ell = 0, . . . , 10, while m\delta was kept at m\delta = \lceil 0.8\kappa \rceil = 9.

When dealing with the exp(\Phi ji), i = 2, 3, we discard cluster results with a stan-
dard deviation above 0.5. We remark that as the density \delta increases, the probability
increases that a candidate cluster, detected among the \Delta 1-projections, is not con-
firmed in each and every one of the \Delta i-projections, i = 2, . . . , d. Rejection dominates
acceptance from \ell = 7 on.

Fig. 7. Fighter jet original 1000 scattering center data.

In the end, the above algorithm detects and validates 516 scatterers out of 1000
(see Figure 8), but misses the scatterers that are located too closely together or for
which the inner products in (4.1) are too much alike. Although the overall shape of
the fighter is correctly recognized (nose, wing tips, tail, etc.), which may be more than
satisfactory for many applications, the accuracy of the algorithm can be improved in
the region where several scattering centers (xj , yj , zj) are located near one another,
such as the windshield. To this end the algorithm needs to be combined with a sub-
Nyquist technique, particularly suitable for the exponential analysis of such signals
[9]. This final addition to the algorithm is explained in the next section. We also
point out that, thanks to the validation step, there are no false results.



B14 A. CUYT, Y. HOU, F. KNAEPKENS, AND W.-S. LEE

Fig. 8. Fighter jet reconstruction of 516 out of 1000 scatterers.

5. Connection with sparse interpolation: Superresolution. We return to
the notation of section 2 to continue our presentation. When replacing the primary
sampling direction \Delta 1 by a multiple

\Delta 1(m) := m\Delta 1

and sampling at s\Delta 1(m), s = 0, . . . , 2n  - 1 instead of at s\Delta 1, s = 0, . . . , 2n  - 1,
we are possibly violating the Shannon--Nyquist constraint (2.2) for \Delta 1(m), when
| \Im (\langle \phi j ,\Delta 1\rangle )| \geq \pi /m, j = 1, . . . , n. With

Fs := f (s\Delta 11(m), . . . , s\Delta 1d(m)) , s = 0, . . . , 2n - 1,

the eigenvalues retrieved from (2.4) are not \lambda j but [4]

\lambda j(m) = exp(m\Phi j) = \lambda m
j , j = 1, . . . , n.

From \lambda m
j the imaginary part of \Phi j = \langle \phi j ,\Delta 1(m)\rangle may no longer be retrieved uniquely

because we can only guarantee that

| \Im (\langle \phi j ,\Delta 1(m)\rangle )| < m\pi .(5.1)

So aliasing may have kicked in. Because of the periodicity of exp(\Im (\langle \phi j ,m\Delta 1\rangle )), a
total of m values in the 2m\pi wide interval (5.1) can be identified as plausible values
for \langle \phi j ,\Delta 1\rangle . Note that when the original \lambda j are clustered, the powered \lambda m

j may
be distributed quite differently and unclustered. Such a relocation of the generalized
eigenvalues, here referred to as superresolution, can seriously improve the conditioning
of the Hankel matrices involved. In Figure 9 we show the effect of this powering on
a particular example where 20 generalized eigenvalues are clustered in five clusters of
different size.

What we need to resolve now is the aliasing problem that is possibly introduced
by powering the generalized eigenvalues. This aliasing can be fixed at the expense



SPARSE MULTIDIMENSIONAL EXPONENTIAL ANALYSIS B15

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 9. Example analysis of (2.1) with n = 20 generalized eigenvalues: m = 1 (left) versus
m = 11 (right).

of a small number of additional samples. Remember that in what follows, n can be
replaced everywhere by \eta \geq n when using \eta  - n additional terms to model the noise.

To fix this aliasing, we add n samples to the collection F0, Fm, . . . , F(2n - 1)m,
namely at the shifted points

s\Delta 1(m) + \mu \Delta 1 = (sm+ \mu )\Delta 1, s = r, . . . , r + n - 1, 0 \leq r \leq n.

An easy choice for \mu is a (small) number mutually prime with m (for the most general
choice allowed, we refer to [8]). With the additional samples we proceed as follows:

\bullet From the samples F0, Fm, . . . , F(2n - 1)m we first compute the generalized ei-
genvalues \lambda m

j and the coefficients \alpha j going with \lambda m
j in the model

Fsm = f(sm\Delta 1) =

n\sum 
j=1

\alpha j exp(\langle \phi j , sm\Delta 1\rangle )(5.2)

=

n\sum 
j=1

\alpha j\lambda 
sm
j , s = 0, . . . , 2n - 1.(5.3)

We know which coefficient \alpha j goes with which generalized eigenvalue \lambda m
j , but

we cannot identify the correct \Im (\langle \phi j ,\Delta 1\rangle ) from \lambda m
j .

\bullet Next we deal with the samples at the additional locations sm\Delta 1+\mu \Delta 1, which
satisfy

Fsm+\mu = f(sm\Delta 1 + \mu \Delta 1) =

n\sum 
j=1

\alpha j exp (\langle \phi j , (sm+ \mu )\Delta 1\rangle )(5.4)

=

n\sum 
j=1

(\alpha j\lambda 
\mu 
j )\lambda 

sm
j , s = r, . . . , r + n - 1.(5.5)

This system is a linear system with a similar Vandermonde structured co-
efficient matrix as in (5.2), but now with a new left-hand side Fsm+\mu and
unknown coefficients \alpha 1\lambda 

\mu 
1 , . . . , \alpha n\lambda 

\mu 
n instead of \alpha 1, . . . , \alpha n. And again we

can associate each computed \alpha j\lambda 
\mu 
j with the proper generalized eigenvalue \lambda m

j

because of the indexing of the variables and coefficients.
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\bullet Then, by dividing the \alpha j\lambda 
\mu 
j computed from (5.4) by the \alpha j computed from

(5.2), for j = 1, . . . , n, we obtain from each quotient \lambda \mu 
j a second set of \mu 

plausible values for \langle \phi j ,\Delta 1\rangle in the 2\mu \pi wide interval | \Im (\langle \phi j , \mu \Delta 1\rangle )| < \mu \pi .
\bullet Because of the fact that we choose \mu and m relatively prime, the two sets

of plausible values for \langle \phi j ,\Delta 1\rangle have only one value in their intersection [9].
Thus the aliasing problem is solved: Each \langle \phi j ,\Delta 1\rangle is retrieved uniquely from
the computation of both \lambda m

j and \lambda \mu 
j for j = 1, . . . , n.

This multidimensional sub-Nyquist sampling strategy may help us determine the
clustered scattering centers occurring in section 4.3. As suggested in Figure 9, the
technique spreads out the generalized eigenvalues, which may recondition the inverse
problem. In addition, a variation of scale factors m may be used, and the idea can
be translated into sampling at the shifted locations involving the identification shifts
\Delta 2, . . . ,\Delta d which satisfy (2.8).

To illustrate how the combined algorithm, laid out in sections 2, 3, and 5, works,
we take up the challenging example of section 4.3 again to return highly accurate
results from about 95\% of the scattering locations. The result is also compared to
another d-dimensional generalization, called ND-ESPRIT, which arranges the samples
in multilevel Hankel matrices [30].

6. Full scale ISAR illustration. Returning to the example in section 4.3, we
take the radar parameters, the SNR, and the vectors \Delta i, i = 1, 2, 3 as specified there.
We collect 30000 samples Fs = f(s\Delta 1) and 30000 samples Fsi = f(s\Delta 1+\Delta i), i = 2, 3,
along each of the shifts, for a total of 90000 samples in total. These samples are now
reorganized as follows for use with the technique described in section 5.

With a total of 90000 samples, we perform the following analyses. For each, we
take N = 6000, \nu = 2000, \eta = 1500, n = 6000. The remaining parameters for the
sub-Nyquist sampling in the direction \Delta 1 are as follows:

\bullet m = 2, \mu = 1, \kappa = 6, p = 0.3;
\bullet m = 3, \mu = 1, \kappa = 4, p = 2/9;
\bullet m = 4, \mu = 1, \kappa = 3, p = 0.125.

For all of the above analyses, the sampling in the direction \Delta 1 starts with F0

and continues with Fm, F2m, . . . . The shifted samples, which serve the purpose of
repairing the possible sub-Nyquist aliasing effect, start with F1 and continue with
Fm+1, F2m+1, . . . . In order to make good use of the samples inbetween, the procedure
can be repeated m - 1 times with the same m and \mu but now starting the sampling,
instead of at F0, at F1, then at F2, and so on until Fm - 1. In this way a choice of m
produces m\kappa estimates for the exp(\Phi i), i = 1, . . . , \eta , instead of \kappa , and thus provides
a sound basis for validation since m\kappa is usually sufficiently large.

For the choices above, we have m\kappa = 12 for m = 2, 3, 4, and so we can take, for
instance, m\delta = (5/6)m\kappa = 10. In Figure 10 (left and right), we show how accurate the
scattering centers are reconstructed under SNR = 20 dB noise: With every scattering
center in the original data we associate the log10 of the Euclidean distance to the
nearest reconstructed scattering center (in meters on the x-axis) and then accumulate
these (tallied on the y-axis). The distinction between the two figures is that Figure
10 (left) is the result for m = 1 (516 scatterers reliably identified) without the use of
the enhancement given in section 5, and Figure 10 (right) is the result for m = 4 (696
scatterers detected and validated).

The improvement from m = 1 to m = 4 may not seem very impressive at first.
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Fig. 10. Accuracy of the reconstructed scatterers for m = 1 (left) and m = 4 (right) versus the
data (log10 of the Euclidean distance).

But note that the accurately reconstructed scattering centers (say log10(\cdot ) \leq  - 1)
from m = 1 need not be the same as the accurately reconstructed ones from the
use of m = 4. Therefore, the combination of both results, merely joining the 516
reconstructions from m = 1 with the 696 reconstructions from m = 4, immediately
leads to the improved distance graph shown in Figure 11.
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Fig. 11. Accuracy of the reconstructed scatterers (m = 1 and m = 4 combined) versus the data
(log10 of the Euclidean distance).

Eventually, all runs executed with m = 1, 2, 3, 4 can be combined merely by
joining all the computed scatterer reconstructions: 516 from m = 1, 667 from m = 2,
673 from m = 3, and 696 from m = 4, adding up to 2552 in total, with many of
them (almost) duplicates. This then leads to highly acurate results for most of the
scatterers. In Figure 12 we see that in this combined output 81\% of the scatterers is
reconstructed within an error of at most 10 cm, and 95\% is found within a distance
of 30 cm! Only three scatterers are not reconstructed within a distance of 1 m. The
most inaccurately reconstructed scatterer in Figure 13 is near the engine outlet, where
our reconstruction is slightly off. In Figure 13, the 2552 reconstructions are displayed
together. Note that, thanks to the validation technique, there are no false results, as
also pointed out for Figure 8, where the sub-Nyquist subdivision of the data samples
is not yet put to work.

It remains to compare the result to that of a d-dimensional Prony-type algorithm,
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Fig. 12. Accuracy of the reconstructed scatterers (m = 1, 2, 3, 4 combined) versus the data
(log10 of the Euclidean distance).

Fig. 13. Fighter jet reconstruction of 934 out of 1000 scatterers.

such as [30] from data laid out in a grid. For instance, a 45\times 45\times 45 grid consists of
91125 samples, which compares nicely to the 90000 samples used in our method. The
d-dimensional version considered in [30] starts with the construction of a multilevel
Hankel matrix, for which we take 26 \times 20 Hankel blocks on all d = 3 levels, thus
adding up to a 263 \times 203 or 17576\times 8000 matrix. A log-plot of its singular values is
shown in Figure 14 (left), from which one can deduce that n \approx 467 (point of maximal
curvature of the plot). With 20 dB noise added to the data, the Euclidean distance
log-plot for the 467 reconstructed scatterers is as in Figure 14 (right). This graph
compares somewhat to the graphs in Figure 10 but is far from the result displayed in
Figure 12, which can be attained with the same sample usage. In Figure 15 we show
the actual 467 reconstructed scatterers superimposed on the fighter jet.

One may wonder what role is played by the total number of 90000 collected
samples for our method in Figures 10--13. When reducing the sampling from 30000
along each of the three directions to 24000, then 71\% of the scatterers is found within
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Fig. 14. Singular values of the multilevel Hankel matrix (left log-plot) and distance error of the
reconstructed scatterers (right log-plot) using [30].

Fig. 15. Fighter jet reconstruction of 467 scatterers using the method in [30].

a distance of 10 cm, and 93\% within 30 cm. When increasing the sampling from three
times 30000 to three times 60000, then, as expected, the reconstruction improves:
94\% is found within 10 cm, and 98\% within 30 cm.

Acknowledgments. The authors are indebted to their colleagues from [37] for
providing them the scattering center data of the fighter jet used in the examples.
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