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MULTIDIMENSIONAL INTEGRAL INVERSION, WITH
APPLICATIONS IN SHAPE RECONSTRUCTION∗

ANNIE CUYT† , GENE GOLUB‡ , PEYMAN MILANFAR§ , AND BRIGITTE VERDONK†

Abstract. In shape reconstruction, the celebrated Fourier slice theorem plays an essential role.
It allows one to reconstruct the shape of a quite general object from the knowledge of its Radon
transform [S. Helgason, The Radon Transform, Birkhäuser Boston, Boston, 1980]—in other words
from the knowledge of projections of the object. In case the object is a polygon [G. H. Golub,
P. Milanfar, and J. Varah, SIAM J. Sci. Comput., 21 (1999), pp. 1222–1243], or when it defines a
quadrature domain in the complex plane [B. Gustafsson, C. He, P. Milanfar, and M. Putinar, Inverse
Problems, 16 (2000), pp. 1053–1070], its shape can also be reconstructed from the knowledge of its
moments. Essential tools in the solution of the latter inverse problem are quadrature rules and formal
orthogonal polynomials.

In this paper we show how shape reconstruction from the knowledge of moments can also be
realized in the case of general compact objects, not only in two but also in higher dimensions. To this
end we use a less-known homogeneous Padé slice property. Again integral transforms—in our case the
multivariate Stieltjes transform and univariate Markov transform—formal orthogonal polynomials
in the form of Padé denominators, and multidimensional integration formulas or cubature rules play
an essential role.

We emphasize that the new technique is applicable in all higher dimensions and illustrate it
through the reconstruction of several two- and three-dimensional objects.
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1. Problem statement. The problem of reconstructing a function and/or its
domain given its moments is encountered in many areas. Several applications from
diverse areas such as probability and statistics [10], signal processing [18], computed
tomography [16, 17], and inverse potential theory [4, 19] (magnetic and gravitational
anomaly detection) can be cited, to name just a few. We can expound on some of
these applications in a bit more detail. Consider the following diverse set of examples:

• A region of the plane can be regarded as the domain of a probability density
function. In this case, the problem is that of reconstructing this density func-
tion and/or approximating its domain from measurements of its moments [10].

• Tomographic (line integral) measurements of a body can be converted into
moments from which an approximation to its density and boundary can be
extracted [17].

• Measurements of exterior gravitational field induced by a body of uniform
mass can be turned into moment measurement, from which the shape of the
region may be reconstructed [19].

• Measurements of an exterior magnetic field induced by a body of uniform
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magnetization can yield measurement of the moments of the region from
which the shape of the region may be determined [19].

• Measurements of thermal radiation made outside a uniformly hot region can
yield moment information, which can subsequently be inverted to give the
shape of the region [19].

In fact, aside from the general case where the density inside the body may not be
uniform, the set of inverse problems for uniform density regions related to general
elliptical equations can all be cast as moment problems which fall within the scope of
application of the results of this paper.

Although the reconstruction of a shape from its Radon transform is well under-
stood, the reconstruction of a shape from its moments is a problem that has only
partially been solved. For instance, when the object is a polygon [11], or when it
defines a quadrature domain in the complex plane [12], it has been proved that its
shape can be exactly reconstructed from the knowledge of its moments. Both results
deal with particular two-dimensional shapes. For general n-dimensional shapes no
inversion algorithm departing from the moments is known. In order to explain the
type of result we are looking for, we briefly repeat the inversion formula based on a
shape’s projections provided by the Radon transform.

The Radon transform R�ξ(f) of a square-integrable n-variate function f(�x) with

�x = (x1, . . . , xn) is defined as (for ease of notation we drop the dependence of f in
the notation)

R�ξ (u) =

∫
Rn

f(�x) δ(�ξ�x− u) d�x

with ||�ξ|| = 1 and �ξ · �x = u an (n − 1)-dimensional manifold orthogonal to �ξ. When

n = 2, �ξ is fully determined by an angle θ and is given by

Rθ(u) =

∫ +∞

−∞

∫ +∞

−∞
f(t, s) δ(t cos θ + s sin θ − u) dt ds.

For n = 3, �ξ is determined by angles θ and φ and

Rθ,φ(u) =

∫
R3

f(t, s, v) δ(t cosφ cos θ + s cosφ sin θ + v sinφ− u) dt ds dv.

Making use of the celebrated Fourier slice theorem, one obtains, for instance, that the
one-dimensional Fourier transform of Rθ(u),

F1(Rθ)(z) =

∫ +∞

−∞
Rθ(u) exp(−2πizu) du,

equals the two-dimensional Fourier transform of the function f restricted to the
straight line (z cos θ, z sin θ):

F2(f)(z cos θ, z sin θ) =

∫ +∞

−∞

∫ +∞

−∞
f(t, s) exp (−2πiz(t cos θ + s sin θ)) dt ds

(1)

= F1(Rθ)(z).

When f(t, s) is the characteristic function of a compact set A in the complex plane,
then (1) allows one to reconstruct A, departing from the Radon transform Rθ(u), by
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taking the inverse two-dimensional Fourier transform of F1(Rθ). In higher dimensions
the procedure is completely analogous [14].

Our aim is to establish a similar type of relationship, making use of moment
information instead of projections. To this end we need to introduce a few tools.

2. Univariate Markov transform and Padé approximant. A Markov func-
tion g(z) is defined to be a function with an integral representation of the form

g(z) =

∫ b

a

f(u)

1 + zu
du, −∞ < a ≤ 0 ≤ b < +∞, z �∈ ]−∞,−1/b] ∪ [−1/a,+∞[,

(2)

where f(u) is nontrivial and positive and the moments

ci =

∫ b

a

uif(u) du, i = 0, 1, . . . ,(3)

are finite. The function g is called the Markov transform of f and is also denoted by
g = M1(f). A Markov series is defined to be a series of the form

∞∑
i=0

(−1)iciz
i(4)

which is derived by a formal expansion of (2). It is well known that the one-
dimensional Markov moment problem is determinate.

Given a series of the form (4), one can construct Padé approximants of this
series as follows. With the moments ci introduced in (3), one computes coefficients
a0, . . . , am+k and b0, . . . , bm such that for

pm+k,m(z) =

m+k∑
i=0

aiz
i,

qm+k,m(z) =

m∑
i=0

biz
i,

the series expansion of (gqm+k,m − pm+k,m)(z) satisfies

∞∑
i=0

diz
i =

( ∞∑
i=0

(−1)iciz
i

)
qm+k,m(z) − pm+k,m(z) = O(z2m+k+1).(5)

In other words, the 2m+k+2 coefficients a0, . . . , am+k and b0, . . . , bm are determined
from the 2m+k+1 conditions d0 = 0, . . . , d2m+k = 0 and an additional normalization
condition. The irreducible form of pm+k,m(z)/qm+k,m(z) is denoted by rm+k,m(z) and
is called the (m + k,m) Padé approximant. It is usually normalized by putting the
constant term in the denominator equal to 1.

The following property plays a crucial role in our novel shape reconstruction
technique.

Theorem 1 (see [1, p. 228]). For the Markov function (2), each sequence of Padé
approximants {rm+k,m(z)}m∈N with k ≥ −1 converges to (2) for z �∈ ]−∞,−1/b] ∪
[−1/a,+∞[. The rate of convergence is governed by

lim sup
m→∞

|g(z) − rm+k,m(z)|1/m ≤
∣∣∣∣∣
√

1/z + b−
√

1/z + a√
1/z + b +

√
1/z + a

∣∣∣∣∣ .
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3. Multivariate Stieltjes transform and homogeneous Padé approxi-
mant. Padé approximants have been generalized to higher dimensions by several
authors in different ways. For an overview and comparison of these definitions the
reader is referred to [8]. For our purpose the definition given in [7, 6] is most useful.
Without loss of generality, we repeat it only for bivariate functions, but it can be
defined in any number of variables.

A bivariate Stieltjes function g(v, w) is defined by the integral representation

g(v, w) =

∫ ∞

0

∫ ∞

0

f(t, s)

1 + (vt + ws)
dt ds(6)

with finite real-valued moments

cij =

∫ ∞

0

∫ ∞

0

tisjf(t, s) dt ds.

A formal expansion of (6) provides a bivariate Stieltjes series

∞∑
i,j=0

(
i + j

i

)
(−1)i+jcijv

iwj .(7)

The function g is also called the bivariate Stieltjes transform of f and is denoted by
g = S2(f).

Given the moments cij , one can compute the (m + k,m) homogeneous bivariate
Padé approximant of (7) as follows. First we introduce the homogeneous expressions

A�(v, w) =
∑

i+j=�

aijv
iwj ,

B�(v, w) =
∑

i+j=�

bijv
iwj

to define the polynomials

pm+k,m(v, w) =

(m+k)(m+1)∑
�=(m+k)m

A�(v, w),

qm+k,m(v, w) =

(m+k+1)m∑
�=(m+k)m

B�(v, w).

Second we write down the homogeneous accuracy-through-order conditions

C�(v, w) =
∑

i+j=�

(
�

i

)
cijv

iwj ,(8)

∞∑
i,j=0

dijv
iwj =

( ∞∑
�=0

(−1)�C�(v, w)

)
qm+k,m(v, w) − pm+k,m(v, w)

= O
(
viwj , i + j ≥ (m + k + 2)m + k + 1

)
.

It has been shown [7, pp. 60–61] that a nontrivial solution of these conditions can
always be computed. Moreover, all solutions pm+k,m(v, w)/qm+k,m(v, w) deliver the
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same unique irreducible form rm+k,m(v, w), which is called the homogeneous Padé
approximant of (7). A proper normalization of rm+k,m(v, w) can still be chosen but
differs most of the time from the univariate normalization qm+k,m(0) = 1 since the
denominator of rm+k,m(v, w) need not start with a constant term. It starts with a
homogeneous expression in v and w of as low degree as possible. This homogeneous
generalization of the Padé approximant is the only one to satisfy the following powerful
slice theorem. Although it was pointed out soon after the introduction of homogeneous
Padé approximants, its full impact was only understood recently [9, 3]. For the sake
of the reader we also repeat the short proof.

Let us define the slice function:

gθ(z) = g(z cos θ, z sin θ), −π/2 < θ ≤ π/2,
(9)

=

∫ ∞

0

∫ ∞

0

f(t, s)

1 + (t cos θ + s sin θ)z
dt ds.

We denote the univariate (m + k,m) Padé approximant of gθ(z) as defined in (5) by

r
(gθ)
m+k,m(z).

Theorem 2 (see [15, 5]). The homogeneous Padé approximant rm+k,m(v, w) of
g(v, w) satisfies

rm+k,m(z cos θ, z sin θ) = r
(gθ)
m+k,m(z), −π/2 < θ ≤ π/2.

Proof. The univariate rational function of the variable z, parameterized by θ,

rm+k,m(z cos θ, z sin θ) =

∑(m+k)(m+1)
�=(m+k)m

(∑
i+j=� aij cosi θ sinj θ

)
z�∑(m+k+1)m

�=(m+k)m

(∑
i+j=� bij cosi θ sinj θ

)
z�

=

∑m+k
�=0

(∑
i+j=(m+k)m+� aij cosi θ sinj θ

)
z�∑m

�=0

(∑
i+j=(m+k)m+� bij cosi θ sinj θ

)
z�

=:
p
(θ)
m+k,m(z)

q
(θ)
m+k,m(z)

,

satisfies ( ∞∑
�=0

(−1)�C�(cos θ, sin θ)z�

)
q
(θ)
m+k,m(z) − p

(θ)
m+k,m(z)

= gθ(z)q
(θ)
m+k,m(z) − p

(θ)
m+k,m(z) = O(z2m+k+1)

with d2m+k+1 in (5) being a homogeneous expression in cos θ and sin θ. Because of

the unicity of the Padé approximant, r
(gθ)
m+k,m(z) must equal the irreducible form of

p
(θ)
m+k,m(z)

q
(θ)
m+k,m(z)

,(10)

which completes the proof.
In other words, restricting the homogeneous Padé approximant to the slice

Sθ = {(z cos θ, z sin θ) | z ∈ R}(11)
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is equivalent to computing the univariate Padé approximant of the slice function gθ(z).
After analyzing the behavior of the homogeneous Padé approximant on the slices Sθ,
let us have another look at the slice function gθ(z) itself.

Let the square-integrable function f(t, s) be defined in a compact region A of
the first quadrant t ≥ 0, s ≥ 0 of the plane. According to a fundamental property
of the Radon transform Rθ(u) of f(t, s) [14], the following relation holds for any
square-integrable function F (u):∫ +∞

−∞
Rθ(u)F (u) du =

∫ ∞

0

∫ ∞

0

f(t, s)F (t cos θ + s sin θ) dt ds.(12)

If we take F (u) = 1/(1 + zu), then∫ +∞

−∞

Rθ(u)

1 + zu
du =

∫ ∞

0

∫ ∞

0

f(t, s)

1 + (t cos θ + s sin θ)z
dt ds = gθ(z).(13)

Consequently, if f(t, s) is zero outside a compact subset A of the first quadrant, then
gθ(z) is a Markov function, because Rθ(u) is zero outside a compact support. In
addition Theorem 1 applies.

4. Connection and new results. Making use of the homogeneous Padé slice
property and the fact that the slice function gθ(z) is a Markov function with f in (2)
equal to the Radon transform of f(t, s), it is now easy to obtain the following result
for the bivariate Stieltjes transform g(v, w) defined by (6).

Theorem 3. Let the function f(t, s) in the Stieltjes transform (6) be square-
integrable and zero outside a compact support A ⊂ {(t, s) : 0 ≤ t2 + s2 ≤ 1} ∩
{(t, s) : t ≥ 0, s ≥ 0}. Let the slice Sθ be defined by (11). Then for all k ≥ −1
and each −π/2 < θ ≤ π/2, the sequence {rm+k,m(z cos θ, z sin θ)}m∈N converges to
g(z cos θ, z sin θ) for |z| < 1 given by (6). The rate of convergence is governed by

lim sup
m→∞

|g(z cos θ, z sin θ) − rm+k,m(z cos θ, z sin θ)|1/m ≤
∣∣∣∣∣
√

1/z + 1 −
√

1/z − 1√
1/z + 1 +

√
1/z − 1

∣∣∣∣∣ .
(14)

Proof. Since f(t, s) is zero outside A and by means of the celebrated Fourier slice
formula (12), we know that

S2(f)(z cos θ, z sin θ) = g(z cos θ, z sin θ) =

∫ ∫
A

f(t, s)

1 + (t cos θ + s sin θ)z
dt ds

=

∫ b(θ)

a(θ)

Rθ(u)

1 + zu
du = M1(Rθ)(z)

with −1 ≤ a(θ) ≤ b(θ) ≤ 1. Combining Theorems 1 and 2 delivers∫ b(θ)

a(θ)

Rθ(u)

1 + zu
du = lim

m→∞
r
(gθ)
m+k,m(z) = lim

m→∞
rm+k,m(z cos θ, z sin θ)

for −1/b(θ) < z < −1/a(θ) with |1/b(θ)| ≥ 1 and |1/a(θ)| ≥ 1. The rate of conver-
gence easily follows from Theorem 2.

When the compact support A intersects all four quadrants, the theorem still
holds. The current formulation is just one way of scaling the problem, without loss
of generality.
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To the authors’ knowledge, at the time of this writing, no inverse Stieltjes trans-
form exists for the transform defined by (6). Hence the function f(t, s) must be solved
for from the relationship

S2(f)(z cos θ, z sin θ) = M1(Rθ)(z) = lim
m→∞

rm+k,m(z cos θ, z sin θ),(15)

which is an identity of the same type as (1). Note that the switch from Cartesian to
polar coordinates is only required to make the transition from the Stieltjes transform
to the Markov and Radon transform. More generally,

S2(f)(v, w) = lim
m→∞

rm+k,m(v, w),

where (v, w) = (z cos θ, z sin θ) with −π/2 < θ ≤ π/2. In the new reconstruction
algorithm, this Markov and Radon transform shall not be computed explicitly. We
only want to make use of moment information. We summarize the computations
described so far and complete the reconstruction of f(t, s) by solving (15).

5. Shape reconstruction algorithm. From the preceding theory we now sum-
marize the bivariate reconstruction algorithm, with the higher-dimensional case being
completely similar. Given the moments

cij =

∫ ∞

0

∫ ∞

0

f(t, s) tisj dt ds(16)

we compute, for some k ≥ −1 and consecutive m, the homogeneous bivariate Padé
approximant rm+k,m(v, w) as a function of the Cartesian coordinates v and w. A fast
algorithm for the computation of the multivariate Padé approximant is given in [2].
The computation of rm+k,m(v, w) requires knowledge of the moments cij appearing
in the expressions C�(v, w) given in (8) for � = 0, . . . , 2m + k, or in other words the
first (2m + k + 1)(2m + k + 2)/2 moments cij .

In the reconstructions, shape often means compact set A in R
2 (or R

3) and then
f(t, s) equals the characteristic function δA. In that case

cij =

∫ ∫
A

tisj dt ds.

Theorem 3 guarantees that the approximants rm+k,m(v, w) converge rapidly on
each slice Sθ to g(v, w) restricted to that slice. A typical value for m is between 3
and 7, and hence one needs with k = −1 on average between 21 and 105 moments.
Moreover, the moments are not required very accurately. For a rough estimate of a
shape as in Figure 2, moments with 2 to 3 significant digits (a relative error bounded
by 5 × 10−2 or 5 × 10−3) are sufficient.

The Padé approximant is then evaluated in a discrete number of points (vj , wj)
inside the unit disc to approximate

g(vj , wj) ≈ rm+k,m(vj , wj).

The latter constitutes the right-hand side of (17). To speed up the convergence of the
Padé approximants rm+k,m the points (vj , wj) can be taken in a disc of radius r < 1:
Padé approximants converge more rapidly in the neighborhood of the origin. At the
same time, for each point (vj , wj) the value g(vj , wj) can be approximated to high
accuracy by a cubature formula,

L∑
i=1

ωi

1 + tivj + siwj
f(ti, si), j = 0, 1, . . . ,
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with weights ωi and nodes (ti, si). The inverse problem of computing f(ti, si) from

L∑
i=1

ωi

1 + tivj + siwj
f(ti, si) ≈ g(vj , wj) = lim

m→∞
rm+k,m(vj , wj)(17)

is a (structured) system of linear equations. When applying a quadrature method
directly to (16), it is clear that a few dozen moments are not sufficient to retrieve the
value of f(t, s) with the accuracy shown in the illustrations below (h = k = 2−5 gives a
resolution of about 3200 pixels in the unit disk and h = k = 2−6 a resolution of almost
13,000 pixels)! The current technique allows one to write down as many equations as
required, by adding evaluations of the Padé approximant in points (vj , wj), without
increasing the number of required moments cij .

The linear problem (17) is in general ill-conditioned, and therefore a regulariza-
tion technique must be applied. In all of the following examples we have found the
technique known as truncated SVD [13] to do an excellent job. After regularization,
we solve (17) for f(ti, si) and identify an approximation for the shape A with

A ≈ {(ti, si) | f(ti, si) ≥ 0.5}.

The threshold 0.5 is chosen because for the original shape f(t, s) = 1 inside A and
f(t, s) = 0 outside A.

Since the homogeneous Padé approximant can be defined analogously in higher
dimensions, the procedure for three-dimensional shape reconstruction is entirely sim-
ilar. In this case, we are given the moments

cijk =

∫ ∞

0

∫ ∞

0

∫ ∞

0

f(t, s, v) tisjvk dt ds dv.(18)

Here Theorems 2 and 3 hold on the slices

Sθ,φ = {(z cosφ cos θ, z cosφ sin θ, z sinφ) | z ∈ R},

and the three-dimensional version of (13) is

∫ +∞

−∞

Rθ,φ(u)

1 + zu
du =

∫ ∞

0

∫ ∞

0

∫ ∞

0

f(t, s, v)

1 + (t cosφ cos θ + s cosφ sin θ + v sinφ)z
dt ds dv

= lim
m→∞

rm+k,m(z cosφ cos θ, z cosφ sin θ, z sinφ).(19)

The homogeneous Padé approximant rm+k,m(w, x, y) of the Stieltjes transform

∫ ∞

0

∫ ∞

0

∫ ∞

0

f(t, s, v)

1 + (tw + sx + vy)
dt ds dv(20)

is now constructed from the trivariate Stieltjes series representation

∞∑
i,j,k=0

(−1)i+j+k

(
i + j

i

)(
i + j + k

i + j

)
cijkw

ixjyk

for (20). Note that the vector (cosφ cos θ, cosφ sin θ, sinφ) generating the one-dimen-
sional slice Sθ,φ belongs to the three-dimensional unit sphere.
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6. Numerical examples. For each example we give the cubature parameters h
and k used in formula (21) or h, k, and � used in (22) and the distance Δ between the
coordinates of the points (vj , wj) used in the formulation of (17). For these evaluation
points we construct a uniform grid (the distance Δ in the x- and y-directions is kept
equal) that we intersect with the disc of radius r. All points in the intersection
are selected. We also list the denominator degree m of the Padé approximant (the
numerator degree is m − 1), the radius r of the disc in which the points (vj , wj) are
chosen, and the relative accuracy ε of the moments (here 2−4, 2−11, 2−14, and 2−24

stand for, respectively, 2, 4, 5, and 8 significant digits). Even when r < 1, the shape A
is allowed to cover the entire unit disk. Note that the resolution of the reconstruction
is expressed by h and k or h, k, and �, not by Δ.

6.1. Reconstruction of two-dimensional shapes. We take for f(t, s) in The-
orem 3 the characteristic function of a compact set A contained in the unit disc and
use the simple compound 4-point Gauss-Legendre product rule [20, pp. 230–231] for
the approximation of g(vj , wj) in (17):

∫ a+h

a

∫ b+k

b

f(t, s)

1 + tvj + swj
dt ds ≈ hk

4

4∑
i=1

f(ti, si)

1 + tivj + siwj
,

(t1, s1) =

(
a +

3 −
√

3

6
h, b +

3 −
√

3

6
k

)
,

(t2, s2) =

(
a +

3 −
√

3

6
h, b +

3 +
√

3

6
k

)
,(21)

(t3, s3) =

(
a +

3 +
√

3

6
h, b +

3 −
√

3

6
k

)
,

(t4, s4) =

(
a +

3 +
√

3

6
h, b +

3 +
√

3

6
k

)
.

We reconstruct several shapes, such as a simple convex shape like the ellipse in Figures
1 and 2, the more difficult nonconvex lemniscates in Figures 3 and 4, and the bone-like
Figure 5 containing a hole. In each of the illustrations we delimit the original shape
in black and show the reconstructed area in gray. The black contour is given only
for comparison. Note that the shape’s boundary is unknown in real-life situations
where only the shape’s moments are known up to some order and accuracy. For
the reconstruction of the two-dimensional shapes we choose h and k in (21) equal to
h = k = 2−5.
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A = {(t, s) | ((t− 0.1)/0.5)2 + ((s− 0.1)/0.35)2 = 1}
Fig. 1.

m = 7, r = 1.00, ε = 2−24,Δ = 2−4.

Fig. 2.

m = 5, r = 0.15, ε = 2−4,Δ = 2−6.
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A = {(t, s) |
(
(t− t0)2 + (s− s0)2 + α2

)2 − 4α2(t− 0.1)2 = β4}
Fig. 3.

t0 = s0 = 0.02, α = β = 0.5,
m = 9, r = 0.12, ε = 2−11,Δ = 2−6.

Fig. 4.

t0 = s0 = −0.05, α = 0.62, β = 0.65,
m = 9, r = 0.30, ε = 2−14,Δ = 2−5.
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A = {(t, s) |
(
t2 + s2 + 0.4225

)2 − 1.69t2 = 0.2401} \ {(t, s) | |t| < 0.8, |s| < 0.1}
Fig. 5. m = 9, r = 0.50, ε = 2−24,Δ = 2−4.

Finally, a difficult two-dimensional shape is presented in Figure 6. Here, for a
change, h = k = 2−4 and the evaluation points (vj , wj) are placed on a radial grid,
while the moments are computed to almost full double precision.
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A = {(t, s) | t = (cos(4τ) + 2) cos(τ)/3, s = (cos(4τ) + 2) sin(τ)/3}
Fig. 6. m = 10, r = 0.5,Δ ≈ 1/12.

6.2. Reconstruction of particular three-dimensional shapes. Since The-
orem 3 also applies to more general functions f(t, s) than characteristic functions,
particular three-dimensional shapes as in Figure 7, namely, with one flat side, can
also be reconstructed by means of the two-dimensional integral inversion technique.
Here the positive function f(t, s) defines the top surface of the three-dimensional shape
while the bottom surface is the domain of f in the (t, s)-plane. Further, the object
is cylindrical. The reconstruction of the crater-like object is obtained by plotting the
reconstruction of f(t, s) as a function of t and s. The plot is overlaid with a mesh
depicting the exact function f(t, s).

In this example we have also increased the sizes of h and k to 2−4, while keeping
the number of points (vj , wj) rather moderate.
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Three-dimensional object with surface f(t, s) = t2 + s2 for t2 + s2 ≤ 0.25.
Fig. 7. m = 8, r = 0.5, ε = 2−11,Δ = 2−4.

6.3. Reconstruction of three-dimensional shapes. A more general three-
dimensional shape, such as the ball in Figure 8, can be reconstructed through the solu-
tion of the three-dimensional analogue of (17) for its characteristic function f(t, s, v).
Here we use the compound 8-point Gauss–Legendre product cubature formula given
in [20, pp. 230–231]:

∫ a+h

a

∫ b+k

b

∫ c+�

c

f(t, s, v)

1 + tw + sx + vy
dt ds dv ≈ hk�

8

8∑
i=1

f(ti, si, vi)

1 + tiwj + sixj + viyj
,

(ti, si, vi) =

(
a +

3 ±
√

3

6
h, b +

3 ±
√

3

6
k, c +

3 ±
√

3

6
�

)
.(22)

Reconstruction of the ball t2 + s2 + v2 ≤ 0.49.
Fig. 8. m = 6, h = k = � = 2−2,Δ = 2−4.

7. Conclusion. The new technique is able to deal with very general shapes:
nonconvex such as in Figures 3 and 4, shapes with nonconnected boundary such as
in Figure 5, and last but not least higher-dimensional objects such as in Figures 7
and 8. In Figure 7 we illustrate that the technique can also be used for more general
functions f(t, s) than characteristic functions.

By carrying out a lot of numerical experiments, we have come to the conclusion
that the numerical quality of the output delivered by an implementation of the math-
ematical property formulated in Theorem 3 seems to depend on a number of elements.
Let us formulate a conclusion and some numerical advice.

When the accuracy in the moment information decreases, then it is recommended
to reduce the radius r of the ball from which the points (vj , wj) (in two dimensions)
or (wj , xj , yj) (in three dimensions) are selected. This shrinking of the region for
the evaluation points improves the quality of the Padé approximant. We refer the
reader to Figures 1 and 2 for a clear illustration. With moments known up to 7
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significant digits, a perfect reconstruction is possible with r = 1, with a moderate
number of moments. With moments known only up to 2 significant digits, a good
quality reconstruction is possible when selecting the (vj , wj) inside a disc with far
smaller radius. Fortunately, the lack of quality of the moments does not have to be
compensated for by their quantity. Note that in Figure 2 even fewer moments are
used than in Figure 1: m = 5 versus m = 7.

The quality of the reconstruction improves when the shape’s center of gravity is
positioned near the origin. To illustrate this we increase the values of t0 and s0 in
Figure 3 to t0 = s0 = 0.1, without altering the other parameters. The reconstruction
technique then delivers Figure 9. The same observation is made in [11], the reason
for this being that the conditioning of the problem improves.
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Fig. 9. m = 9, r = 0.12, ε = 2−11,Δ = 2−6.

Increasing the degree of the Padé denominator has little or no influence on the
reconstruction. This is due to the fact that the Padé approximants converge quite
rapidly. Their relative error drops quickly below the relative error on the moments.
As a rule of thumb one can bound the relative error of the Padé approximant rm−1,m

in the proposed reconstruction technique by 10−m−1.
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