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Abstract 

We investigate Nuttall-Pommerenke theorems for several variable homogeneous Pad~ approximants using ideas of 
Goncar, Karlsson and Wallin. 
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1. Nuttall-Pommerenke theorems for homogeneous Pad~ approximants 

We begin by recalling the definition of homogeneous Pad6 approximants. Let f(z) denote 
a power series of k variables z l, z2,. . . ,  Zk convergent in a neighbourhood of 0. We can rearrange the 
Maclaurin series of f into a homogeneous expansion 

f ( z )  = Cj(z), (1) 
j=O 

where Cj(z) is a homo#eneous polynomial of degree j, that is, is a sum of terms of the form 
cz~'zJ2 ~ "..ZJk ~, with j l  + j2  + "'" +jk =j .  The homogeneous Pad6 approximant of type (re, n), 
denoted Ira~hi = P/Q, is a rational function of z = (zl, z2,. . . ,  Zk) such that 

o0 

f(z)Q(z) - P(z) = ~ Dr(z), (2) 
j = m n + m + n +  1 

where 

P(z) = ~ Aj+m,(Z); Q(z) = ~ Bj+m,(z) (3) 
j = O  j = O  
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and each A i, B~, D r is a homogeneous  polynomial  of degree j. At first sight, the form of P, Q and the 
remainder  fQ - P  may seem strange, but these are the natural  forms for homogeneous  Pad6 
approximants.  See [5-7]  for further orientation. 

In [10, 11] N u t t a l l - P o m m e r e n k e  theorems were established for nonhomogeneous  Pad6 ap- 
proximants,  but the results of Goncar ,  Karlsson and Wallin do not  formally cover our  approxi- 
mants.  We can use several of their ideas, once we take note of the following crucial projection 
property of [m/n]: On each complex line through the origin in C k, [m/n] is an ordinary one-variable 
Pad~ approximant  to the projection of f on to  that  line. To be more  precise, let 

and 

~ ' ' =  ('~2, 23, "'" , '~k) E C k -  1 (4) 

fa(z):=f(z, 2z), z6C.  (5) 

Then [5] 

[m/n]s~(z ) = [m/n]s(z,,~z) (6) 

(the subscript indicates the function from which the approximant  was formed). However, despite 
this property,  the fact that  [m/n](z) is a rational function whose numera tor  and denomina to r  can 
have degree mn + max{m, n} + 1 creates difficulties. The main contr ibut ion of this paper  is to 
partially circumvent them. 

In order to state our  results, we need more  notation.  Throughou t  m2k denotes Lebesgue measure 
on C 2k. We say that  a rational function r(z) of k variables z = (Zl,Z2, ... ,ZR) is of order n if its 
numera tor  and denomina to r  are polynomials  of degree ~< n in each variable Zl,Zz,...,Zk. The 
norm [[z[] o f z  is the usual Euclidean norm. For  compact  K c C k, and f : K  ~ C, we let 

g,( f;K):= inf{ I l f -  rilL(r): r of order n} (7) 

denote  the error of best rational approximation o f f  by rational functions of order n on K. 
Let U c C k be open and connected and f :  U ~ C be analytic. We say that  f belongs to the 

Goncar-Walsh class on U, and write feRo(U),  if, for each compact  set K c U, 

lim E , ( f ;  K) ~/" = 0. (8) 
n " *  O0 

Cirka [4] has shown that  if f is analytic in C k outside an analytic set A (that is, a set of the form 
A = {z: g(z) = 0} for some entire function g), then f~Ro(Ck\A). 

It is implicit in the work of Goncar  (see the footnote on p. 306 of [10]), that  if U is the 
Weierstrass domain  of analytic cont inuat ion of f, and (8) holds when K is some closed ball within 
U, then (8) holds for each compact  K ~ U. This is well known in the case of one dimension [9], but  
less obvious in several dimensions, so we avoid this fine point. 

In fact, in [10], Goncar 's  definition of Ro is a little different. He defined f ~ R o  if there exist 
rational functions r, of order n, for large enough n, and a ball B such that  for each e > 0, 

m2k{Z~B: [f --r,](Z) l> e"} ~O, n ~  ~.  

He showed that  iff~ belongs to Ro (as a function of one variable) for a.e. 2 ~C k-~, then f 6Ro .  
Moreover,  if f e Ro, then f is single-valued in its Weierstrass domain  of analytic continuation.  We 
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emphasise again that our apparently more restrictive definition of R0 is equivalent to Goncar's, 
but is adopted in order to simplify proofs. 

Following is our Nuttal l-Pommerenke theorem: 

Theorem 1.1. Let  U be an open connected subset of  C k containin90. Let  f e Ro(U). Let {m j} and {nj} 
be sequences of  positive integers with 

lim mj = oo; (9) 
j-,cc 

and for some r 1 > 1, 

1 mj 
-<~--~<~/,  j > ~ l .  (10) 
r I nj 

Then given r > O, e > O, 

m2{z e U: Ilzll ~ r and I f -  [mj/nj] I(z) > e mj+"j} ~ O, j ~ Go. (11) 

It should be possible to replace 2k-dimensional Lebesgue measure by product capacity or 
Favarov's capacity or the general capacities [3, 16] on C k, but we have avoided this because of the 
difficulty of moving from estimates on the exceptional sets along lines to estimates on the 
exceptional sets on C k itself. 

2. Proof of the result 

We record a lemma from [8]: 

Lemma 2.1. Let  P be a (one-variable) polynomial of  degree <<, n, normalized by the condition 

IIP[LL~I~I ~< r) = 1. (12) 

Then 

m2k({Z: [Z[ <~ r and IP(z)l ~< e"}) <~ 4nrEe z. (13) 

Proof. See [8]. There it is also shown that the estimate (13) and its cousin for capacity are sharp. 
A weaker estimate, which is still sufficient for our purposes, is given in [14, p. 777]. Related 
estimates appear in [1,2, 12, 13, 15]. [] 

We proceed to the proof of Theorem 1.1. We break it into several steps: 
Step 1: Replace U in (11). We can choose finitely many closed balls contained in U, with union 

K say, such that mzk(U\K)  is arbitrarily small. So we may prove (11) with U replaced by K. We can 
choose slightly larger concentric open balls, whose union is a set V, say. We may assume that 
17 c U, that 0 e V, and that f is analytic in 17. Let 6 denote the distance from C\  V to K. 
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Step 2: Convergence alon9 a slice. For  fixed 2 s C k- 1, let 

f~(z) := f(z,  ~z), 

so that  

[rnJnj]f(z, ,~z) = [mHnj]i,  (z) =: P J  Qj(z), 

say. Let 

K~:= {z: (z, Az) •K};  V~:= {z: (z, Zz ) •  V}. 

Then K~ is a compact  subset of open V~, and the boundary  0Vz has distance at least 6/11 (1, 4)]l to K~. 
Let 

aj := min {mj, ns}, j t> 1. 

Choose rational functions rj(z) of order o-j such that  

[ i f--  rjllL~r~) = E~j(f; V). 

By our  hypotheses on f and {m j}, {n j}, 

E~( f ;  V) l/¢m~+"~) ~ O, j --* oo. (14) 

Let 

r*(z) := rs(z, ,tz) = p*(z)/q*(z), 

say. Cauchy's  integral formula gives for z • Ka, 

q * ( f Q j -  Pj)(z) 1 ~ q * ( f Q j  - P s)(t) dt 
z - ' ~  +~+-i = 2rfi ! ~.mj-t-nj't- 1 dOV~ ~ t -- Z 

_ 1 ~ Q j ( f q * - p * ) ( t )  dt 
- -  JO t m j + n j +  1 " 2rfi v, t - z 

Here we have used that  p* Qs - P~q* has degree at most  mj + nj, so the part  of the integral 
involving it is identically 0. Thus 

(f~ -- [mjlnj]A)(z) = ~ i  Jev,(q*Oj)(z) t - z \ t J  dt, 

for z • K,.  Then for such z, 

IA - [mj/nj]f, l(z) CIE:Jf ; ¢) llq* Os IILotl, l=R, CT,+.,+,. 
IqTOsl(z) 

We note that  inasmuch as V is a finite union of balls, the length of a Va is bounded  independent ly  of 
2. Thus C1, C2 depend on V and K, but not  on j, z or 2. Also R is chosen so that  the polydisc 
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{z: Izjl <~ R} contains V. Note  that  for z ~ V, R f> Ilzll = Izl  I[(1, it) ll, so in the con tour  integral, 

1 LI (1, it)II R - - ~ < - - ~ <  
I t -  zl (~ Izl" 

By L e m m a  2.1, if 0 < e < 1, 

IIq*QjllL~(itt=R) <~ e-2% Izl ~< R, z¢• j  
[q*Qjl(z) 

where 

mz(gj,~) ~< 4rtR2e 2. (15) 

In view of (14) and the fact that  E,~(f; 17) does not  depend on it, we obtain for j >i jo, z ~ K~\ g j, a, 

If~ - [mj/nj]f~l(z) ~< e ''+"~. (16) 

The crucial thing is that  jo is independent  of L 
Step 3: Patch the exceptional sets together. We can reformulate (16) as 

I f -  [mj/nj]l(z) <~ e mj+"j, z e K k g j ,  

where 

{(z, itz): 
j.~C k-I 

To t ransform the estimates on the size of gj,~ to gj, we need the Jacobian of the t ransformat ion 
z ~ (z, it). Here z ~ C k, z ~ C, it ~ C k- t. Let us write 

z = (zl,z2, ...,Zk), Z~ = Xj + iy~, 1 <~j <~ k; 

it = ( 2 2 , 2 3 ,  "'' ,'~k), ,~j = pj  q- ivj, 2 <<.j <~ k. 

We see that  the coordinates (x j, y~) t ransform to (x j, yj) if j = 1 and to (l~x~ - vjy~, vjxa + I~Y~) if 
2 ~< j ~< k. The 2k × 2k matrix of the t ransformat ion is hence 

[ ] A A 
o • 

A 

I ~ [ ~ 01] ~ A-~ [ xlyl --YlJ.x1 

Hence the Jacobian of the t ransformat ion z ~ (z, it) is 

0Z 

O(z, it) 
- -  = [ d e t a l  = Iza[ 2~k- x) = Iz[ 2tk- 1) 

To avoid problems for large 2, let us set 

B , :=  {(z, itz): IlzlL ~<R and 11(1,2)11 >t l/r/}. 
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We see that if Z denotes the characteristic function, 

m2k(gj \Bn)  = f c  Z~\B.(Z) dm2k(Z) 

Oz 
= fc._, fcZ~\B.(Z, XZ) ~(--~,~ dm2(z)dm2k- 2('~) 

4rcR2e2R2tk- 1) dm2k <<. 2(~) Jx :ll0, .~)ll ~< 1/~ 

<~ CR2kg2y] - 2(k - 1), 

where C is independent of R, q, e. Here we have used (15). Since B~ consists of points (z, 2z) with 
Izl ~< R/l[(1, 2)11 ~< Rr/, we see that mEk(B~) = O(r/2) ,  q ~ 0 + .  Choosing ~/small enough, and then 
e small enough, gives the result. []  
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