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Abstract

We investigate Nuttall-Pommerenke theorems for several variable homogeneous Padé approximants using ideas of
Goncar, Karlsson and Wallin.
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1. Nuttall-Pommerenke theorems for homogeneous Padé approximants

We begin by recalling the definition of homogeneous Padé approximants. Let f(z) denote
a power series of k variables z,, z,, ..., z; convergent in a neighbourhood of 0. We can rearrange the
Maclaurin series of f into a homogeneous expansion

CEWC) )

where Cj(z) is a homogeneous polynomial of degree j, that is, is a sum of terms of the form
cz{z% -z, with ji +j2 + --- +jx =j. The homogeneous Padé approximant of type (m,n),

denoted [m/n] = P/Q, is a rational function of z = (z1, z2, ..., z¢) such that

f@0Q-PO= 3 D), @
where
PQ= 3 Ajem(@s Q@)= 3, Bjemd ®
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and each A;, B;, D;is a homogeneous polynomial of degree j. At first sight, the form of P, Q and the
remainder fQ — P may seem strange, but these are the natural forms for homogeneous Padé
approximants. See [5-7] for further orientation.

In [10,11] Nuttall-Pommerenke theorems were established for nonhomogeneous Padé ap-
proximants, but the results of Goncar, Karlsson and Wallin do not formally cover our approxi-
mants. We can use several of their ideas, once we take note of the following crucial projection
property of [m/n]: On each complex line through the origin in C¥, [m/n] is an ordinary one-variable
Padé approximant to the projection of f onto that line. To be more precise, let

A=Ay, Az, ..., lq) €CH1 )
and

f2)=f(z,42), zeC. ()
Then [5]

[m/n]y,(2) = [m/n];(z, Az) (6)

(the subscript indicates the function from which the approximant was formed). However, despite
this property, the fact that [m/n](z) is a rational function whose numerator and denominator can
have degree mn + max{m,n} + 1 creates difficulties. The main contribution of this paper is to
partially circuamvent them.

In order to state our results, we need more notation. Throughout m,, denotes Lebesgue measure
on C2* We say that a rational function r(z) of k variables z = (z,z,, ...,2) is of order n if its
numerator and denominator are polynomials of degree < n in each variable z,,z,,...,z;. The
norm ||z|| of z is the usual Euclidean norm. For compact K = C¥ and f:K — C, we let

E(f;K):=inf{ | f = rll1.o: r of order n} ()

denote the error of best rational approximation of f by rational functions of order n on K.

Let U = C* be open and connected and f:U — C be analytic. We say that f belongs to the
Goncar—W alsh class on U, and write f e Ry(U), if, for each compact set K < U,

lim E,(f; K)" = 0. (8)
Cirka [4] has shown that if f is analytic in C* outside an analytic set A4 (that is, a set of the form
A = {z: g(z) = 0} for some entire function g), then f€ Ro(C*\ 4).

It is implicit in the work of Goncar (see the footnote on p. 306 of [10]), that if U is the
Weierstrass domain of analytic continuation of f, and (8) holds when K is some closed ball within
U, then (8) holds for each compact K < U. This is well known in the case of one dimension [9], but
less obvious in several dimensions, so we avoid this fine point.

In fact, in [10], Goncar’s definition of R, is a little different. He defined fe R, if there exist
rational functions r, of order n, for large enough n, and a ball B such that for each ¢ > 0,

muyf{z€B: |f—r,|(@) =¢"} -0, n— .

He showed that if f; belongs to R, (as a function of one variable) for a.e. A€ C*~!, then feR,.
Moreover, if f € R, then f is single-valued in its Weierstrass domain of analytic continuation. We
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emphasise again that our apparently more restrictive definition of R, is equivalent to Goncar’s,
but is adopted in order to simplify proofs.
Following is our Nuttall-Pommerenke theorem:

Theorem 1.1. Let U be an open connected subset of C* containing 0. Let f € Ro(U). Let {m;} and {n;}
be sequences of positive integers with

lim m; = og; 9

joec
and for some n > 1,
Temicy j>1 (10)
ﬂ\n]\ b = .
Then givenr > 0, & > 0,

my{zeU: |zl <rand |f— [m;/n;]{(z) > e™*"} -0, j—> o (11)

It should be possible to replace 2k-dimensional Lebesgue measure by product capacity or
Favarov’s capacity or the general capacities [3, 16] on C¥, but we have avoided this because of the
difficulty of moving from estimates on the exceptional sets along lines to estimates on the
exceptional sets on C* itself.

2. Proof of the result

We record a lemma from [8]:

Lemma 2.1. Let P be a (one-variable) polynomial of degree < n, normalized by the condition
||PHL1(Iz|<r) =1. (12)
Then

my({z: |z| <1 and |P(2)| < &"}) < dnr?e?. (13)

Proof. See [8]. There it is also shown that the estimate (13) and its cousin for capacity are sharp.
A weaker estimate, which is still sufficient for our purposes, is given in [14, p. 777]. Related
estimates appear in [1,2,12,13,15]. O

We proceed to the proof of Theorem 1.1. We break it into several steps:

Step 1: Replace U in (11). We can choose finitely many closed balls contained in U, with union
K say, such that m,, (U\ K) is arbitrarily small. So we may prove (11) with U replaced by K. We can
choose slightly larger concentric open balls, whose union is a set V, say. We may assume that
V < U, that 0 e V, and that f is analytic in V. Let § denote the distance from C\V to K.
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Step 2: Convergence along a slice. For fixed AeC*™1, let
fi(2)=f(z,42),
so that
[m;/n;i1s(z,Az) = [m;/n;l; (2) = P/ Q(2),
say. Let
K,={z:(z,Az)eK}; Vii={z:(z,Az) e V}.

Then K, is a compact subset of open V,, and the boundary 0¥ has distance at least §/||(1, 4)|| to K.
Let

o;:=min{m;,n;}, j=1.
Choose rational functions r;(z) of order o; such that

Lf = rile.w) = Eo(f; V).
By our hypotheses on f and {m;}, {n;},

E,(f; V)™ -0, j— oo, (14)
Let

rf(2):=ri(z,42) = p}(2)/4} (),

say. Cauchy’s integral formula gives for z e K,

4 (fQ; — P LJ 4/ (fQ, — P)) dt
171

Zm,+n +1 27 tmj+nj+1 t—z

_ 1 Q;(fqf —p})) dt

2ni Jo,  tmtmt! t—z

Here we have used that pfQ; — Piq} has degree at most m; + n;, so the part of the integral
involving it is identically 0. Thus

1 j (a7 Q)@ (f—r] )(t)< )miﬂjﬂdt
2ni ), (@70 )2) t—:z : ,

(fo = [my/nilp)(2) =

for z e K;. Then for such z,

s — Dyl |2) < B, (f; V) ML Qilliotii=m 1,
1 1 470,12

We note that inasmuch as V is a finite union of balls, the length of dV, is bounded independently of
A. Thus C,,C, depend on V and K, but not on j,z or 4. Also R is chosen so that the polydisc
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{z: |z;] < R} contains V. Note that for ze V, R = ||z|| = |z|||(1, 4) ||, so in the contour integral,

1 _ILAl_R
[ I EF

By Lemma 2.1, if 0 <e < 1,

*
qu QJ“Lm(ItI=R) < oo 2m | <R, Z¢(g,“

lgf iy —

where
my(&;.,) < 4nR%e2, (15)
In view of (14) and the fact that E, ( f; V) does not depend on 4, we obtain for j = jo, z€ K;\ 8,5,
|fo = [mifnjlgl2) < ™™ (16)

The crucial thing is that j, is independent of 4.
Step 3: Patch the exceptional sets together. We can reformulate (16) as

|f— [m/n;]1(z) <e™™™, zeK\&;,
where

&= ) {(z,A2): z€8;.}.

AeCH-1

To transform the estimates on the size of &, to &;, we need the Jacobian of the transformation
7z —(z,4). Here zeC*, zeC, AeC* 1. Let us write

z=(215229--~azk)’ Zj=xj+i))ja IS]Sk,
}-=(12,A3,...,lk), '1,=#1+1V,, 2<]<k.

We see that the coordinates (x;, y;) transform to (x;, y;) if j = 1 and to (u;x; — v;y1,v;x1 + p;yy) if
2 <j < k. The 2k x 2k matrix of the transformation is hence

_ A . _10 ___x1 — V1
4= o 1_[0 1], A—[yl xl].

A
Hence the Jacobian of the transformation z — (z,4) is

0z _ _
—_— = Al = 2(k—1) 2k- 1)
6(2,}.) Idet I |le izl

To avoid problems for large 4, let us set
B,:= {(z,42): |zl < R and ||(1, })|| = 1/n}.
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We see that if ¥ denotes the characteristic function,

r

may(&i\B,) = Cng,.\B”(z) dmi,(z)

o

r

0z
= J X8 (2 AZ) 70— G0 dm;(z) dmyi -2 (4)

k-
JC
”

< 4nR282R2(k—1)dm2k_2(1)

JANL B <1/

2kn2,—2(k—-1
< CR% g2y~ 26k 1)

where C is independent of R, #, ¢. Here we have used (15). Since B, consists of points (z, Az) with
|| < R/|(1, 4) || < Ry, we see that m,,(B,) = O(n?), n — 0 + . Choosing 5 small enough, and then
¢ small enough, gives the result. [
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