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Summary. For univariate functions the Kronecker theorem, stating the equiva-
lence between the existence of an infinite block in the table o Ragroximants

and the approximated functidnbeing rational, is well-known. In [Lubi88] Lu-
binsky proved that iff is not rational, then its Pé&dtable is normal almost
everywhere: for an at most countable set of points the Taylor series expansion
of f is such that it generates a non-normal @&able. This implies that the Pad
operator is an almost always continuous operator because it is continuous when
computing a normal P&lapproximant [Wuyt81].

In this paper we generalize the above results to the case of multivariate
Padce approximation. We distinguish between two different approaches for the
definition of multivariate Pa&l approximants: the general order one introduced
in [Levi76, CuVe84] and the so-called homogeneous one discussed in [Cuyt84].

Mathematics Subject Classification (19965D15

Introduction

Let f (x) be analytic in the origin with a series development

f(x)=§:cixi
i=0

and let the Pagl approximant, , of degreen in the numerator andh in the
denominator be defined by
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p<n dg<m  (fg-p)x)= > dx

i=n+m+1

wherery , is the irreducible form ofo/q. Then the results of Kronecker and
Lubinsky can essentially be summarized as follows.

Summary:
n—1 i
o X
I f(x)= —I=0
0 0= Snti
bo#0  bm1#0 @170
f irreducible
—
CU P Cl,fp‘+]_
({0)) Yv>nu>m:D(y,p) = Do =0
CV+.U'71 e CV
=
W 1 dntk—¢¢ m—1 .
D) Du(n. m) = det[ 1 St (W) =0

for u in a neighbourhood of the origin

In order to easily understand the positive and negative multivariate results of the
next sections, we keep the following special case in mind. Takel. Thenf
is a polynomial of degre@ — 1 according to (I), which means that the series
expansion of reduces to
n—1
fx)=> cx
i=0

while the equivalent statement (ll) says fo=m =1 that
1 d¥f

> 1C, = =
Yv>n:c U de(O) 0
The equivalence with (1) stating that
1df
nt axn W =0

for u in a neighbourhood of the origin is evident. At the end of the Sects. 2 and
4 we will come back to this example, but then for a multivariate function.
1. Definitions and notations: general order MPA

We restrict our description to the case of two variables because the generalization
to functions of more variables is only notationally more difficult. We also prefer
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not to work with the multi-index notation because the reader may then lose
feeling for the difference between the univariate and the multivariate case once
we are dealing with the homogeneous approach in Sects. 3.

Given a Taylor series expansion

fooy) = Y gy
(i.,j)en?
with L
11 9

G =11 oxiayi 100
we repeat the definition of general order multivariate @approximantp/q

to f wherep(x,y) and q(x,y) are determined by an accuracy—through—order
principle. The polynomialp(x,y) andq(x,y) are of the form

(1a) peGY) = > ax'y
(i,j)eN

(1b) q,y)= > byx'y
(i,j)eD

whereN and D are finite subsets afi’>. The index setdN andD in a way
indicate the degree of the polynomigdéx,y) andq(x,y). Let us denote

op={G,j)|a #0} CN  #N=n+1
99={(,j)| b #0} CD  #D=m+1

For the construction of a general order multivariate @agproximanp/q we
impose onp(x,y) andq(x,y) that they should satisfy the following conditions
for the power seriesfd — p)(x,y), namely

(10) fd—p.y)= >  djx'y
(i,j)EN2\E

These conditions can be satisfied if, in analogy with the univariate case, the index
setE is such that

(2a) NCE
(2b) #E\N)=m=#D — 1
(2¢) E satisfies the inclusion property

where (2c) means that when a point belongs to the indesé¢hen the rect-
angular subset of points emanating from the origin with the given point as its
furthermost corner, also lies . Condition (2a) enables us to split the system
of equations
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dj=0 (,j)€E
in an inhomogeneous part defining the numerator coefficients

i
(3a) ZZ Ciebi —i j—¢ = & (i,J)eN

k=0 ¢=0

and a homogeneous part defining the denominator coefficients

i
(3b) > eubikj—e=0  (.j)€E\N

k=0 (=0
By conventionby, = 0 if (k,¢) ¢ D. Condition (2b) guarantees the existence
of a nontrivial denominatog(x,y) because the homogeneous system has one
equation less than the number of unknowns and so one unknown coefficient can
be chosen freely. Condition (2c) finally takes care of the&Pagproximation
property, namely

(3c) 4(0,0)# 0= (f - g’)(x,y) = Y gxy

(i,j)EN2\E

If E does not satisfy the inclusion property, then (1c) cannot imply (3c).

Let us denote the set of solutiopgq of the general order multivariate Rad
approximation problem (1) té by [N /D]fE. If the homogeneous system (3b)
defining the denominator coefficients has maximal rank, then the solpfign
is unique. The general order multivariate Bagbproximants can also be ordered
in a table [Cuyt92] in the following way. The size of the numerator indexX\set
will play the role of row number and the size of the denominator indexDset
that of column number:

N:Nn:{(iO»jO)a--~7(inajn)} #N=n+1
D =Dm = {(do, &), - - ., (Om, €m)} #D =m+1
E = Enim = {(i0,J0), - - -, (in+m, Jn+m) } HEpm=n+m+1

When updating or downdating the index sitsD andE, the order of the indices
is preserved. For more detailed information we refer to [Cuyt92].

2. Results for general order multivariate Pade approximants

A main difference between the general order (introduced in the previous section)
and the homogeneous (introduced in the next section) multivariate &goxi-
mation problem is the consistency property. The consistency property states that
if f is a rational function thef is reconstructed when choosing the appropriate
degrees for its Padapproximant. This property is satisfied for the general order
definition only if the system of P&dconditions is nonsingular [AbCu93]. This
explains the slight difference in formulation between Theorem 1 and Theorem 4.
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Theorem 1. If the coefficient matrix of the homogeneous system of linear equa-
tions (3b) for the general order multivariate Padgpproximant with numerator
degree set \_; and denominator degree set,D; has maximal rank, then

n—1 o
2_: aikikxlky]k
fxy)= 7
Z bdkekxdkya(
k=0
do=0=e boo # O 8in_1in_1 70 bdm—lem—l 70
f irreducible

—

Yv>n,up>m:

- . i p—1
A, p) : = det[clmk—dzyka—ez]k7g:o
Ci, —dg.jv—€g e Ci,—d,_1.jv—eu_1
= . =0
Ciu+u71_d07ju+ufl_eo e Ciu+u71_duflxju+ufl_eufl

Proof. “==": Sincef (x,y) is a rational function and the rank of (3b) is maximal,
f equals its general order multivariate Iéaapproximantm/D]fE =p/q with

N = {(io,jo)7 ey (in—lvjn—l)}
D= {(do, eo)7 ceey (dm—l» emfl)}’
E= {(io,jo), ey (in+m—27jn+m—2)}

because of the consistency property discussed in [AbCu93]. Moreover
faq—p=0

Now fix v > n and . > m. Then fromfg — p = 0, together with the inclusion
property (2c), we obtain that the linear system of equations

pn—1
Z Ciu*dkajufex bdkeK = 0
k=0

pn—1
> Gyt 1—abi = 0
k=0
has a nontrivial solution for thig, e, With by,e, = ... = delQWl =0ifm< p.

Hence
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Ci, —do.jv—eo e Ci,—d,_1jv—e,_1
Ay, 1) = =0
Cil/+u—l_d03ju+y—1_e() e Ciu-#u—l_du—lvju-#u—l_eu—l

“«<=": Since the rank of the homogeneous system (3b) is maximal we can com-
pute the unique general order multivariate t?zilxu)proximantlﬂ/D]‘;E satisfying

-1
Ciy—dhio—aPove =&,  £=0,....n—1

3

3T
- O

Cie*dkij*Wbdk%:O f=n,...,.n+m-—2
k=

o

BecauseA(n, m) = 0 and the rank of (3b) is maximal, the last row of the matrix

Cin—dg,in—ep e Cin—dm_1.in—€m—_1

Cinim—_1—dosinim—1—€ - Cintm—1—Om_1insm_1—€m—1
is linearly dependent of the other ones and hence

-1

3

Cin+m—l—dk7jn+m—l—ex bdk%( =0
0

=~
1

We can now prove by induction that

(Cis+m71*do,is+m71*eo> Tt Cis+m71*dm—1vjs+m71*9mfl) s=n

is linearly dependent of the firsh — 1 rows of A(n, m) and consequently
m—1

Cis+m—l*dk Jstm—1—& bdkeK =0
K=

Assume itis true foralh+m—-1<s+m—-1<wv+m-—2 withn < v. Then
considerA(v, m). Since A(v, m) = 0, there exist\, ..., Am_1 such that

m—1 m—1

Ae Z Ciwe—dk,iwe—wbqu =0
¢=0 k=0

or, because of the induction hypothesis

m—2 m—1 m—1
XY Cinep—diinee—abdee + Am-1 Y Ciyn 1 —dedyom_1-acDae = 0
¢=0 k=0 k=0

Clearly Am—1 # 0 because otherwise the rows of the coefficient matrix in (3b)
would be linearly dependent and thus
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-1

3

Gi vtm—1—0Ok:jp+m—1—& bde( =0
k

1
o

which concludes the induction part. Now that the above is true fa 2lin, we
have

fq—p=0
orf =p/q.

Theorem 2. If the coefficient matrix of the homogeneous system of linear equa-
tions (3b) for the general order multivariate Padgpproximant with numerator
degree set \_; and denominator degree set,D; has maximal rank, then

n—1 L
Z aik]kxlky]k
k=0
m—1
> bdkkadkyek
k=0

do =0=& bOO 75 0 a*'nfljnfl # 0 bdmflemfl # 0

f(x,y) =

f irreducible
=
o 1 Sin+k —dg*insk —€¢f m-=1-
A0, m) = det[(imk*dz)!(jmk*ez)! Axin+k—de gyln+k —€¢ (u,v) K.e=0 0

for (u,v) in a neighbourhood of the origin

Proof. “==-": Because the coefficient matrix of the homogeneous system of linear
equations (3b) has maximal rank, it has also maximal rank when the Taylor
coefficients are not taken at the origin but at a nearby paint)( This is a direct
consequence of the continuity of all the ¢ 1) x (m — 1) determinants formed
with the columns of the coefficient matrix of (3b). Then the previous theorem
implies that the Pa&lapproximation process at the point ¢) instead of at the
origin, reconstructs the rational functidifx,y) with A )(n,m) = 0, and this

for all (u, v) in a neighbourhood of the origin where the defining equations retain
their maximal rank.

Why the implication in the other direction isn't true, is easy to understand from
the special case that we discussed in the introduction. ifekel andd, = 0 = &.

Thenf (x,y) is a bivariate polynomial because the denominator contains only a
constant term. The assumption about the rank of the homogeneous system (3b) is
fulfilled because fom = 1 the system is empty and hence all the(1)x (m—1)
determinants equal 1. Theorem 1 tells us that

1 1 gvivf

TG =1 oyl

(0,0)=0
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which translates to

n—-1
F,Y) =D Gy Xyl
k=0

Theorem 2 states that this implies

1 1 ohnvinf

i1 jn! Oxingyin U0 =0

for (u,v) in a neighbourhood of the origin. However the implication in the
other direction doesn’t hold in general. If it were true for instancenfor 1,
then having a partial derivative vanish in a neighbourhood of the origin would
imply that we are dealing with a polynomial functidn That this is incorrect
can easily be seen. Just také&,y) = h(x) with h(x) not a polynomial. Take
(io,jo) = (0,0), (i1,]1) = (1,0), (i2,j2) =(0,1),... andn = 2. Then clearly

1 1 H2ef oh

i) o) Oxizoyle ) T gy (W) =0

althoughf (x,y) = h(x) is not a polynomial indexed by = N,_1 = {(0,0), (1, 0)}.
However, with the single conditiod, . (N, M) = 0 being replaced by a finite
number of conditionsAy .)(Nk, M) = 0 with (ng, m¢) on the boundary of the
setN? \ N as in Figure 1, the theorem probably remains true. At least for the
casem =1 it is easy to see that

ai+j.|: _ ) )
8X|6yj(070)_0 GaJ)GN \N
is equivalent to
Ot . .
DX Dy (u,v) =0 (u,v) in a neighbourhood of (@)
INAN
(n,,my)
® 0O00O0O0
o (np,my)
@00 (n.,m. )
1 1
0000
N )
o (nj,my

Fig. 1.
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Consequently iff (x,y) is not a rational function, one can no longer conclude
that its Paé table is normal almost everywhere. In the univariate case normality
was easily obtained almost everywhere by slightly shifting the origin if one
encountered a nonnormal Fathble at the origin [Lubi88].

With respect to the normality and continuity of the multivariate @agerator
the following still holds. We emphasize that the enumeration of the index sets
N,D andE as introduced at the end of Sect. 1, remains fixed when considering
Pack approximants of different “degree”. When the homogeneous system (3b)
has maximal rank, as we assume in the above theorems, then the unique solution
of the general order multivariate Fadpproximation problem also has a unique
irreducible form

Pn D (x.y) = 2 j)en a; X'yl

N/DJL =r X,Y) = o
[N/D]g =rnp(X,Y) D Z(i,j)eD’biJXIyJ

with

opnp =N'CN dgvp =D'CD
" = max(K|(i,j) €N} m = max(((d.e) €D} &, #0 by, #0

We can then define what we call the defect in degree, by
Sn.p =min(h—n';m—m’)

Let us now study the influence on the computation of the general order mul-
tivariate Paé approximant of small variations in the Taylor coefficients of the
function to be approximated. For univariate Bapproximants this problem has
been studied in [Wuyt81] and [WeWu83]. This problem is linked to the one
discussed above because a shift of the origin implies a change in the Taylor
coefficients and hence a change in the coefficients of the& Ragroximant.
Our question is now, is this change in the coefficients of theeRambroximant
dramatic or comparable in size to the change in the Taylor coefficients? The
following theorem deals with this continuity problem.

We introduce the seminorm

[[F (X, Y)[nem = k:OT?r)1(+m |Citi |

for the power series

f (Xv y) = Z Cikjkxikyjk
k=0
and use the Tchebyshev-norm

[[f[li = sup [f(x,y)]
(x,y)el

for multivariate functions continuous on compact dets
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Theorem 3. If the system of homogeneous equations (3b) for the general or-
der multivariate Paé approximant with numerator index set N and denominator
index set D has maximal rank andéif o = 0 and oy p(X,y) # 0in some poly-
interval |, then

Ve, 36 1 [|(F — )06, Y) [nem < 6 = [[(rnp — Pnp)OGY)|l < €

where | p andfy p are respectively approximating f aridn the sense of (1-3).

Proof. The proof is completely analogous to the one in the univariate literature
[WeWu83]. The conditiorby p = 0 is weaker than a normality condition.

3. Definitions and notations: homogeneous MPA

The approach we have taken in the previous sections to define and construct
multivariate Paé approximants is essentially based on rewriting the double series
expansion

(4) > gix'y
(i.j)en?
as the single sum
(o)
Z Cjx'y!
re(i,j)=0

In general, a numberinge of M? places the points il one after the other.
Another way to work with the bivariate power series (4) is the following:

oo

Z Ciniyj:Z Zcijxiyj

(i,j)eT? =0 \i+j=¢

This approach is taken in [Cuyt84, pp. 59-62] to construct homogeneous multi-
variate Paé approximants. These homogeneous multivariate Ragroximants

are a special case of the general definition (3) where for chosamd v in N,
which are comparable to the degreeandm of the univariate Pa@approximant,

the numerator and denominator index dd¢tandD are given by

(5a) N={(,j))eN?|vp<i+j <vu+v}
(5b) D={(d,e)eN?|vu<d+e<vu+pu}
while

(5¢) E= E(l,#) UEg

E(V7/L):{(i7j)€N2|V‘LLSi+j SVH+V+M}
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Es ={(,)) €2 |0<i+] <wp}

The conditions (1c) indexed bis are automatically satisfied by the choice of
N andD and hence void.

An advantage of homogeneous Baapproximants is that they preserve the
properties and the nature of univariate Papproximants even better than the
general order definition. This is for instance reflected in a tremendous simplifica-
tion of the algorithms for their computation [Cuyt82, Cuyt83]. Let us introduce
the notations

(Ga) Al/,u+€(x7 y)uu+€ = Z a'IJ Xiyj {= 07 R4
ey
(6b) Buu+é(xayy/#+£ = Z o Xiyj £=0,...,p
i+=vu+l
Cox,y) =) cix'y 0=0,1,2...
i+=¢

where C, is the /" Frechet-derivative of at the origin and hence afilinear
operator [Rall79]. In fact the notation comes from

mer=e () ()

i+j=¢
¢ times

In the sequel of the text we shall sometimes also wate= f{?%, for the /"
Fréchet derivative of at the origin. We rewrite

POGY) = D ax'y =) Aj(x, )

EN =0
m

qeGy) = D byx'y = By (x, y)
(ij)eb =0

such that the conditions
fa—p),y)= > dix'yy= > dix'y
(i.))eN?\E i+ >vptvutl

can be reformulated as

CO(Xv y)OBl/[L(X7 y)yu = Auu(xv y)yu

C1(X, Y)'Buu (X, ¥)"* + Co(X, ¥)°Bysa(X, ¥) 4“1 = Ay (X, y)
(7a) :
Cu(xa y)yBl/u(Xa y)u# +...F CU—,LL(X? y)ViuBu,uﬁu(Xa y)Vl“'P«

= vty (X ) y)l/p,+1/
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(7b)
Cor1(X, ¥) By (X, Y) M + o+ Coa (X, Y)Y By (X, y)VH = 0

Corp () By, 1) + -+ Colk,y) By ()7 = O

whereC,(x,y)’ = 0 if £ < 0. This is exactly the system of defining equations
for univariate Paé approximants if the univariate teroax’ is substituted by

Cx.y) =Y exyl  r=012. .
i+j=¢

The homogeneous multivariate Radpproximant of orden u) for f(x,y) can
now be defined as the unique irreducible form [Cuyt84]

Pu,u(X,Y)

[V/N]f = ru,u(xvy) = qu,p(X,y)

of any solutionp(x,y)/q(x,y) of (7).

4. Results for homogeneous multivariate Pa&l approximants

Before proving two other Kronecker-type theorems, let us first point out that the
homogeneous multivariate Radable exhibits a square block structure just like
in the univariate case [Cuyt84, pp. 45]. Therefore zero-entries in the table of the
D(n, m) as defined below, also occur in square blocks.

Theorem 4. Let f be analytic in the origin. Then the following are equivalent:

n—1 n-1 o
SAX Y X 2 axy
_ 4=0i+j=¢

fix,y) = nfiol T om-1
> B y)t > > byxiyl
=0 =0 i+=¢
Bo#0 Bpoa(x, V)" '#0  A_ix,y)"t#0
f irreducible
=

CV(va)V cee CV—,u+l(Xa y)yil“—l
Yv>n,u>m:D(v,pu)= : :

Il
o

Cu+u—1(X7 y)’/+'u_l cee CV(X, y)y

Proof. Note thatf is a rational function in the usual sense, without the degree of
its numerator and denominator being shifted:hyas in (6).
“==": Since f(x,y) is a rational function of homogeneous degree 1 in the
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numerator and homogeneous degree- 1 in the denominator, it equals its
homogeneous Péadapproximant

n—-1 m—1
[n—1/m—1} =p/a  px.y) =Y AMKY)  dXxy) =) Bixy)

i=0 i=0

because of the consistency property for homogeneous &goroximants proved
in [Cuyt84, pp. 65]. Note that for a rational functiénthe consistency property
implies that the shift overn(— 1)(m — 1) in the degrees of the numerator and
denominator of its homogeneous Raabproximant is cancelled when taking the
unique irreducible form. Moreover

fqa—p=0

Now fix v > n and x> m. Then fromfq — p = 0 with Bu(x,y)" = ... =
B.—1(X,y)*~1 =0 if m < p, we obtain that the linear system of equations

C,Bo+...+Cp 1B, 1=0

Cy+;¢—1BO +...+ C,,BH_]_ =0
has a nontrivial solution for thg; (x,y)'. Hence

CV(Xay)y s Cuf;ﬁl(xay)u_u-'—l

If
o

Yv>npu>m:D(v,pu)= _ . :
Cu+u—1(X: y)yﬂL_l cee Cu(va)u

“«<=": Let n andm be minimal, in the sense thBX(n,m—1) # 0,D(n—1,m) #
0 andD(n — 1,m — 1) # 0. Then we can construct the homogeneouséPad
approximant i — 1/m — 1}; satisfying

m—1
> CeiB=Ac k=0,...,n-1
i=0

m—1
C_iBi=0 k:n,...,n+m—2
i=0

BecauseD(n,m) =0 andD(n — 1,m — 1) # 0, the last row of the matrix

( Cn(Xay)n . Cnm+1(x’y)ﬂm+l)

Chem—1(x, )™t ... Cn(x, y)"

is linearly dependent of the other ones and hence

Cn+m7180 +...+ Canfl = O
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We can now prove by induction thdCs.m_1(x,y)*™ %, ..., Cs(X,y)®) is lin-
early dependent of the firsh — 1 rows of D(n, m) and consequently

Cstm—1Bo+...+CBnh_1 =0

Assume itis true foralh+m—-1<s+m—-1<v+m— 2 withn < v. Then
considerD (v, m). SinceD (v, m) = 0, there exist\g, ..., Am_1 such that

m—1

Z Ai (Cz/+i Bo+...+Cuy —m+1Bm—1) =0

or because of the induction hypothesis

m-2 m-1 m—1
Z Ai Ch+i—kBk + Am—1 Z Coim-1-kBk =0
i=0 k=0 k=0

Clearly A\n—1 # 0 because otherwise the rows In(n — 1, m — 1) would be
linearly dependent and thus

Co+m—1Bo+...+C,By_1 =0

which concludes the induction part. Now that the above is true fas 2lin, we
have

fq—p=0
orf =p/q.

Theorem 5. Let f(x,y) be analytic in the origin. Then the following are equiva-
lent:

n—1 n-1 o
> Aux, y) ZO,Z aj X'y’

- =0 i+j=¢
f(X’Y) = rfl_ol = m_]_I : L
> B, y)E >0 Y byxiyl
£=0 £=0 i+j=¢
Bo#0  Bn a(GY)" 1#0  Aya(x,y)" 1 #0
f irreducible
—

—1
— (n+k—2) k]
D(u,v)(nv m) = det f(va) (X’y) k,£=0 =0

for (u,v) in a neighbourhood of the origin

Proof. “==": Because Theorem 4 is valid at any point {) wheref is analytic,
it immediately yields the implication in this direction. Irrespective of the point
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around which the series development is constructed, the homogeneauspRrad
proximant of degree = n—1 in the numerator and = m—1 in the denominator
always reconstructs the functidn.

“«=" Let us denotef(’ by C. Takey = Ax andv = Au and define
fa(x) = f(X, Ax). Then the series development ff aroundx = u is given

by
200 =D Ci(x — u, Ax — u))

k=0
DY EGN | x—u)
k=0 \i+j=k
where it
.1 0+
G = i1 oxiay W)

ThenD,)(n, m) = 0 for (u, v) in a neighbourhood of the origin implies that (111)
is valid for eachfy (x) and eactu in a neighbourhood of the origin. This implies
through (1) that for each\, in other words for eacly, f is a rational function of
x of degreen — 1 in the numerator anth — 1 in the denominator becauggis.

In the same way we can conclude with the rolexa@indy interchanged thaft

is a rational function of/, of the same degrees. Herfcés a rational function of
(X,y) [BoMa48, pp. 201]. Taking\ = 1 implies moreover that the total degree
of f cannot exceed — 1 in the numerator anch — 1 in the denominator.

Let us compare this result to the negative one of Sect. 2 by looking at the special
casem = 1 again. Wherf is a polynomial inx andy of homogeneous degree
n — 1, then its series development in the origin reduces to

n-1
f(X,y) = Z CZ(Xay)Z

£=0

which according to Theorem 4 indeed means
Vz/zn:cn:f(gjg))zo
According to Theorem 5 this is in its turn equivalent to the single condition

fM =0  (u,v) in a neighbourhood of (@)

(u,v) =

The reason of this success lies in the fact that we are now dealing vétihé&r
derivatives and not with partial derivatives.

A straightforward consequence of Theorem 5 is that, except possibly for a
set of Lebesgue-measure zero, the multivariate homogeneoéstétad off at
(u,v) is normal.

Corollary. Letf be analytic in a neighbourhood W of the origin and let f not
be a rational function. Then for afu,v) € W\ Z where Z is a set of Lebesgue-
measure zero, and for all,/m > O:
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Dw,»y(n,m) £0,

meaning that the multivariate homogeneous ®#able of f at(u, v) is normal.

Proof. Form = 0, D, +)(n,m) = 1 and in that case the statement is true. For
m > 0, D, (n, m) is an analytic function that does not vanish identically in a
neighbourhood of the origin. Its zerds  constitute a set of Lebesgue-measure
zero [Rang86, pp. 31-39]. Hence the set

Z = Up myenzZnm

is a set of Lebesgue-measure zero. Out#deve have for alln and m that
D, (n, m) # 0. Combined with the conditions for normality of the multivariate
homogeneous Padapproximant as proved in [Cuyt84, pp. 51], the statement is
true for alln andm.

For the sake of completeness we recall the continuity result of the multivari-
ate homogeneous Padperator proved in [CuWW84], which now becomes an
“almost everywhere” continuity result. To this end we introduce the concept of
degree defect for the homogeneous caseuldgty denote the order of the Pad
denominator, in other words: the homogeneous nonzero term of smallest degree
in the denominator of the irreducible forrp  has degreesg, . Because of the

shift of degrees introduced for the computation of a solution to the homogeneous
Padk approximation problem, it is not always true that for the irreducible form
w0n,m = 0. We define

n' = apn,m — WQh,m
m' = 8qn,m — wW0h,m
Snm =min(h —n’;m —m’)

and redefine

— (k)
[[F G, V) lnem = ogrpgém ‘ ’f(0,0)H

Theorem 6. If §,,m = 0and o, m(x,y) # 0in some poly-interval |, then
Ve, 36 1 [|(F — )Yl Inem < 8 == [[(Fam — Fam)O, V) < e

where f , andfy i, are respectively approximating f aridin the sense of (6-7).

Proof. The proof can be found in [CuUWW84].
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