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Abstract

We use Picard’s integral representation of the Appell series F1(a; b; b′; c; x; y) for Re(a)¿ 0; Re(c− a)¿ 0 to obtain
a �nite sum algebraic representation of F1 in the case when a; b; b′ and c are positive integers with c¿a. The series
converges for |x|¡ 1; |y|¡ 1 and we show that F1(a; b; b′; c; x; y) has two overlaying singularities at each of the points
x=1 and y=1, one polar and one logarithmic in nature, when a; b; b′; c∈N with c¿a. c© 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Hypergeometric series in one and more variables occur naturally in a wide variety of problems
in applied mathematics, statistics, operations research and so on [3]. The ordinary hypergeometric
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series, also called Gauss’s hypergeometric series, is de�ned by

2F1(a; b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)nn!

zn; (1.1)

where (a)n is the Pochammer symbol

(a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1); n¿1;

(a)n := 1; n= 0
(1.2)

and the parameters a; b; c and z may be real or complex. Hypergeometric series in two or more
variables which reduce to the familiar Gaussian series (1.1) whenever only one variable is non-zero,
are called multiple Gaussian hypergeometric series. In total, 14 distinct double Gaussian series exist
[6]. The �rst four of these were introduced by Appell by taking the product of two Gaussian
functions and replacing one or more of the three pairs of products

(a)n(a′)m; (b)n(b′)m; (c)n(c′)m

by the corresponding expressions

(a)n+m; (b)n+m; (c)n+m:

In this paper we shall investigate the �rst Appell series F1(a; b; b′; c; x; y) de�ned by

F1(a; b; b′; c; x; y) =
∞∑
i; j=0

(a)i+j(b)i(b′)jxiy j

(c)i+ji! j!
: (1.3)

This function converges for |x|¡ 1 and |y|¡ 1 [3, p. 25], but the nature and location of its sin-
gularities is not obvious. Our main result is an algebraic representation of F1(a; b; b′; c; x; y) for
a; b; b′; c positive integers with c¿a, which explicitly displays the singularities of the function at
x = 1 and y = 1. A useful tool in deriving this algebraic representation is Picard’s integral formula
[5]

F1(a; b; b′; c; x; y) =
�(c)

�(a)�(c − a)
∫ 1

0
ua−1(1− u)c−a−1(1− ux)−b(1− uy)−b′ du; (1.4)

for Re(a)¿ 0; Re(c−a)¿ 0. Although the other three Appell series F2; F3 and F4 also have single
integral representations [6, pp. 274–283], they are not the simple Eulerian integrals of type (1.4)
for all parameters a; b; b′ and c.
This work is a part of a larger study, in which we investigate the approximation of the Appell

series Fi; i = 1; 2; 3; 4 by multivariate Pad�e approximants. As pointed out in [2], information on
the singularities of the function being approximated, such as derived here for F1(a; b; b′; c; x; y),
can be very useful to determine the form of the denominator polynomials in the multivariate Pad�e
approximants.
Our study is motivated by the fact that a great deal is known about Pad�e approximants for the

Gaussian hypergeometric series (1.1). The aim of our study is the generalization of these results to
the double Gaussian hypergeometric series Fi. Results on the structure of the table of multivariate
Pad�e approximants for the Appell series are discussed in [1]. Work in progress includes �nding
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compact explicit formulas for the denominators of the multivariate Pad�e approximants, in analogy
with the results obtained in [4,7] for the Gauss function. The paper is organized as follows: Section
2 contains the statement of the main result and Section 3 consists of the proofs of the auxiliary
lemmas followed by the proof of the main result.

2. Algebraic representation of F1(a,b,b′; c; x,y)

We present the result in increasing order of complexity, starting with the simplest choice of the
parameters a; b; b′ and c, and ending with the general case.

Theorem 2.1. (a) For any non-negative integers s; t and x 6= y; we have for |x|¡ 1; |y|¡ 1;

F1(1; s+ 1; t + 1; 2; x; y)

=
(−1)txty s
(y − x) s+t+1

(
s+ t
s

)
[ln(1− x)− ln(1− y)]

−
t−1∑
j=0

(
j + s
s

)
(−x) jy s[1− (1− y) j−t]
(y − x) s+1+j(t − j)

−
s−1∑
k=0

(
k + t
t

)
xt(−y)k[1− (1− x)k−s]
(x − y)t+1+k(s− k) : (2.1)

(b) For any non-negative integers a; s; t and x 6= y; we have for |x|¡ 1; |y|¡ 1;

1
a+ 1

F1(a+ 1; s+ 1; t + 1; a+ 2; x; y)

=ys−a
t∑
j=0

(
j + s
s

)
(−x) j

(y − x) s+j+1




a∑
k=0
k 6=t−j

(
a
k

)
(−1)k [1− (1− y)

k+j−t]
(k + j − t)

−
(

a
t − j

)
(−1)t−j ln(1− y)




+ xt−a
s∑

k=0

(
k + t
t

)
(−y)k

(x − y)t+k+1




a∑
j=0
j 6=s−k

(
a
j

)
(−1) j [1− (1− x)

j+k−s]
(j + k − s)

−
(

a
s− k

)
(−1) s−k ln(1− x)


 : (2.2)
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(c) For any non-negative integers a; s; t; d and x 6= y; we have for |x|¡ 1; |y|¡ 1;

B(a+ 1; d+ 1)F1(a+ 1; s+ 1; t + 1; a+ d+ 2; x; y)

=
d∑
m=0

(
d
m

)
(−1)m


ys−a−m

t∑
j=0

(
j + s
s

)
(−x) j

(y − x) s+j+1A

+ xt−a−m
s∑

k=0

(
k + t
t

)
(−y)k

(x − y)t+k+1 C

 ; (2.3)

where

A=
a+m∑
k=0
k 6=t−j

(
a+ m
k

)
(−1)k [1− (1− y)

k+j−t]
(k + j − t) −

(
a+ m
t − j

)
(−1)t−j ln(1− y); (2.4)

C =
a+m∑
j=0
j 6=s−k

(
a+ m
j

)
(−1) j [1− (1− x)

j+k−s]
(j + k − s) −

(
a+ m
s− k

)
(−1) s−k ln(1− x): (2.5)

Here; B(·; ·) is the Beta function; ( nk
)
is the binomial coe�cient and all sums are understood to

be zero where they are not de�ned.

We observe that (2.3) can also be written in the form

B(a+ 1; d+ 1)F1(a+ 1; s+ 1; t + 1; a+ d+ 2; x; y)

=
d∑
m=0

(
d
m

)
(−1)mF1(a+ m+ 1; s+ 1; t + 1; a+ m+ 2; x; y):

Remark. (1) It is immediately apparent from Theorem 2.1 that for a; b ; b′; c∈N with c¿a, the
singularities of F1(a; b; b′; c; x; y) occur at x = 1 and y = 1. There are two overlaying singularities
at each of these points, one polar and the other logarithmic. The polar singularity is dominant near
x=1 and y=1, however, the logarithmic singularity causes multi-valuedness in the neighbourhood
of each point. It also appears as though there is an in�nite set of singularities when x=y. However,
this is not the case, since whenever x = y, the Appell function F1(a; b; b′; c; x; x) can be expressed
as a Gauss hypergeometric function of one variable. We have (cf. [3, p. 30])

F1(a; b; b′; c; x; x) = 2F1(a; b+ b′; c; x): (2.6)

(2) From (2.1) with s= t = 0, we see that for |x|¡ 1; |y|¡ 1,

F1(1; 1; 1; 2; x; y) =
ln(1− x)− ln(1− y)

y − x ; x 6= y (2.7)

and from (2.6), we have for |x|¡ 1,

F1(1; 1; 1; 2; x; x) = 2F1(1; 2; 2; x) = 1F0(1; x) = (1− x)−1: (2.8)
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Further, from (2.1) with s= t = 1, for |x|¡ 1; |y|¡ 1, and x 6= y,

F1(1; 2; 2; 2; x; y) =
y2

(y − x)2(1− y) +
x2

(x − y)2(1− x) +
2xy

(y − x)3 [ln(1− y)− ln(1− x)]:

Also, we have,

F1(1; 2; 2; 2; x; x) = 2F1(1; 4; 2; x):

3. Proofs

We prepare the proof of Theorem 2.1 with the statements and proofs of two lemmas.

Lemma 3.1. Let

�=
y

y − x ; � =
x

x − y (3.1)

and

X = (1− ux)−1; Y = (1− uy)−1 (3.2)

Then; for any positive integers s and t;

X sY t = �s
t−1∑
j=0

(
j + s− 1
s− 1

)
�jY t−j + �t

s−1∑
k=0

(
k + t − 1
t − 1

)
�kX s−k : (3.3)

Proof. For s= t = 1, we have

XY =
1

(1− ux)
1

(1− uy) =
y

(y − x)
1

(1− uy) +
x

(x − y)
1

(1− ux)
= �Y + �X;

so that (3.3) holds for s= t=1. An inductive argument on the pair of positive integers (s; t), using
the identity

k∑
j=0

(
j + p
p

)
=

(
k + p+ 1
p+ 1

)
;

yields (3.3).

Lemma 3.2. Let X be de�ned by (3:2). Then; for p 6= 0;

∫ 1

0
upX q+1 du= x−p−1




p∑
j=0
j 6=q

(
p
j

)
(−1) j [1− (1− x)

j−q]
(j − q) −

(
p
q

)
(−1)q ln(1− x)


 ; (3.4)
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where the obvious terms disappear for q¿p. Also;∫ 1

0
X q+1 du=

−ln(1− x)
x

; q= 0;

∫ 1

0
X q+1 du=

−1
xq
[1− (1− x)−q]; q 6= 0:

(3.5)

Proof. We have, for p 6= 0,∫ 1

0
upX q+1 du=

∫ 1

0

up

(1− ux)q+1 du

= x−p−1
∫ 1

1−x
(1− w)pw−q−1 dw

= x−p−1
p∑
k=0

(
p
k

)
(−1)k

∫ 1

1−x
wk−q−1 dw;

from which (3.4) follows. For p = 0, the integration is similarly straightforward and yields
(3.5).

Remark. Replacing X by Y in (3.4) and (3.5) yields the same formulas with x replaced by y.

Proof of Theorem 2.1. (a) Putting a=1; b= s+1; b′= t+1 and c=2 in the integral representation
(1.4), we obtain

F1(1; s+ 1; t + 1; 2; x; y) =
∫ 1

0
X s+1Y t+1 du; (3.6)

where X; Y are de�ned in (3.2). Now, by (3.3), we have∫ 1

0
X s+1Y t+1 du= �s+1

t∑
j=0

(
j + s
s

)
�j

∫ 1

0
Y t+1−j du+ �t+1

s∑
k=0

(
k + t
t

)
�k

∫ 1

0
X s+1−k du (3.7)

with � and � given by (3.1). Applying (3.5) to the right-hand side of (3.7), we obtain (2.1).
(b) Replacing a by a+ 1, b by s+ 1, b′ by t + 1 and c by a+ 2 in (1.4), we obtain

F1(a+ 1; s+ 1; t + 1; a+ 2; x; y) =
�(a+ 2)
�(a+ 1)

∫ 1

0
uaX s+1Y t+1 du: (3.8)

Now, from (3.3), we have
∫ 1

0
uaX s+1Y t+1 du= �s+1

t∑
j=0

(
j + s
s

)
�j

∫ 1

0
uaY t+1−j du+ �t+1

s∑
k=0

(
k + t
t

)
�k

∫ 1

0
uaX s+1−k du:

(3.9)

Applying (3.4) and (3.5) to the right-hand side of (3.9), yields (2.2).
(c) Replacing a by a + 1, b by s + 1, b′ by t + 1 and c by a + d + 2 in (1.4), and noting that

d¿0, we have

F1(a+ 1; s+ 1; t + 1; a+ d+ 2; x; y) =
�(a+ d+ 2)

�(a+ 1)�(d+ 1)

∫ 1

0
ua(1− u)dX s+1Y t+1 du: (3.10)
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Expanding (1 − u)d in its bionomial expansion and using (3.4) and (3.5), we obtain (2.3) from
(3.10).
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