ELSEVIER

A finite sum representation of the Appell series $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$
A. Cuyt ${ }^{\mathrm{a}, 1}$, K. Driver ${ }^{\mathrm{b}, *, 2}$, J. Tan ${ }^{\mathrm{c}, 2}$, B. Verdonk ${ }^{\mathrm{d}, 3}$
${ }^{a}$ Department of Mathematics and Computer Science, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk - Antwerp, Belgium
${ }^{\mathrm{b}}$ Mathematics Department, University of the Witwatersrand, Private Bag 3, P.O. Wits 2050, Johannesburg, South Africa
${ }^{\mathrm{c}}$ Institute of Applied Mathematics, Hefei University of Technology, 59 Tunxi Road, 230009 Hefei, People's Republic of China
${ }^{\mathrm{d}}$ Department of Mathematics and Computer Science, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk - Antwerp, Belgium

Received 24 June 1997; revised 30 March 1998

Abstract

We use Picard's integral representation of the Appell series $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$ for $\operatorname{Re}(a)>0, \operatorname{Re}(c-a)>0$ to obtain a finite sum algebraic representation of F_{1} in the case when a, b, b^{\prime} and c are positive integers with $c>a$. The series converges for $|x|<1,|y|<1$ and we show that $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$ has two overlaying singularities at each of the points $x=1$ and $y=1$, one polar and one logarithmic in nature, when $a, b, b^{\prime}, c \in \mathbb{N}$ with $c>a$. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Multiple hypergeometric function; Appell series; Singularity

1. Introduction

Hypergeometric series in one and more variables occur naturally in a wide variety of problems in applied mathematics, statistics, operations research and so on [3]. The ordinary hypergeometric

[^0]series, also called Gauss's hypergeometric series, is defined by
\[

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}, \tag{1.1}
\end{equation*}
$$

\]

where $(a)_{n}$ is the Pochammer symbol

$$
\begin{align*}
& (a)_{n}:=a(a+1)(a+2) \cdots(a+n-1), \quad n \geqslant 1 \tag{1.2}\\
& (a)_{n}:=1, \quad n=0
\end{align*}
$$

and the parameters a, b, c and z may be real or complex. Hypergeometric series in two or more variables which reduce to the familiar Gaussian series (1.1) whenever only one variable is non-zero, are called multiple Gaussian hypergeometric series. In total, 14 distinct double Gaussian series exist [6]. The first four of these were introduced by Appell by taking the product of two Gaussian functions and replacing one or more of the three pairs of products

$$
(a)_{n}\left(a^{\prime}\right)_{m}, \quad(b)_{n}\left(b^{\prime}\right)_{m}, \quad(c)_{n}\left(c^{\prime}\right)_{m}
$$

by the corresponding expressions

$$
(a)_{n+m}, \quad(b)_{n+m}, \quad(c)_{n+m}
$$

In this paper we shall investigate the first Appell series $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$ defined by

$$
\begin{equation*}
F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)=\sum_{i, j=0}^{\infty} \frac{(a)_{i+j}(b)_{i}\left(b^{\prime}\right)_{j} x^{i} y^{j}}{(c)_{i+j} i!j!} \tag{1.3}
\end{equation*}
$$

This function converges for $|x|<1$ and $|y|<1$ [3, p. 25], but the nature and location of its singularities is not obvious. Our main result is an algebraic representation of $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$ for a, b, b^{\prime}, c positive integers with $c>a$, which explicitly displays the singularities of the function at $x=1$ and $y=1$. A useful tool in deriving this algebraic representation is Picard's integral formula [5]

$$
\begin{equation*}
F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}(1-u x)^{-b}(1-u y)^{-b^{\prime}} \mathrm{d} u \tag{1.4}
\end{equation*}
$$

for $\operatorname{Re}(a)>0, \operatorname{Re}(c-a)>0$. Although the other three Appell series F_{2}, F_{3} and F_{4} also have single integral representations [6, pp. 274-283], they are not the simple Eulerian integrals of type (1.4) for all parameters a, b, b^{\prime} and c.

This work is a part of a larger study, in which we investigate the approximation of the Appell series $F_{i}, i=1,2,3,4$ by multivariate Padé approximants. As pointed out in [2], information on the singularities of the function being approximated, such as derived here for $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$, can be very useful to determine the form of the denominator polynomials in the multivariate Pade approximants.

Our study is motivated by the fact that a great deal is known about Pade approximants for the Gaussian hypergeometric series (1.1). The aim of our study is the generalization of these results to the double Gaussian hypergeometric series F_{i}. Results on the structure of the table of multivariate Padé approximants for the Appell series are discussed in [1]. Work in progress includes finding
compact explicit formulas for the denominators of the multivariate Padé approximants, in analogy with the results obtained in [4,7] for the Gauss function. The paper is organized as follows: Section 2 contains the statement of the main result and Section 3 consists of the proofs of the auxiliary lemmas followed by the proof of the main result.

2. Algebraic representation of $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$

We present the result in increasing order of complexity, starting with the simplest choice of the parameters a, b, b^{\prime} and c, and ending with the general case.

Theorem 2.1. (a) For any non-negative integers s, t and $x \neq y$, we have for $|x|<1,|y|<1$,

$$
\begin{align*}
& F_{1}(1, s+1, t+1 ; 2 ; x, y) \\
& \qquad=\frac{(-1)^{t} x^{t} y^{s}}{(y-x)^{s+t+1}}\binom{s+t}{s}[\ln (1-x)-\ln (1-y)] \\
& \quad-\sum_{j=0}^{t-1}\binom{j+s}{s} \frac{(-x)^{j} y^{s}\left[1-(1-y)^{j-t}\right]}{(y-x)^{s+1+j}(t-j)} \\
& \quad-\sum_{k=0}^{s-1}\binom{k+t}{t} \frac{x^{t}(-y)^{k}\left[1-(1-x)^{k-s}\right]}{(x-y)^{t+1+k}(s-k)} \tag{2.1}
\end{align*}
$$

(b) For any non-negative integers a, s, and $x \neq y$, we have for $|x|<1,|y|<1$,

$$
\begin{align*}
& \frac{1}{a+1} F_{1}(a+1, s+1, t+1 ; a+2 ; x, y) \\
&=y^{s-a} \sum_{j=0}^{t}\binom{j+s}{s} \frac{(-x)^{j}}{(y-x)^{s+j+1}} {\left[\sum_{\substack{k=0 \\
k \neq t-j}}^{a}\binom{a}{k}(-1)^{k} \frac{\left[1-(1-y)^{k+j-t}\right]}{(k+j-t)}\right.} \\
&\left.-\binom{a}{t-j}(-1)^{t-j} \ln (1-y)\right] \\
&+x^{t-a} \sum_{k=0}^{s}\binom{k+t}{t} \frac{(-y)^{k}}{(x-y)^{t+k+1}} {\left[\sum_{\substack{j=0 \\
j \neq s-k}}^{a}\binom{a}{j}(-1)^{j} \frac{\left[1-(1-x)^{j+k-s}\right]}{(j+k-s)}\right.} \\
&\left.-\binom{a}{s-k}(-1)^{s-k} \ln (1-x)\right] . \tag{2.2}
\end{align*}
$$

(c) For any non-negative integers a, s, t, d and $x \neq y$, we have for $|x|<1,|y|<1$,

$$
\begin{align*}
& B(a+1, d+1) F_{1}(a+1, s+1, t+1 ; a+d+2 ; x, y) \\
& =\sum_{m=0}^{d}\binom{d}{m}(-1)^{m}\left\{\begin{array}{c}
y^{s-a-m} \sum_{j=0}^{t}\binom{j+s}{s} \frac{(-x)^{j}}{(y-x)^{s+j+1}} A \\
\\
\left.\quad+x^{t-a-m} \sum_{k=0}^{s}\binom{k+t}{t} \frac{(-y)^{k}}{(x-y)^{t+k+1}} C\right\},
\end{array}\right.
\end{align*}
$$

where

$$
\begin{align*}
& A=\sum_{\substack{k=0 \\
k \neq t-j}}^{a+m}\binom{a+m}{k}(-1)^{k} \frac{\left[1-(1-y)^{k+j-t}\right]}{(k+j-t)}-\binom{a+m}{t-j}(-1)^{t-j} \ln (1-y), \tag{2.4}\\
& C=\sum_{\substack{j=0 \\
j \neq s-k}}^{a+m}\binom{a+m}{j}(-1)^{j} \frac{\left[1-(1-x)^{j+k-s}\right]}{(j+k-s)}-\binom{a+m}{s-k}(-1)^{s-k} \ln (1-x) . \tag{2.5}
\end{align*}
$$

Here, $B(\cdot, \cdot)$ is the Beta function, $\binom{n}{k}$ is the binomial coefficient and all sums are understood to be zero where they are not defined.

We observe that (2.3) can also be written in the form

$$
\begin{aligned}
& B(a+1, d+1) F_{1}(a+1, s+1, t+1 ; a+d+2 ; x, y) \\
& \quad=\sum_{m=0}^{d}\binom{d}{m}(-1)^{m} F_{1}(a+m+1, s+1, t+1 ; a+m+2 ; x, y) .
\end{aligned}
$$

Remark. (1) It is immediately apparent from Theorem 2.1 that for $a, b, b^{\prime}, c \in \mathbb{N}$ with $c>a$, the singularities of $F_{1}\left(a, b, b^{\prime} ; c ; x, y\right)$ occur at $x=1$ and $y=1$. There are two overlaying singularities at each of these points, one polar and the other logarithmic. The polar singularity is dominant near $x=1$ and $y=1$, however, the logarithmic singularity causes multi-valuedness in the neighbourhood of each point. It also appears as though there is an infinite set of singularities when $x=y$. However, this is not the case, since whenever $x=y$, the Appell function $F_{1}\left(a, b, b^{\prime} ; c ; x, x\right)$ can be expressed as a Gauss hypergeometric function of one variable. We have (cf. [3, p. 30])

$$
\begin{equation*}
F_{1}\left(a, b, b^{\prime} ; c ; x, x\right)={ }_{2} F_{1}\left(a, b+b^{\prime} ; c ; x\right) . \tag{2.6}
\end{equation*}
$$

(2) From (2.1) with $s=t=0$, we see that for $|x|<1,|y|<1$,

$$
\begin{equation*}
F_{1}(1,1,1 ; 2 ; x, y)=\frac{\ln (1-x)-\ln (1-y)}{y-x}, \quad x \neq y \tag{2.7}
\end{equation*}
$$

and from (2.6), we have for $|x|<1$,

$$
\begin{equation*}
F_{1}(1,1,1 ; 2 ; x, x)={ }_{2} F_{1}(1,2 ; 2 ; x)={ }_{1} F_{0}(1 ; x)=(1-x)^{-1} . \tag{2.8}
\end{equation*}
$$

Further, from (2.1) with $s=t=1$, for $|x|<1,|y|<1$, and $x \neq y$,

$$
F_{1}(1,2,2 ; 2 ; x, y)=\frac{y^{2}}{(y-x)^{2}(1-y)}+\frac{x^{2}}{(x-y)^{2}(1-x)}+\frac{2 x y}{(y-x)^{3}}[\ln (1-y)-\ln (1-x)] .
$$

Also, we have,

$$
F_{1}(1,2,2 ; 2 ; x, x)={ }_{2} F_{1}(1,4 ; 2 ; x) .
$$

3. Proofs

We prepare the proof of Theorem 2.1 with the statements and proofs of two lemmas.
Lemma 3.1. Let

$$
\begin{equation*}
\alpha=\frac{y}{y-x}, \quad \beta=\frac{x}{x-y} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
X=(1-u x)^{-1}, \quad Y=(1-u y)^{-1} \tag{3.2}
\end{equation*}
$$

Then, for any positive integers s and t,

$$
\begin{equation*}
X^{s} Y^{t}=\alpha^{s} \sum_{j=0}^{t-1}\binom{j+s-1}{s-1} \beta^{j} Y^{t-j}+\beta^{t} \sum_{k=0}^{s-1}\binom{k+t-1}{t-1} \alpha^{k} X^{s-k} . \tag{3.3}
\end{equation*}
$$

Proof. For $s=t=1$, we have

$$
\begin{aligned}
X Y & =\frac{1}{(1-u x)} \frac{1}{(1-u y)}=\frac{y}{(y-x)} \frac{1}{(1-u y)}+\frac{x}{(x-y)} \frac{1}{(1-u x)} \\
& =\alpha Y+\beta X,
\end{aligned}
$$

so that (3.3) holds for $s=t=1$. An inductive argument on the pair of positive integers (s, t), using the identity

$$
\sum_{j=0}^{k}\binom{j+p}{p}=\binom{k+p+1}{p+1}
$$

yields (3.3).
Lemma 3.2. Let X be defined by (3.2). Then, for $p \neq 0$,

$$
\begin{equation*}
\int_{0}^{1} u^{p} X^{q+1} \mathrm{~d} u=x^{-p-1}\left[\sum_{\substack{j=0 \\ j \neq q}}^{p}\binom{p}{j}(-1)^{j} \frac{\left[1-(1-x)^{j-q}\right]}{(j-q)}-\binom{p}{q}(-1)^{q} \ln (1-x)\right], \tag{3.4}
\end{equation*}
$$

where the obvious terms disappear for $q \geqslant p$. Also,

$$
\begin{align*}
& \int_{0}^{1} X^{q+1} \mathrm{~d} u=\frac{-\ln (1-x)}{x}, \quad q=0 \\
& \int_{0}^{1} X^{q+1} \mathrm{~d} u=\frac{-1}{x q}\left[1-(1-x)^{-q}\right], \quad q \neq 0 \tag{3.5}
\end{align*}
$$

Proof. We have, for $p \neq 0$,

$$
\begin{aligned}
\int_{0}^{1} u^{p} X^{q+1} \mathrm{~d} u & =\int_{0}^{1} \frac{u^{p}}{(1-u x)^{q+1}} \mathrm{~d} u \\
& =x^{-p-1} \int_{1-x}^{1}(1-w)^{p} w^{-q-1} \mathrm{~d} w \\
& =x^{-p-1} \sum_{k=0}^{p}\binom{p}{k}(-1)^{k} \int_{1-x}^{1} w^{k-q-1} \mathrm{~d} w,
\end{aligned}
$$

from which (3.4) follows. For $p=0$, the integration is similarly straightforward and yields (3.5).

Remark. Replacing X by Y in (3.4) and (3.5) yields the same formulas with x replaced by y.
Proof of Theorem 2.1. (a) Putting $a=1, b=s+1, b^{\prime}=t+1$ and $c=2$ in the integral representation (1.4), we obtain

$$
\begin{equation*}
F_{1}(1, s+1, t+1 ; 2 ; x, y)=\int_{0}^{1} X^{s+1} Y^{t+1} \mathrm{~d} u \tag{3.6}
\end{equation*}
$$

where X, Y are defined in (3.2). Now, by (3.3), we have

$$
\begin{equation*}
\int_{0}^{1} X^{s+1} Y^{t+1} \mathrm{~d} u=\alpha^{s+1} \sum_{j=0}^{t}\binom{j+s}{s} \beta^{j} \int_{0}^{1} Y^{t+1-j} \mathrm{~d} u+\beta^{t+1} \sum_{k=0}^{s}\binom{k+t}{t} \alpha^{k} \int_{0}^{1} X^{s+1-k} \mathrm{~d} u \tag{3.7}
\end{equation*}
$$

with α and β given by (3.1). Applying (3.5) to the right-hand side of (3.7), we obtain (2.1).
(b) Replacing a by $a+1, b$ by $s+1, b^{\prime}$ by $t+1$ and c by $a+2$ in (1.4), we obtain

$$
\begin{equation*}
F_{1}(a+1, s+1, t+1 ; a+2 ; x, y)=\frac{\Gamma(a+2)}{\Gamma(a+1)} \int_{0}^{1} u^{a} X^{s+1} Y^{t+1} \mathrm{~d} u \tag{3.8}
\end{equation*}
$$

Now, from (3.3), we have

$$
\begin{equation*}
\int_{0}^{1} u^{a} X^{s+1} Y^{t+1} \mathrm{~d} u=\alpha^{s+1} \sum_{j=0}^{t}\binom{j+s}{s} \beta^{j} \int_{0}^{1} u^{a} Y^{t+1-j} \mathrm{~d} u+\beta^{t+1} \sum_{k=0}^{s}\binom{k+t}{t} \alpha^{k} \int_{0}^{1} u^{a} X^{s+1-k} \mathrm{~d} u \tag{3.9}
\end{equation*}
$$

Applying (3.4) and (3.5) to the right-hand side of (3.9), yields (2.2).
(c) Replacing a by $a+1, b$ by $s+1, b^{\prime}$ by $t+1$ and c by $a+d+2$ in (1.4), and noting that $d \geqslant 0$, we have

$$
\begin{equation*}
F_{1}(a+1, s+1, t+1 ; a+d+2 ; x, y)=\frac{\Gamma(a+d+2)}{\Gamma(a+1) \Gamma(d+1)} \int_{0}^{1} u^{a}(1-u)^{d} X^{s+1} Y^{t+1} \mathrm{~d} u \tag{3.10}
\end{equation*}
$$

Expanding $(1-u)^{d}$ in its bionomial expansion and using (3.4) and (3.5), we obtain (2.3) from (3.10).

References

[1] A. Cuyt, K. Driver, J. Tan, B. Verdonk, Exploring multivariate Padé approximants for multiple hypergeometric series, Adv. Computat. Math., to appear.
[2] A. Cuyt, B. Verdonk, The need for knowledge and reliability in numeric computation: case study of multivariate Padé approximation, Acta Appl. Math. 33 (1993) 273-302.
[3] H. Exton, Multiple Hypergeometric Functions and Applications, Wiley, New York, 1976.
[4] H. Padé, Reserches sur la convergence des développements en fractions continues d'une certaine catégorie de fonctions, Ann. Sci. Ecole Norm. Sup. 24 (1907) 341-400.
[5] E. Picard, Sur une extension aux fonctions de deux variables du probleme de Riemann relatif aux fonctions hypergéométriques, C.R. Acad. Sci. Paris 90 (1880) 1119-1267.
[6] H. Srivastava, P. Karlsson, Multiple Gaussian Hypergeometric Series, Wiley, New York, 1985.
[7] H. Van Rossum, Systems of orthogonal and quasi orthogonal polynomials connected with the Padé table II, Nederl. Akad. Wetensch. Proc. 58 (1955) 526-534.

[^0]: * Corresponding author.

 E-mail address: cuyt@uia.ua.ac.be (A. Cuyt) 036kad@cosmos.wits.ac.za (K. Driver) verdonk@uia.ua.ac.be (B. Verdonk)
 ${ }^{1}$ Research Director, FWO-Vlaanderen.
 ${ }^{2}$ This research was undertaken during visits by K. Driver and J. Tan to UIA.
 ${ }^{3}$ Postdoctoral Fellow, FWO-Vlaanderen.

