

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Journal of Computational and Applied Mathematics 105 (1999) 213-219

A finite sum representation of the Appell series $F_1(a, b, b'; c; x, y)$

A. Cuyt^{a,1}, K. Driver^{b,*,2}, J. Tan^{c,2}, B. Verdonk^{d,3}

^aDepartment of Mathematics and Computer Science, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk – Antwerp, Belgium ^bMathematics Department, University of the Witwatersrand, Private Bag 3, P.O. Wits 2050, Johannesburg, South Africa

^cInstitute of Applied Mathematics, Hefei University of Technology, 59 Tunxi Road, 230009 Hefei, People's Republic of China

^dDepartment of Mathematics and Computer Science, University of Antwerp (UIA), Universiteitsplein 1, B-2610 Wilrijk – Antwerp, Belgium

Received 24 June 1997; revised 30 March 1998

Abstract

We use Picard's integral representation of the Appell series $F_1(a, b, b'; c; x, y)$ for $\operatorname{Re}(a) > 0$, $\operatorname{Re}(c-a) > 0$ to obtain a finite sum algebraic representation of F_1 in the case when a, b, b' and c are positive integers with c > a. The series converges for |x| < 1, |y| < 1 and we show that $F_1(a, b, b'; c; x, y)$ has two overlaying singularities at each of the points x = 1 and y = 1, one polar and one logarithmic in nature, when $a, b, b', c \in \mathbb{N}$ with c > a. (c) 1999 Elsevier Science B.V. All rights reserved.

Keywords: Multiple hypergeometric function; Appell series; Singularity

1. Introduction

Hypergeometric series in one and more variables occur naturally in a wide variety of problems in applied mathematics, statistics, operations research and so on [3]. The ordinary hypergeometric

* Corresponding author.

E-mail address: cuyt@uia.ua.ac.be (A. Cuyt) 036kad@cosmos.wits.ac.za (K. Driver) verdonk@uia.ua.ac.be (B. Verdonk)

¹ Research Director, FWO-Vlaanderen.

² This research was undertaken during visits by K. Driver and J. Tan to UIA.

³ Postdoctoral Fellow, FWO-Vlaanderen.

series, also called Gauss's hypergeometric series, is defined by

$${}_{2}F_{1}(a,b;\,c;\,z) := \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}n!} \, z^{n}, \tag{1.1}$$

where $(a)_n$ is the Pochammer symbol

$$(a)_{n} := a(a+1)(a+2)\cdots(a+n-1), \quad n \ge 1,$$

(1.2)
$$(a)_{n} := 1, \quad n = 0$$

and the parameters a, b, c and z may be real or complex. Hypergeometric series in two or more variables which reduce to the familiar Gaussian series (1.1) whenever only one variable is non-zero, are called multiple Gaussian hypergeometric series. In total, 14 distinct double Gaussian series exist [6]. The first four of these were introduced by Appell by taking the product of two Gaussian functions and replacing one or more of the three pairs of products

$$(a)_n(a')_m, (b)_n(b')_m, (c)_n(c')_n$$

by the corresponding expressions

$$(a)_{n+m}, (b)_{n+m}, (c)_{n+m}.$$

In this paper we shall investigate the first Appell series $F_1(a, b, b'; c; x, y)$ defined by

$$F_1(a,b,b';c;x,y) = \sum_{i,j=0}^{\infty} \frac{(a)_{i+j}(b)_i(b')_j x^i y^j}{(c)_{i+j} i! j!}.$$
(1.3)

This function converges for |x| < 1 and |y| < 1 [3, p. 25], but the nature and location of its singularities is not obvious. Our main result is an algebraic representation of $F_1(a, b, b'; c; x, y)$ for a, b, b', c positive integers with c > a, which explicitly displays the singularities of the function at x = 1 and y = 1. A useful tool in deriving this algebraic representation is Picard's integral formula [5]

$$F_1(a,b,b';c;x,y) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_0^1 u^{a-1} (1-u)^{c-a-1} (1-ux)^{-b} (1-uy)^{-b'} \,\mathrm{d}u, \tag{1.4}$$

for $\operatorname{Re}(a) > 0$, $\operatorname{Re}(c-a) > 0$. Although the other three Appell series F_2 , F_3 and F_4 also have single integral representations [6, pp. 274–283], they are not the simple Eulerian integrals of type (1.4) for all parameters a, b, b' and c.

This work is a part of a larger study, in which we investigate the approximation of the Appell series F_i , i = 1, 2, 3, 4 by multivariate Padé approximants. As pointed out in [2], information on the singularities of the function being approximated, such as derived here for $F_1(a, b, b'; c; x, y)$, can be very useful to determine the form of the denominator polynomials in the multivariate Padé approximants.

Our study is motivated by the fact that a great deal is known about Padé approximants for the Gaussian hypergeometric series (1.1). The aim of our study is the generalization of these results to the double Gaussian hypergeometric series F_i . Results on the structure of the table of multivariate Padé approximants for the Appell series are discussed in [1]. Work in progress includes finding

214

compact explicit formulas for the denominators of the multivariate Padé approximants, in analogy with the results obtained in [4,7] for the Gauss function. The paper is organized as follows: Section 2 contains the statement of the main result and Section 3 consists of the proofs of the auxiliary lemmas followed by the proof of the main result.

2. Algebraic representation of $F_1(a,b,b';c;x,y)$

We present the result in increasing order of complexity, starting with the simplest choice of the parameters a, b, b' and c, and ending with the general case.

Theorem 2.1. (a) For any non-negative integers s, t and $x \neq y$, we have for |x| < 1, |y| < 1,

$$F_{1}(1, s + 1, t + 1; 2; x, y)$$

$$= \frac{(-1)^{t} x^{t} y^{s}}{(y - x)^{s + t + 1}} {s + t \choose s} [\ln(1 - x) - \ln(1 - y)]$$

$$- \sum_{j=0}^{t-1} {j + s \choose s} \frac{(-x)^{j} y^{s} [1 - (1 - y)^{j - t}]}{(y - x)^{s + 1 + j} (t - j)}$$

$$- \sum_{k=0}^{s-1} {k + t \choose t} \frac{x^{t} (-y)^{k} [1 - (1 - x)^{k - s}]}{(x - y)^{t + 1 + k} (s - k)}.$$
(2.1)

(b) For any non-negative integers a, s, t and $x \neq y$, we have for |x| < 1, |y| < 1,

$$\frac{1}{a+1}F_{1}(a+1,s+1,t+1;a+2;x,y) = y^{s-a}\sum_{j=0}^{t} {j+s \choose s} \frac{(-x)^{j}}{(y-x)^{s+j+1}} \left[\sum_{\substack{k=0\\k\neq t-j}}^{a} {a \choose k} (-1)^{k} \frac{[1-(1-y)^{k+j-t}]}{(k+j-t)} - {a \choose t-j} (-1)^{t-j} \ln(1-y) \right] + x^{t-a}\sum_{k=0}^{s} {k+t \choose t} \frac{(-y)^{k}}{(x-y)^{t+k+1}} \left[\sum_{\substack{j=0\\j\neq s-k}}^{a} {a \choose j} (-1)^{j} \frac{[1-(1-x)^{j+k-s}]}{(j+k-s)} - {a \choose s-k} (-1)^{s-k} \ln(1-x) \right].$$
(2.2)

(c) For any non-negative integers a, s, t, d and $x \neq y$, we have for |x| < 1, |y| < 1,

$$B(a+1,d+1)F_{1}(a+1,s+1,t+1; a+d+2; x, y)$$

$$=\sum_{m=0}^{d} {\binom{d}{m}} (-1)^{m} \left\{ y^{s-a-m} \sum_{j=0}^{t} {\binom{j+s}{s}} \frac{(-x)^{j}}{(y-x)^{s+j+1}} A + x^{t-a-m} \sum_{k=0}^{s} {\binom{k+t}{t}} \frac{(-y)^{k}}{(x-y)^{t+k+1}} C \right\},$$
(2.3)

where

$$A = \sum_{\substack{k=0\\k\neq t-j}}^{a+m} \binom{a+m}{k} (-1)^k \frac{[1-(1-y)^{k+j-t}]}{(k+j-t)} - \binom{a+m}{t-j} (-1)^{t-j} \ln(1-y),$$
(2.4)

$$C = \sum_{\substack{j=0\\j\neq s-k}}^{a+m} \binom{a+m}{j} (-1)^j \frac{[1-(1-x)^{j+k-s}]}{(j+k-s)} - \binom{a+m}{s-k} (-1)^{s-k} \ln(1-x).$$
(2.5)

Here, $B(\cdot, \cdot)$ is the Beta function, $\binom{n}{k}$ is the binomial coefficient and all sums are understood to be zero where they are not defined.

We observe that (2.3) can also be written in the form

$$B(a+1,d+1)F_1(a+1,s+1,t+1;a+d+2;x,y) = \sum_{m=0}^d \binom{d}{m} (-1)^m F_1(a+m+1,s+1,t+1;a+m+2;x,y).$$

Remark. (1) It is immediately apparent from Theorem 2.1 that for $a, b, b', c \in \mathbb{N}$ with c > a, the singularities of $F_1(a, b, b'; c; x, y)$ occur at x = 1 and y = 1. There are two overlaying singularities at each of these points, one polar and the other logarithmic. The polar singularity is dominant near x = 1 and y = 1, however, the logarithmic singularity causes multi-valuedness in the neighbourhood of each point. It also appears as though there is an infinite set of singularities when x = y. However, this is not the case, since whenever x = y, the Appell function $F_1(a, b, b'; c; x, x)$ can be expressed as a Gauss hypergeometric function of one variable. We have (cf. [3, p. 30])

$$F_1(a,b,b'; c; x,x) = {}_2F_1(a,b+b'; c; x).$$
(2.6)

(2) From (2.1) with s = t = 0, we see that for |x| < 1, |y| < 1,

$$F_1(1,1,1;2;x,y) = \frac{\ln(1-x) - \ln(1-y)}{y-x}, \quad x \neq y$$
(2.7)

and from (2.6), we have for |x| < 1,

$$F_1(1,1,1;2;x,x) = {}_2F_1(1,2;2;x) = {}_1F_0(1;x) = (1-x)^{-1}.$$
(2.8)

Further, from (2.1) with s = t = 1, for |x| < 1, |y| < 1, and $x \neq y$,

$$F_1(1,2,2;2;x,y) = \frac{y^2}{(y-x)^2(1-y)} + \frac{x^2}{(x-y)^2(1-x)} + \frac{2xy}{(y-x)^3} \left[\ln(1-y) - \ln(1-x)\right].$$

Also, we have,

$$F_1(1,2,2;2;x,x) = {}_2F_1(1,4;2;x).$$

3. Proofs

We prepare the proof of Theorem 2.1 with the statements and proofs of two lemmas.

Lemma 3.1. Let

$$\alpha = \frac{y}{y-x}, \qquad \beta = \frac{x}{x-y} \tag{3.1}$$

and

$$X = (1 - ux)^{-1}, \qquad Y = (1 - uy)^{-1}$$
(3.2)

Then, for any positive integers s and t,

$$X^{s}Y^{t} = \alpha^{s} \sum_{j=0}^{t-1} {j+s-1 \choose s-1} \beta^{j}Y^{t-j} + \beta^{t} \sum_{k=0}^{s-1} {k+t-1 \choose t-1} \alpha^{k}X^{s-k}.$$
(3.3)

Proof. For s = t = 1, we have

$$XY = \frac{1}{(1 - ux)} \frac{1}{(1 - uy)} = \frac{y}{(y - x)} \frac{1}{(1 - uy)} + \frac{x}{(x - y)} \frac{1}{(1 - ux)}$$
$$= \alpha Y + \beta X,$$

so that (3.3) holds for s = t = 1. An inductive argument on the pair of positive integers (s, t), using the identity

$$\sum_{j=0}^{k} \binom{j+p}{p} = \binom{k+p+1}{p+1},$$

yields (3.3). \Box

Lemma 3.2. Let X be defined by (3.2). Then, for $p \neq 0$,

$$\int_{0}^{1} u^{p} X^{q+1} \, \mathrm{d}u = x^{-p-1} \left[\sum_{\substack{j=0\\j\neq q}}^{p} {p \choose j} (-1)^{j} \frac{[1-(1-x)^{j-q}]}{(j-q)} - {p \choose q} (-1)^{q} \ln(1-x) \right], \quad (3.4)$$

where the obvious terms disappear for $q \ge p$. Also,

$$\int_{0}^{1} X^{q+1} du = \frac{-\ln(1-x)}{x}, \quad q = 0,$$

$$\int_{0}^{1} X^{q+1} du = \frac{-1}{xq} [1 - (1-x)^{-q}], \quad q \neq 0.$$
(3.5)

Proof. We have, for $p \neq 0$,

$$\int_0^1 u^p X^{q+1} \, \mathrm{d}u = \int_0^1 \frac{u^p}{(1-ux)^{q+1}} \, \mathrm{d}u$$

= $x^{-p-1} \int_{1-x}^1 (1-w)^p w^{-q-1} \, \mathrm{d}w$
= $x^{-p-1} \sum_{k=0}^p \left(\begin{array}{c} p\\ k \end{array} \right) (-1)^k \int_{1-x}^1 w^{k-q-1} \, \mathrm{d}w,$

from which (3.4) follows. For p = 0, the integration is similarly straightforward and yields (3.5). \Box

Remark. Replacing X by Y in (3.4) and (3.5) yields the same formulas with x replaced by y.

Proof of Theorem 2.1. (a) Putting a=1, b=s+1, b'=t+1 and c=2 in the integral representation (1.4), we obtain

$$F_1(1,s+1,t+1;2;x,y) = \int_0^1 X^{s+1} Y^{t+1} \,\mathrm{d}u, \tag{3.6}$$

where X, Y are defined in (3.2). Now, by (3.3), we have

$$\int_{0}^{1} X^{s+1} Y^{t+1} \, \mathrm{d}u = \alpha^{s+1} \sum_{j=0}^{t} {j+s \choose s} \beta^{j} \int_{0}^{1} Y^{t+1-j} \, \mathrm{d}u + \beta^{t+1} \sum_{k=0}^{s} {k+t \choose t} \alpha^{k} \int_{0}^{1} X^{s+1-k} \, \mathrm{d}u \quad (3.7)$$

with α and β given by (3.1). Applying (3.5) to the right-hand side of (3.7), we obtain (2.1).

(b) Replacing a by a + 1, b by s + 1, b' by t + 1 and c by a + 2 in (1.4), we obtain

$$F_1(a+1,s+1,t+1;a+2;x,y) = \frac{\Gamma(a+2)}{\Gamma(a+1)} \int_0^1 u^a X^{s+1} Y^{t+1} \,\mathrm{d}u.$$
(3.8)

Now, from (3.3), we have

$$\int_{0}^{1} u^{a} X^{s+1} Y^{t+1} \, \mathrm{d}u = \alpha^{s+1} \sum_{j=0}^{t} \left(\frac{j+s}{s} \right) \beta^{j} \int_{0}^{1} u^{a} Y^{t+1-j} \, \mathrm{d}u + \beta^{t+1} \sum_{k=0}^{s} \left(\frac{k+t}{t} \right) \alpha^{k} \int_{0}^{1} u^{a} X^{s+1-k} \, \mathrm{d}u.$$
(3.9)

Applying (3.4) and (3.5) to the right-hand side of (3.9), yields (2.2).

(c) Replacing a by a + 1, b by s + 1, b' by t + 1 and c by a + d + 2 in (1.4), and noting that $d \ge 0$, we have

$$F_1(a+1,s+1,t+1;a+d+2;x,y) = \frac{\Gamma(a+d+2)}{\Gamma(a+1)\Gamma(d+1)} \int_0^1 u^a (1-u)^d X^{s+1} Y^{t+1} \, \mathrm{d}u. \quad (3.10)$$

Expanding $(1 - u)^d$ in its bionomial expansion and using (3.4) and (3.5), we obtain (2.3) from (3.10). \Box

References

- [1] A. Cuyt, K. Driver, J. Tan, B. Verdonk, Exploring multivariate Padé approximants for multiple hypergeometric series, Adv. Computat. Math., to appear.
- [2] A. Cuyt, B. Verdonk, The need for knowledge and reliability in numeric computation: case study of multivariate Padé approximation, Acta Appl. Math. 33 (1993) 273–302.
- [3] H. Exton, Multiple Hypergeometric Functions and Applications, Wiley, New York, 1976.
- [4] H. Padé, Reserches sur la convergence des développements en fractions continues d'une certaine catégorie de fonctions, Ann. Sci. Ecole Norm. Sup. 24 (1907) 341–400.
- [5] E. Picard, Sur une extension aux fonctions de deux variables du probleme de Riemann relatif aux fonctions hypergéométriques, C.R. Acad. Sci. Paris 90 (1880) 1119–1267.
- [6] H. Srivastava, P. Karlsson, Multiple Gaussian Hypergeometric Series, Wiley, New York, 1985.
- [7] H. Van Rossum, Systems of orthogonal and quasi orthogonal polynomials connected with the Padé table II, Nederl. Akad. Wetensch. Proc. 58 (1955) 526-534.