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Abstract 

We present a direct approach for proving convergence in measure/product capacity of multivariate, nonhomogeneous, 
Pad~ approximants. Previous approaches have involved projection onto Pad6-type approximation in one variable, and 
only yielded convergence in (Lebesgue) measure. 
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1. Introduction and results 

The convergence theory of multivariate Pad6 approximation has received much attention in 
recent years. Usually, researchers have distinguished between homogeneous [14], and non- 
homogeneous [2, 10, 15, 17] approximants. The definition of the homogeneous multivariate Pad6 
approximants is in some respects very close to the univariate definition: it can be computed using 
the univariate epsilon and qd-algorithms [9, 10], and reduces to the univariate Pad6 approximant 
on every complex line through the origin [6]. However it introduces a high-order singularity in the 
neighbourhood of the origin. 

This drawback is taken care of in the definition of the nonhomogeneous multivariate Pad6 
approximant at the expense of some elegant univariate properties. In this paper, we present a direct 
approach for proving convergence in measure/capacity of nonhomogeneous approximants. This is 
made possible by a recent estimate of the authors [13] on the size of the lemniscate of a suitably 
normalized multivariate polynomial. See [3, 4, 19, 22, 24] for results and references on convergence 
in measure/capacity for univariate Pad6 approximants. 
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T h r o u g h o u t  

._Z : =  (Z1,  Z2,  Z3,  . . .  , Z I ) E C I ;  

N denotes the set of nonnegat ive integers, and for 

J = ( j l , j2 ,  ... ,jl)E IN l, 

we set 

zJ : =  zl '  . . .  zP.  

The size o f j  is 

[Jl := J l  + j 2  + "'" +jr. 

A mult ivariate polynomial  S(g) is naturally associated with a finite set 5 e c Nt: 

S(z)  = c;zJ 
jG5 a 

The index set 5 p contains the nonzero coefficients of S, but  possibly also some vanishing 
coefficients. We define ~?S to be the maximum partial degree of S, so that  

~?S := max  { ~k~max jk'j=_ ( j l , j 2 ,  .-. ,jl)~ 50 and cj_ ~ 0}. 

If T(_z) is another  polynomial ,  associated with, say ~--, then to describe the product  polynomial  
(ST)(z), we need 

ocP*3 - := {j  +_k:je~9 o, k_~--}. (1) 

Thus,  

( S T ) ( z ) =  2 ~zY 
j e S ~ , J  

and ST is associated with 6 e ,  J-. We say that  SIT is a rational function of type 5~/J-. 

Definition 1.1. Let 

f ( z )  = ~ ajz  -j ( a j e C )  
j~N t 

be a formal power series. Let JV', ~ and J be finite subsets of N z, and  r := P/Q be a rational 
function of type j I r /~ .  We say that  r interpolates f on the index set J if 

( f Q -  P)(z_)= y~ bjz j. (2) 
j E N t \ J  

The order of contact of r with f is defined to be 

v(r) "= min { I j [ : jCJ} .  (3) 
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The letters ~/~, ~ and d are chosen to indicate numerator ,  denomina to r  and interpolat ion index 
sets respectively. We also need the not ion of the maximum partial degree of the index sets ~A/, ~ and 
so on: 

0•/ ;= max ~ max j k : j  = ( j l , j 2 ,  ..-,jt)~./V" I. (4) 
l < < . k < < . l  - -  ) 

Thus  if P is associated with JV, ~A/" denotes an upper  bound  on the highest possible power of any 
zj possibly appear ing in P, so ~JV ~> ~P. (OP may be less than 0JV if some coefficients correspond-  
ing to elements of JV" are zero). 

Throughou t ,  meas denotes  Lebesgue measure on C t (equivalent to Lebesgue measure on ~21). 
We shall also need the p roduc t  capacity cap t~) and Favarov's  capacity F F. Recall first the definition 
of logari thmic capacity: For  compact  K c C, 

cap K := lim (min { II P IIL~(~): P monic  of degree n}) 1/". 
n - + O Q  

See [16, 18, 22] for further orientation. 
The  product  capacity cap ~) is defined inductively on l: For  l -- 1, 

cap tl) := cap. 

If cap tt- 1) has already been defined, then for Borel measurable K ~ C z, 

cap~')(K) := cap{zl:cap~l-1){__z':__zeK} > s}ds. 

Here 

z__=(zl,z2, . . . ,z3 ~ z ' = ( z 2 , . . . , z 3 .  

This (apparently strange) definition really does yield a product  capacity: If we have a Cartesian 
product  

K : = K 1  xK2 x "-" xKt  

where each Kj = C, then 
l 

capri)(K) = 1-I cap Kj.. 
j = l  

Favarov 's  capacity involves the p roduc t  capacity of unitary t ransformations (in particular, 
rotations) of the set K. Recall that  a uni tary t ransformat ion A on C ~ is an 1 × l matrix with complex 
entries such that  ,4TA = I. Favarov 's  capacity of K is 

F/V(K) := sup {cap~t)(A(K)): A unitary}. 

See [5] for further orientation.  
Fol lowing is our  theorem for "nondiagonal"  sequences of approximants:  

Theorem 1.2. Let f be analytic at O_ and meromorphic in the polydisc 

P : = { _ z : l z j l < p j ,  l ~ j ~ l }  (O<pj~@)  
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in the following sense: There exists a polynomial S associated with a finite set 5 ° such that f S  is 
analytic in P. Let  rk be a rational function o f  type Sffk/~k interpolating f on dk ,  k >1 1. Assume, 
moreover, that 

.Ark. 5¢ ~_ oCk, for  large enough k, (5) 

and 

lim V(rk)/O~k = ~ .  (6) 
k---~ oo 

Then {rk }k~ X converges in meas/cap(t)/F F to f in compact subsets of  P. More precisely, given 
a compact subset K of  P, 30 e (0, 1) such that 

meas{_zeK: I f -  rkl(Z) > 0 ~t'k)} ---, 0, k ~ .  (7) 

The same result holds if  we replace meas by cap (t) or F v. 

The easiest way to assimilate (5) and (6) is to reduce them to the univariate (l = 1) case: If 
s denotes  the total multiplicity of poles of f i n  P = {z: Izl < p}, and rk = Pk/qk is a rational function 
of type nk/dk satisfying 

(fqk -- pk)(Z) = O (Z ~('k)) (8) 

then (5) is the requirement  that  

nk + S <<. V(rk)-- 1. 

Moreover,  (6) becomes 

lim V(rk)/dk = 00. 
k - ' * ~  

In the case of univariate Pad6 approximants  [nk/dk], for which V(rk) = nk + dk + 1, we obtain the 
usual requirements  in convergence theorems for nondiagona l  sequences: 

dk ~ S; l i m n k / d k = ~ .  
k--* oo 

An interesting feature of the above result is that  only the total order  of contact  V(rk) needs to 
satisfy (6), not  the order  of contact  in individual  variables. We note  that  our  hypotheses above 
guarantee convergence, but  to ensure addit ional  propert ies of the approximants ,  such as consist- 
ency with the Pad6 property,  one needs addit ional  restrictions on JV'R, ~k,  dk. The reader may  refer 
to [1, 11]. In any event, large classes of Pad6 approximants  satisfy (5) and  (6). 

In formulat ing our  theorem for "diagonal"  sequences, we need the not ion  of the inclusion rule: 
We say that  3" _ [~t satisfies the inclusion rule if 

j = ( j l , j 2  . . . . .  j l ) ~ J  

and 

O <~ ni <~ jl, l ~ i ~ l 
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implies 

_n := (nl, n2 . . . .  , nt)e J .  

Thus  if an l-tuple j belongs to d ,  then so do all l-tuples lying in the smallest hypercube in t~ ~ 
containing _0 and j. We shall also need the "box" or hypercube index set 

~k := {j  = ( j l , j z ,  ... ,jr): 0 ~<jl ~< k, 1 ~< i ~< l}. 

Throughou t ,  ( x )  denotes  the greatest integer ~< x. 

Theorem 1.3. Let f be analytic at O_ and meromorphic in C t in the followin 9 sense: For each p > O, 
there exists a polynomial S such that f S  is analytic in the polydisc 

P := {z: Izjl < p, 1 ~<j ~< 1}. (9) 

Let rk be a rational function of type JVk/~k interpolating f on dk, satisfyin9 the inclusion rule, k >1 1. 
Let 

Lk := max {OJVk, O~k} ~ ~ ,  k ~  (10) 

and assume 3t 1 > 0 such that for large enough k, 

Wk * Yl<,Lk> ~-- dk; ~k * ~l<~Lk> ~ dk. (1 1) 

Then {rk }k~ 1 converges in meas/cap(t)/F[ in compact subsets of  C t. More precisely, 9iven e > 0, and 
a compact subset K of C t, 

meas { z~ K :  l f -  rk[(Z_) > e Lk } ~ 0 ,  k ~oo.  (12) 

The same result holds if we replace meas by cap (t) or Flv. 

For  the univariate case (l = 1) and  the Pad6 case rk = [nk/dk], the condi t ion (11) may  be 
reformulated as no th ing  more  than  the familiar condi t ion in N u t t a l l - P o m m e r e n k e  theorems: 

1 nk 
~ < ~ < 2 ,  some 2 > 1. 

As an illustration of the result in l > 1 dimensions,  let us suppose that  

~/"k = ~ k  = {_J: I J[ ~< k}. 

This and (2) allow us to choose for large enough  k, 

dk -- {j: IJl ~< (1 + e)k}, 

if 0 < e < 2 TM - 1. It is then easy to see that  we can choose r/satisfying (11) for large enough k. 
In compar ing  the above result to those of Gonca r  [15-1 for the diagonal  nonhomogeneous  

approximants ,  and that  of the authors  for the diagonal  homogeneous  case [14], we note  that  the 
condi t ions  on f i n  [14, 15-1 allowed for far more  general types of singularity. However,  our  me thod  
allows for convergence in cap (t) and it seems unlikely that  the methods  of [14, 15-1 which involve 
project ion onto  Pad6-type approx imat ion  in one variable, can give anything more  than conver- 
gence in meas. 

We prove the results in Section 2. 



358 A. Cuyt et al./ Journal of Computational and Applied Mathematics 69 (1996) 353-366 

2. P r o o f s  

Our basic estimate for the proof of Theorem 1.2 is contained in the following lemma: 

Lemma 2.1. Let f be analytic at 0 and meromorphic in the polydisc 

P : = { z : l z j l < p j ,  1 <<.j<~l} (O<pj<<. ~ )  

in the following sense: There exists a polynomial S associated with a finite set 5 "~ such that f S  is 
analytic in ~ .  Let rk = Pk/Qk be a rational function of type ~ k / ~ k  interpolating f on Jk, k >>- 1. 
Assume, moreover, that (5) holds for large enough k. Let 

0 < Ox < 02 < 1; O1 - -<03<1 .  
02 

Let 

Pk := {z: Izjl ~ OkPj, 1 ~ j  ~ l}, k = 1, 2. 

Then for z_e~l, and some C independent of z and k, 

If-rkl(_z) <<. C IIQkIIL~P2) O~(rk). 
I SQkl(_z) 

(13) 

(14) 

P r o o f .  W e  have 

(fQk -- ek)(Z_) = E dj, k ZJ 
j ¢~-k 

After we multiply this by S(z), we obtain a series involving different indices. However, each 
j(SJk has IJl ~> V(rk), and for any _me N t, 

]j + _m] = [j] + ]_m]/> V(rk). 

Thus 

[S ( fQk- -  Pk)](_z) = E q,k_Z!. 
IJl >~v(rk) 

Here, the usual formula for Maclaurin series coefficients gives 

(15) 

( 1 )tfa [ s ( f O k - - P k ) ] ( t - )  , 
Icj,~l = ~ P2 - - - t! +-1 dt 

where APE:={z: Izjl = 0 2 p j ,  1 <<.j~l} is the boundary of P2, d-t=dtldt2-., dh and 
1 = (1, 1, . . . ,  1). Now fo r j¢  JR, our condition (5) ensures that the coefficient ofzJ in SPR is 0. Thus 

I % k l - -  ~ P2 F+--i _ 

~< 
o01 (02 C II Qk IlL ~(v2) P~)J°, 
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where C depends only on S f a n d  P2. Then for z e P 1 ,  we obtain from (15) that 

I[ Qk IlL ~P=)V' 
I f -  rk I(Z) ~< C I-S--Q~-~_z) '-"' 

where 

2 := 2 (01/02) Ij-I= ~ (01/02) a 2 1 < ~ (01102) a (0" "-~ 1) ' - '  ~< C10~ ('k, 
[Jl >-v(rk) ty = v ( r k )  _J: Ijl = a ~ = v(rk) 

with C1 depending only on 01, 02, 03 (recall that 03 > 01/02). []  

To estimate the size of the set on which ]SQR[ in (14) is small, we need: 

Lemma 2.2. Let p > 0 and Q(z_) be a polynomial that is of degree <<. n in each of its variables, that is 
8Q <<. n. Assume that Q is normalized by the condition 

max{lQ(_z)l: [zj[ ~< p, 1 ~<j ~< 1} = 1. (16) 

Let ee(0, 1). Then the lemniscate 

t := {_z: Izjl <~ p, 1 <<.j ~ 1 and IQ~)I ~< ~"} 

has 

2t_1.)z_1 
meas(L) ~< (16np2)le2 max 1 , 1 o g 2 - - - ~  ; (17) 

I 1}'-1 
capm(L) ~< ClpZemax 1, log2 ; (18) 

FF(L) ~ C2ple 1/l max 1, log2 (19) 

Here C1 and C2 are independent of p, e, Q, n. 

Proof. See Theorems 1.2 and 1.3 in [13]. []  

At this stage, one would like to apply the estimates (17) to (19) in (14). Unfortunately, to do this 
one needs a normalization such as 

II SQk IIL~<P) = 1 

for a suitable P, whereas all that (14) naturally permits is 

II Qk ItL~i,) = 1. 

This means that we have to deal separately with the sets/lemniscates on which Qk is small and on 
which S is small. To show that the union of these two sets is small, we need an estimate for 
meas/capm/FF(LlwL2) in terms of meas/cap(l)/FF(Lj), j = 1, 2. For meas, such estimates are 
trivial, but we could not find them in the literature for cap (t) and F~ v. So we shall prove a weak 
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estimate, which is, however, sufficient for our purposes. Recall first the subadditivity type property 
of logarithmic capacity in the plane: Let 

h(t):= log , te(0, 1). 

Then for sets L~, L2 contained in {z: Izl ~< p}, [16, p. 289] 

h(cap(L~uL2)) ~< h (cap,  L1))+ h (cap,  L2!). (20) 

Lemma 2.3. Let  0 < ~ < ½, l >t 1, p > 0 and p* := max{l, p}. Then for Borel sets L1, L2 contained 
in the polydisc 

P := {_z: Izjl <<. p, 1 <~j <<. l}, 
we have 

2 

cap")(LlwL2) <~ C1 (p.)A ~ (cap(t)(Lj))~; (21) 
j = l  

and 

2 

r~(L~uL2) ~< C2(p*) A ~ (r~(Lj)) ". 
j = l  

Here C1 and C2 and A depend on 1, but not on p, L1 or L2. 

(22) 

Proof. We shall first prove (21) by induction on I. Note that the function h satisfies 

2h(t) = h(tl/2). 

Hence (20) gives for L1, L2 contained in (z: Izl -< p) 

h (cap(L~wL2 !) ~<2h (max cap~Lj!) =h  ( I  max cap~Lj)l 1/2)" 

Using monotonicity of h then gives 
2 

cap(LlwL2) ~< x/P ~ (cap 1/2 L j) . (23) 
j = l  

This is essentially the case l = 1 of (21): Recalling that cap Lj ~< p, we obtain 
2 

cap(LiuL2) ~< pl-~ ~ (capLj)L 
j = l  

Next, as an induction hypothesis, assume that we have proved (21) for l - l, so that for Borel sets 
L1, L 2 contained in {(zl, z2, ... ,zl-x): Izj[ <<. p, 1 <~j <~ 1 -- 1}, 

2 

captt- 1)(L 1 uL2)  ~< C(p, )B  ~ (capri- 1)(Lj))~, 
j = l  
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for suitable constants C and B. We proceed to prove (21) for I. Recall that 

fo cap°)(L1uL2) = cap {zl" cap°-l){_z': z_eL1uL2} > s} ds, 

where if 

z = (z l ,  z2, ... ,zl) then __z' = (z2, z3, ... , z3 .  

Then ,  using our induction hypothesis, 

2 
s (capO- 1) s<capO-X){z ' : z~LlwL2}  =. Cp,B< ~ {_z':zeLs}) ~ 

j=l 

captZ-1){_z': zeLj}  > \2Cp,8 j 

for either j = 1 or j = 2. Then using (23), we obtain 

cap{z1: captl-X){z': _ZeLlwL2} > s} 

{ ''2 
~< x/P E cap z I " cap°-l){z' :  zsUj} > \2Co*S] J " 

j=l 

Hence 

cap")(L~uL2) = cap{z1: cap°-X){_z': z_SLlwL2} > s} ds 

~< x/P E cap Zl: cap°-l){_z': z~Lj} > \2Cp*"] J as 
j= l  

2fo° = x/P ~ cap {zl" cap°-l){z' :  zeLj} > t}l/22~Cp*Bt~-ldt. (24) 
j = l  

Now if ~/> 0, H61der's inequality and the fact that Izxl ~< p for z e L j  give 

I j ' =  cap {zl: cap°-l){z ' :  zeLj}  > t}i/2t~-ldt 

<~ t~-ldt + cap {zl: cap°-l){z' :  z~Lj} > t}dt x t2~-Zdt 

F . - 1  + 2.]1/2 
x/P ~ + [cap°)(LJ)] 1/2 x /i  Z o 

(It is here that we use 0~ < ½.) Choosing r/:= cap°)(Lj), we obtain 

Ij  <~ C1 p,1/2 (cap,)(Lj)),, 

for some C1 depending only on ~. Substituting into (24) gives (21) for ! with suitable C1 and A. 
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We proceed to prove (22). Recall first that 

F v(L) = sup {cap tt) (A (L)): A unitary}. 

Also, if A is unitary, and ][-[[ denotes the usual Euclidean norm, then (see [-25, p. 74]) 

IIAzll = Ilzll. 

In particular, as Lj, j = 1, 2, is contained in the ball {z: [[z [[ ~< x/~p}, so is A(Lj). Thus 

z_~A(Lj)=~lzjt <~ x/~Ip, 1 <,j <~ l. 

Hence applying the inequality (21) to A (Lj),j = 1, 2, we obtain for some C3 depending on l, but not 
o n L j ,  j = l ,  2, o r p ,  

cap (l) (A (L1 wLz)) = cap (t)(A (L1)wA (L:)) 

2 

<~ Cap *'4 ~ (cap(t)(A(Lj)))" 
j = l  

2 
C3p *A Z (FF(Lj)) ". 

j = l  

Taking sup's over unitary A gives (22). []  

Proof of Theorem 1.2. Let K be a compact  subset of P. We can find 0 < 01 < 02 < 1 such that with 
P1 defined by (13), we have K c P1. Set 

p := max pj 
l<~j<~l 

and normalize Qk, the denominator  in rk, SO that it satisfies (16). We may also normalize S so that it 
satisfies (16). Let 

Ek := {z: Izjl ~< p kT'j, IQkl(Z) ~< dek}; 

F := {z: Izjl ~< P Vj, ISl(z) ~ ds}.  

We obtain from (14) that for z e K  c P1, ZCEkwF, 

I f -  rkl(z) ~< Cle-~°'k-~so~ ~rk~ < 0 vtrk~ 

if 1 > 0 > 03 > 01/02 and k is large enough. Here 0 may be made independent of e, in view of our 
hypothesis (6). Recall also that OQk <~ O@k. Together, Lemmas 2.2 and 2.3 show that EkwF has 
small meas/captlJ/F F. [] 

Unfortunately, the method of proof of Theorem 1.2 does not yield the conclusion of Theorem 1.3. 
The problem is the power of p appearing in the estimates in Lemma 2.2. So we use the well-known 
approach based on errors of best approximation. Recall that 

.~k : =  { j  = ( j l , j 2  . . . .  ,jz): 0 ~<ji ~ k, 1 ~< i ~< 1) 



A. Cuyt et al./ Journal of Computational and Applied Mathematics 69 (1996) 353-366 363 

is the "box" or hypercube index set. Given a compact  set K on which f is analytic, we set 

Ek (f ;  K) := min  { II f - -  rk qlL ~(K): rk of type ~ k / ~ k  }, 

the error in approx imat ion  o f f  on K by rational functions of type ~k/~k.  

L e m m a  2.4. Assume the hypotheses of Theorem 1.3. Let p > 0, and S be a polynomial such that f S  is 
analytic in 

Then 

P : =  {z: [zi[ ~< p, 1 ~<j ~< l}. (25) 

Proof. The hypotheses  of Theorem 1.3 guarantee t h a t f S  is meromorph ic  in C ~ in the usual sense of 
several complex variables. See, for example, [23, p. 231]. Consequently,  there exist entire functions 
g and h such that  f S  = g/h. See, for example, [23, p. 262]. By taking the partial sums of 9 and 
h (which approximate  9 and h faster than geometrically on compact  sets), we obtain rational 
functions that  approximate  f S  faster than  geometrically on compact  sets on which h does not  
vanish. The solubility of the second Cousin problem on C ~ allow us to ensure that  h does not  vanish 
on P. See [23, pp. 253ff.]. []  

and 

For  more  on mult ivariate  functions satisfying (26), see [7, 15]. 

Proof of Theorem 1.3. Let 0 < 6 < min{½, r/}, where r/ is as in (11). Let p > 2 > 0 and S be 
a polynomial  such that  f S  is analytic in the polydisc P given by (25). Let 

K:= {_z: Izj[ ~ 2, 1 ~<j ~< l} 

Let r* = P*/Q~ be a best rational function of type ~k*/~k ~ to f S  on P, so that  

J l f s  - r* IlL = G ( f S ;  P). 

Now rk = Pk/Qk satisfies 

(fQk -- Pk)(Z_) = ~ Cj, k Zj. 
jCoCk 

We claim that  

[SQ~(fQk -- Pk)](z) = ~ dj, k f f .  
jc~Jk 

lim Ek(fS; p)l/k = 0. (26) 
k--*~ 



364 A. Cuyt et al./ Journal of Computational and Applied Mathematics 69 (1996) 353-366 

This follows as Jk satisfies the inclusion rule: F o r j C J k  and _me Nt, j + m_6J k. Here, the usual 
formula for Maclaurin series coefficients gives 

dj k = ~ i(1)t fA [ S Q ~ ( f Q k -  _ - _, #+! dr, 

where AP := {z: Izjl = p, 1 ~<j ~< 1}, dt = dt ld t2  ... dh and 1 = (1, 1, . . . ,1).  Then 

[Q*Qk(Sf-r~)]( t_)  djk=~i p - -  - -  _ _, tJ+l dt + aj, 

where 

a j :=  (l), P [P*Qk--SPkQ~](_t)  # + !  dr. 

Let 5 e be the index set associated with S. Now since q > 6, it is easy to see from (11) that for large 
enough k, 

Hence for j ¢ J k ,  the coefficient aj of z2 in (P* QR -- SPRQ*)~) is O. So 

I~'~1 = ~ i  p f -j+-I d_t 

II Q~ Qk I[L~(p)Ek( S f; p)/pUl. 
Hence for _z e K, 

I f -  r~l(z) 

where 

II Q~Qk IILo~(P)Ek(Sf; P)~, 
ISQ~'QI(__z) 

Let us normalize Q~Qk and S so that 

1[ Q~Qk [[Lo~(P) = II S [[to~(P) = 1. 

Given ee(0, 1), set 

Ek :=  {_z: Izjl <<. p k/j, IQ*Q~I(z) ~< d(o:ok)}; 

F := {_z: Izjl <~ P Vj, ISl~) ~< ds}. 

By our Lemma 2.4, for large enough k, 

Ek (SJ~ P) ~< e 3L~. 
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Hence for z ~ K\(EkuF),  

* 
I f -  rkl(z) ~< C2 e - [  (QkQk)+OS]+aLk ~ e Lk, 

for large enough k. Here we have used the fact that for large enough k, 

[O(Qk*Qk) + OS] <~ 6Lk + Lk + OS 3 ~ Lk. 

Finally Lemmas 2.2 and 2.3 show that EkwF has small meas/cap(~)/F v. In applying those lemmas, 
recall that e is independent of p. []  
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