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Abstract
We present a direct approach for proving convergence in measure/product capacity of multivariate, nonhomogeneous,
Padé approximants. Previous approaches have involved projection onto Padé-type approximation in one variable, and

only yielded convergence in (Lebesgue) measure.
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1. Introduction and results

The convergence theory of multivariate Padé approximation has received much attention in
recent years. Usually, researchers have distinguished between homogeneous [14], and non-
homogeneous [2, 10, 15, 17] approximants. The definition of the homogeneous multivariate Padé
approximants is in some respects very close to the univariate definition: it can be computed using
the univariate epsilon and qd-algorithms [9, 107, and reduces to the univariate Padé approximant
on every complex line through the origin [6]. However it introduces a high-order singularity in the
neighbourhood of the origin.

This drawback is taken care of in the definition of the nonhomogeneous multivariate Padé
approximant at the expense of some elegant univariate properties. In this paper, we present a direct
approach for proving convergence in measure/capacity of nonhomogeneous approximants. This is
made possible by a recent estimate of the authors [13] on the size of the lemniscate of a suitably
normalized multivariate polynomial. See [ 3, 4, 19, 22, 24] for results and references on convergence
in measure/capacity for univariate Padé approximants.
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Throughout
z:=(zy, 25, 23, ... ,2;)€CY;
N denotes the set of nonnegative integers, and for
J=U1sJzs - i1 N,
we set
=0
The size of j is
ljli=ji+j2+ -+
A multivariate polynomial S(z) is naturally associated with a finite set & < N’

S(z) =Y ¢;2 (c;eC).

_je.sf’

The index set & contains the nonzero coefficients of S, but possibly also some vanishing
coefficients. We define 0S to be the maximum partial degree of S, so that

oS = max{ max J'kij =(j1,j2, ---,j1) €S and ¢ #O}.

1<k

If T(z) is another polynomial, associated with, say 7, then to describe the product polynomial
(ST)(z), we need

ST ={j+kjeS keT). (1)
Thus,
STH2= Y d;2
jeytﬂ_ -

and ST is associated with & * 7. We say that S/T is a rational function of type &/ .

Definition 1.1. Let
f@=Y a2 (4;€C)

jeN!

be a formal power series. Let A", 2 and .# be finite subsets of N/, and r := P/Q be a rational
function of type 47/2. We say that r interpolates f on the index set £ if

(fQ-P)(9= Y bz 2

jeNI\s

The order of contact of r with fis defined to be
v(r) :=min {|j|:j¢f}. 3
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The letters A", 2 and .# are chosen to indicate numerator, denominator and interpolation index
sets respectively. We also need the notion of the maximum partial degree of the index sets A", & and
so on:

oN = max{ max jk:_]'=(j1,j2,...,j,)em}. 4

1<kl

Thus if P is associated with 4", 6.4 denotes an upper bound on the highest possible power of any
z; possibly appearing in P, so d.4" > 0P. (0P may be less than 0.4 if some coeflicients correspond-
ing to elements of A" are zero).

Throughout, meas denotes Lebesgue measure on C' (equivalent to Lebesgue measure on R?).
We shall also need the product capacity cap’ and Favarov’s capacity I'f . Recall first the definition
of logarithmic capacity: For compact K < C,

capK := lim (min{|| P |, (x> P monic of degree n})".

n—>w

See [16, 18, 22] for further orientation.
The product capacity cap is defined inductively on I For [ = 1,

cap') := cap.
If cap®~ ! has already been defined, then for Borel measurable K = C/,

cap® (K) := J cap{z;:cap’”V{z":zeK} > s}ds.
0

Here
z =(Zl’225 oee azl) = Z’ :(227 s 9Zl)'

This (apparently strange) definition really does yield a product capacity: If we have a Cartesian
product

K:=K,; xK, x --- xK,
where each K;  C, then

i
cap®(K) = [] capK;.

i=1

Favarov’s capacity involves the product capacity of unitary transformations (in particular,
rotations) of the set K. Recall that a unitary transformation A on C'is an I x | matrix with complex
entries such that ATA4 = I. Favarov’s capacity of K is

I'F(K) := sup{cap’ (4(K)): 4 unitary}.
See [5] for further orientation.
Following is our theorem for “nondiagonal” sequences of approximants:
Theorem 1.2. Let f be analytic at O and meromorphic in the polydisc

P:={z |z <p, 1<j<I} (0<p; <o)
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in the following sense: There exists a polynomial S associated with a finite set & such that fS is
analytic in P. Let r, be a rational function of type N/9D, interpolating f on S, k > 1. Assume,
moreover, that

N2 = S, for large enough k, &)
and

klim V()02 = 0. (6)

Then {r.};>., converges in meas/cap®/I'f to f in compact subsets of P. More precisely, given
a compact subset K of P, 30 (0, 1) such that

meas{zeK: |f—r|(z) > 0"} >0, k-0 N
The same result holds if we replace meas by cap® or I'f.
The easiest way to assimilate (5) and (6) is to reduce them to the univariate (I = 1) case: If

s denotes the total multiplicity of poles of fin P = {z:|z| < p}, and r, = p,/q; is a rational function
of type ny/d, satisfying

(fax — p)(2) = O (") (8)
then (5) is the requirement that

m+s<vin) — 1.
Moreover, (6) becomes

lim v(ry)/dy = 0.

k-
In the case of univariate Padé approximants [n,/d, ], for which v(r;) = n; + d;, + 1, we obtain the
usual requirements in convergence theorems for nondiagonal sequences:

dk = S; lim nk/dk = 00.
k— o0

An interesting feature of the above result is that only the total order of contact v(r;) needs to
satisfy (6), not the order of contact in individual variables. We note that our hypotheses above
guarantee convergence, but to ensure additional properties of the approximants, such as consist-
ency with the Padé property, one needs additional restrictions on A%, &y, #,. The reader may refer
to [1, 11]. In any event, large classes of Padé approximants satisfy (5) and (6).

In formulating our theorem for “diagonal” sequences, we need the notion of the inclusion rule:
We say that # = N/ satisfies the inclusion rule if

J= (jl:jZ’ le)e']r

and
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implies
n:=(ny,n,, ..., )L

Thus if an I-tuple j belongs to .#, then so do all I-tuples lying in the smallest hypercube in N’
containing 0 and j. We shall also need the “box” or hypercube index set

Ry:={j=(jrsJas -0y 0<ji <k, 1 i<},
Throughout, (x) denotes the greatest integer < x.

Theorem 1.3. Let f be analytic at Q and meromorphic in C' in the following sense: For each p > 0,
there exists a polynomial S such that fS is analytic in the polydisc

P:={z:]|z;/<p, 1 <j< I} )

Let r, be a rational function of type N, /D, interpolating f on #,, satisfying the inclusion rule, k > 1.
Let

Ly = max{0A}, 02} » 0, k> (10)
and assume In > O such that for large enough k,
'/V;C*'%OILIO E]k, ‘@k*'%O]Lk) gfk (11)

Then {r, }i~ converges in meas/cap’/I'f in compact subsets of C'. More precisely, given ¢ > 0, and
a compact subset K of C',

meas{zeK: |f—r|(z) > e} -0, k-0 (12)

The same result holds if we replace meas by cap® or I'f.

For the univariate case (I = 1) and the Padé case r, = [;/d, ], the condition (11) may be
reformulated as nothing more than the familiar condition in Nuttall-Pommerenke theorems:

%s%si, some A > 1.

As an illustration of the result in / > 1 dimensions, let us suppose that
Nie=Dv = { ] |]jI <k}.

This and (2) allow us to choose for large enough k,
Fe2{j 1jl <A + 9k},

if 0 <& < 2" — 1. It is then easy to see that we can choose # satisfying (11) for large enough k.

In comparing the above result to those of Goncar [15] for the diagonal nonhomogeneous
approximants, and that of the authors for the diagonal homogeneous case [14], we note that the
conditions on fin [14, 15] allowed for far more general types of singularity. However, our method
allows for convergence in cap!” and it seems unlikely that the methods of [14, 15] which involve
projection onto Padé-type approximation in one variable, can give anything more than conver-
gence in meas.

We prove the results in Section 2.
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2. Proofs
Our basic estimate for the proof of Theorem 1.2 is contained in the following lemma:

Lemma 2.1. Let f be analytic at O and meromorphic in the polydisc
P:={z: |zl <p;, 1 <j<I} (0<p;<0)

in the following sense: There exists a polynomial S associated with a finite set & such that fS is
analytic in ?. Let r, = P, /Qy be a rational function of type N} /9D, interpolating f on 5, k = 1.
Assume, moreover, that (5) holds for large enough k. Let

0
0<f,<bl,<1; L<b,<l.

)
Let
Poi={z |zl < Oupj, 1< <1}, k=12 (13)
Then for ze ?,, and some C independent of z and k,
I O Il i)
—rnlz<C —~—2 65, 14

Proof. We have
(fQr — Pi)(2) = dezj

J¢7k
After we multiply this by S(z), we obtain a series involving different indices. However, each
Jj¢4 has | j| = v(r,), and for any me N/,
|j+ml=1jl+ |m| 2 v(r).
Thus
[S(fQx — P)](2) = ; >Zv(r )q,k z. (15)
Here, the usual formula f;)r Maclaurin series coefficients gives

(L)’ f [S(fQx — PYIW) 4

2mi it

|C_j,k| =

where AP,:={z: |zl =0,p;, 1<j<I} is the boundary of P,, dt= dtldtz ...dt; and
1=(,1,...,1). Now forj Jj ¢S, our condition (5) ensures that the coefficient of zZ in SP, is 0. Thus

LN [ (8/Q))
<§7—t—1> .LP; J2AR d

1
< C|lQk ||Lw(P2)/ H (sza)j",
g=1

ch,kl =
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where C depends only on Sf and P,. Then for zeP,, we obtain from (15) that

~ annmz,

where

Y= Y (0:/0)V' = Z 0:1/02) 3 1< § (01/62)° (0 + '™ < C, 057

Ll =v(re) o =v(rg) Jiljl=e o =v(rk)

with C; depending only on 6y, 0,, 05 (recall that 6; > 6,/6,). O
To estimate the size of the set on which |SQ,| in (14) is small, we need:

Lemma 2.2. Let p > 0 and Q(z) be a polynomial that is of degree < n in each of its variables, that is
0Q < n. Assume that Q is normalized by the condition

max{|Q(@): |zl <p 1<j<I}=1. (16)
Let 86(0 1). Then the lemniscate

—{z Izl <p 1<j<land Q@) <)

has
I-1y)1-1
meas(L) < (16wp?) e? max {1, log, - } ; (17)
1 -1
cap(L) < C, p'e max{l, log, E} ; (18)
1 -1
IF(L) < Cyp'e' max {1, log, E} . (19)

Here C| and C, are independent of p, ¢, Q, n.
Proof. See Theorems 1.2 and 1.3 in [13]. [

At this stage, one would like to apply the estimates (17) to (19) in (14). Unfortunately, to do this
one needs a normalization such as

ISQkllL . =

for a suitable P, whereas all that (14) naturally permits is

" Qk ”Lm(P) =1

This means that we have to deal separately with the sets/lemniscates on which Q, is small and on
which S is small. To show that the union of these two sets is small, we need an estimate for
meas/cap’/I'f (LyUL,) in terms of meas/cap”/I'T(L;), j = 1, 2. For meas, such estimates are
trivial, but we could not find them in the literature for cap® and I'T. So we shall prove a weak
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estimate, which is, however, sufficient for our purposes. Recall first the subadditivity type property
of logarithmic capacity in the plane: Let

1\~ 1
h(t):= (log ?> , te(0,1).
Then for sets L,, L, contained in {z: |z| < p}, [16, p. 289]

h (E%P(L_luli)> <h (ﬂ(—L‘J> +h (ﬁ’—@z—)> 20
P p p

Lemma 2.3. Let 0 <a <3%,1> 1, p > 0and p* := max {1, p}. Then for Borel sets L,, L, contained
in the polydisc

P:={z:|z;] <p, 1 <j<I},

we have

cap®(LyULa) < Cy (p*)" 2 (cap (L) e1)
and :

IF(LyULs) < Ca(o*)* z (TFL). 22

Here C, and C, and A depend on |, but not on p, L, or L,.

Proof. We shall first prove (21) by induction on I. Note that the function h satisfies
2h(t) = h(t'?).
Hence (20) gives for L;, L, contained in {z: |z| < p}
h<M> < 2h<maxw> = h([maxgi—w}m)
p ip i p
Using monotonicity of 4 then gives

2
cap(L;uL,) < \/; Y (capL;)*/2. (23)
ji=1
This is essentially the case | = 1 of (21): Recalling that capL; < p, we obtain

2
cap(L;uL,) < p'™* Y (capL;)™

ji=1
Next, as an induction hypothesis, assume that we have proved (21) for I — 1, so that for Borel sets
Lla L2 contained in {(Zl, Z3y vun azl—l): lel <P, 1 S] <l- 1},
2

cap’~ V(L UL;) < C(p*)? ¥ (cap’™ V(L))
j=1

j=
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for suitable constants C and B. We proceed to prove (21) for I. Recall that

0

capP(L,UL,) = f cap {z,: cap? "V {z": ze L uL,} > s} ds,
(4]

where if
z=(2y,23, ...,2) then 2z'=(z,,2z3,...,2)
Then, using our induction hypothesis,

S

2
s <cap'"V{z:zeLUL,} = I (cap~V{z" zeL;})
ji=1

1/a
= cap! V{7 zeL;} > <—2Csp*3>

for either j = 1 or j = 2. Then using (23), we obtain

cap{zy: cap " V{z": zeL;uL,} > s}

2 ) ’ s 12 1/2
<\/Ej>=jlcap{z1:cap" ”{zrzeLj}><Tp*a> } :

Hence

cap®(L,UL,) = f cap{z;: cap’” P{z": zeLyuLy} > 5} ds
0

2 © s 1/a}1/2
<Jp Y J cap {21: capt V{7 zeL;} > <—> } ds
j=140

2Cp*B
2 ©
=J/p Y J cap {z,: cap® "V {z": zeL;} > t} V20 Cp*Bt* 1 dt. (24)
ji=1Jo
Now if n > 0, Holder’s inequality and the fact that |z,| < p for zeL; give

I;:= J cap {z,: cap! V{7 zeL;} > t}?r* 1 dt
0

< ﬁfﬂ *~lde + [Iwcap {zy: cap®~V{z': zeL;} > t} dt]l/2 x [Jwtz“’zdt}l/z
<P+ [eap® (L))" x [1_—2(1] .
(It is here that we use « < }.) Choosing 75 := cap’(L;), we obtain
I; < Cip*' 2 (cap® (L)),

for some C, depending only on a. Substituting into (24) gives (21) for [ with suitable C, and A.
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We proceed to prove (22). Recall first that
I'T(L) = sup{cap®(A(L)): 4 unitary}.
Also, if A is unitary, and || - | denotes the usual Euclidean norm, then (see [25, p. 74])
lAz] = lzI.
In particular, as L;, j = 1, 2, is contained in the ball {z: ||z|| < \/—lp}, so is A(L;). Thus

zeAL) =1zl </lp, 1<j<L
Hence applying the inequality (21) to A(L;),j = 1, 2, we obtain for some C; depending on [, but not
on L.I’.] = 15 23 or P,

cap” (A(L;UL,)) = cap® (4 (L;)UA(Ly))

2

< C3p* ¥ (cap™ (AL

i=
2
< Cyp* Y (IT (L))

i=1
Taking sup’s over unitary A4 gives (22). [

Proof of Theorem 1.2. Let K be a compact subset of P. We can find 0 < 6, < 8, < 1 such that with
P, defined by (13), we have K < P,. Set

p:i= max p;

1gj<l

and normalize Q,, the denominator in ry, so that it satisfies (16). We may also normalize S so that it
satisfies (16). Let

E = {z: |z;| < p V), | Qil (2) < £}
F:={z: |z}l < p ¥}, |S|(2) <&™}.

We obtain from (14) that for zeK < Py, z¢ E,UF,
|f—7il(2) < Cye™ @050 < o)

if 1 >0 > 03 >0,/0, and k is large enough. Here 8 may be made independent of ¢, in view of our
hypothesis (6). Recall also that dQ, < 0%,. Together, Lemmas 2.2 and 2.3 show that E,UF has
small meas/cap®/I'T. [

Unfortunately, the method of proof of Theorem 1.2 does not yield the conclusion of Theorem 1.3.
The problem is the power of p appearing in the estimates in Lemma 2.2. So we use the well-known
approach based on errors of best approximation. Recall that

Ry = {j=j1sd2s - ) 0<ji <k, 1 <i<g ]}
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is the “box” or hypercube index set. Given a compact set K on which f is analytic, we set
E(f;K):=min{|| f — el ) T Of type Zy/ Ry},

the error in approximation of f on K by rational functions of type #,/%,.

Lemma 2.4. Assume the hypotheses of Theorem 1.3. Let p > 0, and S be a polynomial such that fS is
analytic in

P:={z|z;) <p, 1 <j<I}. (25)
Then

lim E,(fS;P)'* = 0. (26)

k— o0

Proof. The hypotheses of Theorem 1.3 guarantee that fS is meromorphic in C' in the usual sense of
several complex variables. See, for example, [23, p. 231]. Consequently, there exist entire functions
g and h such that fS = g/h. See, for example, [23, p. 262]. By taking the partial sums of g and
h (which approximate g and h faster than geometrically on compact sets), we obtain rational
functions that approximate fS faster than geometrically on compact sets on which h does not
vanish. The solubility of the second Cousin problem on C' allow us to ensure that h does not vanish
on P. See [23, pp. 253ff.]. O

For more on multivariate functions satisfying (26), see [7, 15].

Proof of Theorem 1.3. Let 0 < § < min{3, #}, where 5 is as in (11). Let p > 1> 0 and S be
a polynomial such that f§ is analytic in the polydisc P given by (25). Let

Ki={z:|z;] <AL 1<j< 1}

and
RE = Rsrs-

Let r¥ = P¥/Qj be a best rational function of type & /Z; to fS on P, so that
1£S —r¥le ..o = Ec(fS; P).

Now r, = P,/Q, satisfies

(fOr — P)(2) = Z Cik z.

J¢Sk

We claim that

[SQ¥(fOx— PI1(2) = ¥ djx 2.

iz
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This follows as .#, satisfies the inclusion rule: For j¢.#;, and me N/, Jj + mé¢ 4. Here, the usual
formula for Maclaurin series coefficients gives -

( >J [SOF(fOx — Pk](_)
2ni

tj+1

dix

Jk

where AP := {z: |z;] = p, 1 <j <1}, dt =dt;dt, ...dyand 1 =(1, 1, ..., 1). Then
d _< 1 )lf [OF Qk(Sf_rk)]L
k=7 + a;
: 27

i+1 Y

where

,._( )J [PEQ. — SP.OFIW
el 2wi AP t]+l

Let & be the index set associated with S. Now since # > 4§, it is easy to see from (11) that for large
enough k,

RE Dy = R iy * Dy < I,
FxREx N, =F *Rers * Nk S Iy
Hence for j¢ .7, the coefficient g; of 2/ in (P¥Q, — SP,.Q¥)(2) is 0. So

[Q¥0 Sf— rE)1)
() | oz,

< | QFQx HLOO(P)Ek( Sf; P)/p'ﬂ.

Hence for zeK,

19% Okllz o)

If—rl(2) < 150701(2)

E.(SLP)Y,

where

x5 ) < 1 6) o

Let us normalize QF Q, and S so that
1Q# QullLowy = 1Sl oy = 1.

Given ¢€(0, 1), set
Ei:={z: 12| < p V), |QF Qul (2) < 7%,
F:={z: 17| < p Vj, ISI@2) < ¥}

By our Lemma 2.4, for large enough k,

E(Sf P) < 3.
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Hence for ze K\(E;UF),
If — rel(2) < ng“[a(QI:Qk)+aS]+3Lk < gk

for large enough k. Here we have used the fact that for large enough k,
[0(Q¥Qx) + 881 < OLy + Ly + 0S < 3Ly

Finally Lemmas 2.2 and 2.3 show that E,UF has small meas/cap”’/I'f. In applying those lemmas,
recall that ¢ is independent of p. [
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