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It is well known that Gaussian cubature rules are related to multivariate orthogonal
polynomials. The cubature rules found in the literature use common zeroes of some
linearly independent set of products of basically univariate polynomials. We show how
a new family of multivariate orthogonal polynomials, so-called spherical orthogonal
polynomials, leads to symbolic–numeric Gaussian cubature rules in a very natural way.
They can be used for the integration of multivariate functions that in addition may depend
on a vector of parameters and they are exact for multivariate parameterized polynomials.
Purely numeric Gaussian cubature rules for the exact integration of multivariate polyno-
mials can also be obtained.
We illustrate their use for the symbolic–numeric solution of the partial differential
equations satisfied by the Appell function F2, which arises frequently in various physical
and chemical applications. The advantage of a symbolic–numeric formula over a purely
numeric one is that one obtains a continuous extension, in terms of the parameters, of the
numeric solution. The number of symbolic–numeric nodes in our Gaussian cubature rules
is minimal, namely m for the exact integration of a polynomial of homogeneous degree
2m − 1.
In Section 1 we describe how the symbolic–numeric rules are constructed, in any
dimension and for any order. In Sections 2, 3 and 4 we explicit them on different domains
and for different weight functions. An illustration of the new formulas is given in Section 5
and we show in Section 6 how numeric cubature rules can be derived for the exact
integration of multivariate polynomials. From Section 7 it is clear that there is a connection
between our symbolic–numeric cubature rules and numeric cubature formulae with a
minimal (or small) number of nodes.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

1.1. Classical orthogonal polynomials and Gaussian quadrature

Let R[z] denote the linear space of polynomials in the variable z with real coefficients and let the linear functional γ
associate with zi the moment ci on the standard interval [−1,1] for the weight function w(z):

γ
(
zi) = ci =

1∫
−1

w(z)zi dz,

1∫
−1

w(z)dz > 0.
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In general, for an integrable function f (z),

γ
(

f (z)
) =

1∫
−1

w(z) f (z)dz.

A sequence of orthogonal polynomials Vm(z), m � 0, can be defined by requiring that the polynomial

Vm(z) =
m∑

i=0

bm−i z
i, deg Vm = m,

satisfies the conditions

γ
(
zi Vm(z)

) = 0, i = 0, . . . ,m − 1. (1)

If we introduce the inner product

〈
f (z), g(z)

〉 =
1∫

−1

w(z) f (z)g(z)dz

then condition (1) amounts to the orthogonality requirements〈
zi, Vm(z)

〉 = 0, i = 0, . . . ,m − 1.

Up to a normalization, the orthogonal polynomial Vm(z) can be computed from the linear system

m∑
j=0

ci+ jbm− j = 0, i = 0, . . . ,m − 1, (2)

which is directly obtained from (1). Condition (2) allows us to write down explicit determinant formulas for the orthogonal
polynomials Vm(z) in terms of the Hankel determinants

Hm =

∣∣∣∣∣∣∣∣∣

c0 · · · cm−1
...

...

cm−1 · · · c2m−2

∣∣∣∣∣∣∣∣∣
, m � 1, H0 = 1.

Namely, when requiring Vm(z) to be monic, we can write

Vm(z) = 1

Hm

∣∣∣∣∣∣∣∣
c0 · · · cm−1 cm
...

...

cm−1 · · · c2m−1
1 z · · · zm

∣∣∣∣∣∣∣∣
, V 0(z) = 1.

It is well known that, if γ is positive definite, the zeroes of the orthogonal polynomials Vm(z) can be used as nodes in
so-called Gaussian quadrature rules. If we denote the zeroes of Vm(z) by φ

(m)
i , i = 1, . . . ,m, and

A(m)
i := γ

(
Vm(z)

(z − φ
(m)
i )V ′

m(φ
(m)
i )

)
,

then for every polynomial p(z) of degree 2m − 1 we find

γ
(

p(z)
) =

1∫
−1

w(z)p(z)dz =
m∑

i=1

A(m)
i p

(
φ

(m)
i

)
.

For more information we refer the reader, among many works on orthogonal polynomials, to [5,4].
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1.2. Spherical orthogonal polynomials

The orthogonal polynomials under discussion were first introduced in [2] in a different form and later in [3] in the
current form. Originally they were not termed spherical orthogonal polynomials because of a lack of insight into the mech-
anism behind the definition. In Section 3.6 we point out the difference with other definitions of multivariate orthogonal
polynomials.

In dealing with multivariate polynomials and functions we often prefer to switch from the Cartesian to the spherical
coordinate system. The Cartesian coordinates X = (x1, . . . , xn) ∈ R

n are then replaced by X = (x1, . . . , xn) = (λ1z, . . . , λnz)
with λk, z ∈ R where the directional vector λ = (λ1, . . . , λn) belongs for instance (but not necessarily) to the unit sphere
Sn = {λ: ‖λ‖p = 1}. Here ‖ · ‖p denotes one of the usual �p-norms. A normalization such as ‖λ‖p = 1 only serves the
purpose of avoiding redundant representations. While λ contains the directional information of X , the variable z contains
the (signed) distance information. With the multi-index κ = (κ1, . . . , κn) ∈ N

n the notations Xκ , κ ! and |κ | respectively
denote

Xκ = xκ1
1 . . . xκn

n ,

κ ! = κ1! . . . κn!,
|κ | = κ1 + · · · + κn.

Two directional vectors can generate X , and hence z can be positive as well as negative. For given X , we choose the
directional vector λ such that z = sd(X) where the signed distance function sd(X) is defined by

sd(X) = sgn(xk)‖X‖p, k = min{ j: x j �= 0}.
For the sequel of the discussion we need some more notation. We denote by R[λ] = R[λ1, . . . , λn] the linear space of n-
variate polynomials in λk with real coefficients, by R(λ) = R(λ1, . . . , λn) the commutative field of rational functions in λk
with real coefficients, by R[λ][z] the linear space of polynomials in the variable z with coefficients from R[λ] and by R(λ)[z]
the linear space of polynomials in the variable z with coefficients from R(λ).

Let us introduce the linear functional Γ acting on the variable z, as

Γ
(
zi) = ci(λ)

where ci(λ) is a homogeneous expression of degree i in the parameters λk:

ci(λ) =
∑
|κ |=i

cκλκ . (3)

For our purpose

cκ = |κ |!
κ !

∫
· · ·

∫
‖X‖p�1

w
(‖X‖p

)
Xκ dX (4)

where dX = dx1 . . .dxn . Hence

Γ
(
zi) = ci(λ) =

∫
· · ·

∫
‖X‖p�1

w
(‖X‖p

)( n∑
k=1

xkλk

)i

dX

and Γ (zi) can rightfully be called a parameterized multidimensional moment. The n-variate polynomials under investigation
are of the form

Vm(X) = Vm(λ; z) =
m∑

i=0

bm2−i(λ)zi, (5a)

bm2−i(λ) =
∑

|κ |=m2−i

bκλκ . (5b)

The function Vm(X) is a polynomial of degree m in z with polynomial coefficients from R[λ]. The coefficients
bm(m−1)(λ), . . . ,bm2 (λ) are homogeneous polynomials in the parameters λk . The function Vm(X) does itself not belong
to R[X] but since Vm(X) = Vm(λ; z), it belongs to R[λ][z]. Therefore the function Vm(X) is given the name spherical poly-
nomial: with every λ ∈ Sn a parameterized polynomial Vm(X) = Vm(λ; z) is associated which is a polynomial of degree m
in the variable z = sd(X).

Imposing the orthogonality conditions

Γ
(
zi Vm(λ; z)

) = 0, i = 0, . . . ,m − 1, (6)
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implies that Vm(λ; z) satisfies for i = 0, . . . ,m − 1,

Γ
(
zi Vm(λ; z)

) =
m∑

j=0

bm2− j(λ)Γ
(
zi+ j)

=
∫

· · ·
∫

‖X‖p�1

m∑
j=0

bm2− j(λ)w
(‖X‖p

)( n∑
k=1

xkλk

)i+ j

dX

=
∫

· · ·
∫

‖X‖p�1

w
(‖X‖p

)( n∑
k=1

xkλk

)i

Vm

(
λ;

n∑
k=1

xkλk

)
dX = 0.

With (6) we can also associate the inner product

〈
zi, Vm(λ; z)

〉 = ∫
· · ·

∫
‖X‖p�1

w
(‖X‖p

)( n∑
k=1

xkλk

)i

Vm

(
λ;

n∑
k=1

xkλk

)
dX .

Hence (6) is equivalent to〈
zi, Vm(λ; z)

〉 = 0, i = 0, . . . ,m − 1. (7)

Essentially, the orthogonality conditions (7) represent a parameterized orthogonality, expressed in the spherical variable z
that lives on each straight line spanned by λ, but with multidimensional moments (4).

In addition, the orthogonality conditions translate to the parameterized linear system

m∑
j=0

ci+ j(λ)bm2− j(λ) = 0, i = 0, . . . ,m − 1.

As in the univariate case the orthogonality conditions (6) only determine Vm(λ; z) up to a kind of normalization: m + 1
polynomial coefficients bm2−i(λ) must be determined from the m parameterized conditions (6). How this is done, is shown
now. For more information on this issue we refer to [3,6].

With the ci(λ) we define the polynomial Hankel determinants

Hm(λ) =

∣∣∣∣∣∣∣∣∣

c0(λ) · · · cm−1(λ)
...

...

cm−1(λ) · · · c2m−2(λ)

∣∣∣∣∣∣∣∣∣
, H0(λ) = 1.

We call the functional Γ definite if

Hm(λ) �≡ 0, m � 0.

In what follows we assume that Vm(λ; z) satisfies (6) and that Γ is a definite functional. Also we assume that Vm(λ; z), as
given by (5a)–(5b) is primitive, meaning that its polynomial coefficients bm2−i(λ) are relatively prime. This last condition
can always be satisfied, because for a definite functional Γ a solution of (6) is given by [3]

Vm(λ; z) = 1

pm(λ)

∣∣∣∣∣∣∣∣
c0(λ) · · · cm−1(λ) cm(λ)

...
...

cm−1(λ) · · · c2m−1(λ)

1 z · · · zm

∣∣∣∣∣∣∣∣
, V0(λ; z) = 1, (8)

where the polynomial pm(λ) is a polynomial greatest common divisor of the polynomial coefficients of the powers of z
in this determinant expression. In the sequel we use both the notation Vm(X) and Vm(λ; z) interchangeably to refer to
(5a)–(5b).

1.3. Symbolic–numeric cubature rules

Let us now fix λ = λ∗ and take a look at the projected spherical polynomials

Vm
(
λ∗; z

) = Vm
(
λ∗

1z, . . . , λ∗
n z

)
(9)

on the slice X = zλ∗ . From the definition of Vm(X) it is clear that for each λ∗ the functions Vm(λ∗; z) are polynomials
of degree m in z. Are these projected polynomials themselves orthogonal? If so, what is their relationship to the classical
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univariate orthogonal polynomials? The answer to these questions is given in Theorem 1 and further elaborated in the next
sections.

Let us introduce the (univariate) linear functional c∗ acting on the variable z, by

c∗(zi) = ci
(
λ∗) = Γ

(
zi)∣∣

λ=λ∗ . (10)

In what follows we use the notation Vm(z) to denote the univariate polynomials of degree m orthogonal with respect to the
linear functional c∗ . The reader should not confuse these polynomials with the Vm(λ; z) or the Vm(X). Note that the Vm(z)
are computed from orthogonality conditions with respect to c∗ , which is a particular projection of Γ , while the Vm(λ∗; z)
introduced in (9) are a particular instance of the spherical polynomials orthogonal with respect to Γ .

Theorem 1. Let the monic univariate polynomials Vm(z) satisfy the orthogonality conditions

c∗(zi Vm(z)
) = 0, i = 0, . . . ,m − 1,

with c∗ given by (10), and let the multivariate functions Vm(X) = Vm(λ; z) satisfy the orthogonality conditions (6). Then

Hm
(
λ∗)Vm(z) = pm

(
λ∗)Vm

(
λ∗; z

)
= pm

(
λ∗)Vm

(
X∗), X∗ = (

λ∗
1z, . . . , λ∗

n z
)
.

Proof. The proof consists of an easy verification. From (8) we know that

Vm
(
λ∗; z

) = 1

pm(λ∗)

∣∣∣∣∣∣∣∣
c0(λ

∗) · · · cm−1(λ
∗) cm(λ∗)

...
...

cm−1(λ
∗) · · · c2m−1(λ

∗)
1 z · · · zm

∣∣∣∣∣∣∣∣
while Vm(z) computed using the functional defined in (10) is given by

1

Hm(λ∗)

∣∣∣∣∣∣∣∣
c0(λ

∗) · · · cm−1(λ
∗) cm(λ∗)

...
...

cm−1(λ
∗) · · · c2m−1(λ

∗)
1 z · · · zm

∣∣∣∣∣∣∣∣
as outlined in Section 1. Hence

Hm
(
λ∗)Vm(z) = pm

(
λ∗)Vm

(
λ∗; z

)
. �

In words, Theorem 1 says that the Vm(z) and Vm(λ∗; z) coincide up to a normalizing factor pm(λ∗)/Hm(λ∗). Or reformu-
lated in yet another way, it says that the orthogonality conditions and the projection operator commute.

With respect to the projection property it is important to point out that c∗(zi) does not coincide with the one-
dimensional version of cκ given by (4), meaning (4) for n = 1 and κ = i. While in the one-dimensional situation, the
linear functional

c
(
zi) = ci =

1∫
−1

w
(|x|)xi dx (11)

gives rise to the classical orthogonal polynomials, we do not immediately retrieve these classical polynomials from the
projection, because the projected functional c∗ given by (10) does not coincide with the functional c given by (11). More on
this can also be found in Section 3.6.

If the functional Γ is positive definite, meaning that

∀λ ∈ R
2 \ {

(0,0)
}

: Hm(λ) > 0, m � 0,

then the zeroes z(m)
i can be viewed as a holomorphic function of λ, namely z(m)

i = φ
(m)
i (λ). Let us denote

A(m)
i (λ) = Γ

( Vm(λ;φ(m)
i (λ))

(z − φ
(m)
i (λ))V ′

m(λ;φ(m)
i (λ))

)
. (12)

Then the following cubature formula can rightfully be called a Gaussian cubature formula. The proof can be found in [1].
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Theorem 2. Let P (λ; z) be a polynomial of degree 2m−1 belonging to R(λ)[z], the set of polynomials in the variable z with coefficients
from the space of multivariate rational functions in the real λk with real coefficients. Let the functional Γ be positive definite. Then

∫
‖X‖p�1

w
(‖X‖p

)
P
(
λ;λT X

)
dX =

m∑
i=1

A(m)
i (λ)P

(
λ;φ(m)

i (λ)
)
, λT X =

n∑
k=1

λkxk.

The combination of both symbolic and numeric features in this Gaussian cubature formula is not easy to grasp because
of the conceptual differences between analytical and numerical methods. We illustrate in Section 5 how this symbolic–
numeric cubature rule can be used. The principle is the same as with classical numeric Gaussian quadrature, the difference
being here that the integration is multidimensional and that we integrate an entire parameterized family of functions in
one sweep.

While Theorem 2 immediately allows the exact multidimensional numerical integration of a family of multivariate pa-
rameterized polynomials of degree 2m − 1 in the variable λT X , we show in Section 6 that the result can easily be extended
to the exact integration of any multivariate polynomial of homogeneous degree 2m − 1. So Theorem 2 has a larger impact
than at first sight. Next we point out in Section 7 that there is a connection with purely numeric (not symbolic!) Gaussian
cubature rules with minimal nodes. This observation forms the basis of our future search for numeric cubature rules for
different degrees and in all dimensions.

The difference between our spherical orthogonal polynomials and the multivariate orthogonal polynomials in, for in-
stance, [7], although the weight functions are related, is that the latter are polynomial functions in the xi while the former
are parameterized polynomials in z, meaning that Vm(λ; z) is a univariate polynomial on each straight line X = λz. But the
functions Vm(λ; z) are not polynomial in the xi .

In the next sections we present different families of spherical orthogonal polynomials, on different domains and for
different weight functions.

2. Integration over the hypercube

2.1. Spherical Legendre polynomials (�∞)

When the weight function is w(‖X‖∞) = 1, then the spherical orthogonal polynomials can be called spherical Legendre
polynomials and we denote them by Lm(λ; z). We now give explicit formulas for the moments cκ , the first few polynomials
Lm(λ; z) and the nodes ζ

(m)
i (λ) and weights A(m)

i (λ) stemming from the use of these polynomials. With the norm ‖X‖∞
the domain is the hypercube [−1,1]n and we have

c0(λ) = 2n,

ci(λ) =
∫

· · ·
∫

‖X‖∞�1

(
n∑

k=1

xkλk

)i

dX

=
i∑

j2=0

j2∑
j3=0

· · ·
jn−1∑
jn=0

i! 1 + (−1)i− j2

(i − j2 + 1)!
1 + (−1) j2− j3

( j2 − j3 + 1)! · · · 1 + (−1) jn

( jn + 1)! λ
i− j2
1 λ

j2− j3
2 . . . λ

jn
n .

The spherical Legendre polynomials on the hypercube (we omit appending the norm to the notation because it should be
clear from the context when using the polynomials) are given by

L0(z) = 1, L1(z) = z,

L2(z) = z2 − 1

3

n∑
i=1

λ2
i ,

L3(z) =
(

5
n∑

i=1

λ2
i

)
z3 −

(
3

n∑
i=1

λ4
i + 10

n∑
i=1

∑
j>i

λ2
i λ

2
j

)
z.

2.2. Legendre nodes and weights (�∞)

The zero curves ζ
(m)
i (λ) of the polynomials Lm(z) occur in symmetric pairs. For n = 2 each pair coincides with one of

the level curves shown in Fig. 1. For m odd z = 0 is always a zero. In Theorem 2 the spherical orthogonal polynomials are
used with z = λT X . The zeroes of Lm(λT X) with ‖λ‖∞ = 1 and n = 2 fill up a region similar to the one shown in Fig. 2.
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Fig. 1. Surface plots and contour lines.

Fig. 2. Zeroes of L2(λT X) with ‖λ‖∞ = 1.

We list the first few nodes and weights for integration over the hypercube:

ζ
(2m−1)
m (λ) = 0, m = 1,2, . . . ,

ζ
(2)
1,2(λ) = ∓

√∑n
i=1 λ2

i

3
,

ζ
(3)
1,3(λ) = ∓

√√√√3
∑n

i=1 λ4
i + 10

∑n
i=1

∑
j>i λ

2
i λ

2
j

5
∑n

i=1 λ2
i

,

A(1)
1 (λ) = 2n, A(2)

1,2(λ) = 2n−1,

A(3)
2 (λ) = 2n

(
1 −

∑n
i=1 λ2

i

3(ζ
(3)
3 (λ))2

)
, A(3)

1,3(λ) = 2n−1

∑n
i=1 λ2

i

3(ζ
(3)
3 (λ))2

.
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3. Integration over the hyperball

Now the norm in use is ‖X‖2 and hence the domain of integration is the unit hyperball. We remark that the moments
(and therefore the further formulas) depend on the dimension n. However, with ‖λ‖2 = 1 they do not depend on λ anymore
and this allows to obtain more formulas.

3.1. Spherical Chebyshev polynomials

Let us first consider the weight function w(‖X‖2) = 1/

√
1 − ‖X‖2

2. We give the first few spherical Chebyshev polynomials

Tm(λ; z), their zeroes and the cubature weights. They are given by

ci(λ) =
⎧⎨
⎩

1−(−1)n+i−1

2 π(n+1)/2 Γ ((n+i)/2)
Γ ((n+i+1)/2)

(i−1)!!2(n−2)/2

(n+i−2)!! (
∑n

k=1 λ2
k )i/2, n � 2, n even,

1+(−1)n+i−1

2 πn/2 Γ ((n+i)/2)
Γ ((n+i+1)/2)

(i−1)!!2(n−1)/2

(n+i−2)!! (
∑n

k=1 λ2
k )i/2, n � 3, n odd.

The polynomials are

T0(z) = 1,

T1(z) = z,

T2(z) = z2 − 1

n + 1

n∑
i=1

λ2
i ,

T3(z) = z3 − 3

n + 3

(
n∑

i=1

λ2
i

)
z,

and, more generally [3], they satisfy

Tm+1(z) = zTm(z) − m(n + m − 2)

(n + 2m − 3)(n + 2m − 1)

(
n∑

i=1

λ2
i

)
Tm−1(z), m � 1.

3.2. Chebyshev nodes and weights

The zero curves of the polynomials Tm(z) form circles because they occur in symmetric pairs both when m is even and
odd. For m odd z = 0 is always a zero. The zeroes of Tm(λT X) fill up the region {z: mini=1,...,m |ζ (m)

i (λ)| � ‖z‖2 � 1}.
We list the first few nodes and weights for integration over the unit hyperball:

ζ
(2m−1)
m (λ) = 0, m = 1,2, . . . ,

ζ
(2)
1,2(λ) = ∓

√∑n
i=1 λ2

i

n + 1
,

ζ
(3)
1,3(λ) = ∓

√
3
∑n

i=1 λ2
i

n + 3
,

A(1)
1 (λ) =

⎧⎨
⎩

(2π)n/2

(n−1)!! , n even,

(2π)(n+1)/2

2(n−1)!! , n odd,

A(2)
1,2(λ) =

⎧⎨
⎩

(2π)n/2

2(n−1)!! , n even,

(2π)(n+1)/2

4(n−1)!! , n odd,

A(3)
2 (λ) =

⎧⎪⎪⎨
⎪⎪⎩

(2π)n/2

(n−1)!! − (2π)n/2 ∑n
i=1 λ2

i

(n+1)!!(ζ (3)
3 (λ))2

, n even,

(2π)(n+1)/2

2(n−1)!! − (2π)(n+1)/2 ∑n
i=1 λ2

i

2(n+1)!!(ζ (3)
3 (λ))2

, n odd,

A(3)
1,3(λ) =

⎧⎪⎪⎨
⎪⎪⎩

(2π)n/2 ∑n
i=1 λ2

i

2(n+1)!!(ζ (3)
3 (λ))2

, n even,

(2π)(n+1)/2 ∑n
i=1 λ2

i

4(n+1)!!(ζ (3)
3 (λ))2

, n odd.
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3.3. Spherical Legendre polynomials (�2)

When the weight function is w(‖X‖2) = 1, then the moments and spherical orthogonal polynomials for the hyperball
are given by

ci(λ) =
⎧⎨
⎩

1−(−1)n+i−1

n+i πn/2 (i−1)!!2(n−2)/2

(n+i−2)!! (
∑n

k=1 λ2
k )i/2, n � 2, n even,

1+(−1)n+i−1

n+i π(n−1)/2 (i−1)!!2(n−1)/2

(n+i−2)!! (
∑n

k=1 λ2
k )i/2, n � 3, n odd,

L0(z) = 1,

L1(z) = z,

L2(z) = z2 − 1

n + 2

n∑
i=1

λ2
i ,

L3(z) = z3 − 3

n + 4

(
n∑

i=1

λ2
i

)
z,

Lm+1(z) = zLm(z) − m(n + m − 1)

(n + 2m − 2)(n + 2m)

(
n∑

i=1

λ2
i

)
Lm−1(z), m � 1.

3.4. Legendre nodes and weights (�2)

The zero curves of the polynomials Lm(z) form circles because they occur in symmetric pairs both when m is even and
odd. For m odd z = 0 is always a zero. The zeroes of Lm(λT X) fill up the region {z: mini=1,...,m |ζ (m)

i (λ)| � ‖z‖2 � 1}.
The first few nodes and weights for integration over the hyperball are given by:

ζ
(2m−1)
m (λ) = 0, m = 1,2, . . . ,

ζ
(2)
1,2(λ) = ∓

√∑n
i=1 λ2

i

n + 2
,

ζ
(3)
1,3(λ) = ∓

√
3
∑n

i=1 λ2
i

n + 4
,

A(1)
1 (λ) =

{
(2π)n/2

n!! , n even,

2(2π)(n−1)/2

n!! , n odd,

A(2)
1,2(λ) =

{
(2π)n/2

2n!! , n even,

(2π)(n−1)/2

n!! , n odd,

A(3)
2 (λ) =

⎧⎪⎪⎨
⎪⎪⎩

(2π)n/2

n!! − (2π)n/2 ∑n
i=1 λ2

i

(n+2)!!(ζ (3)
3 (λ))2

, n even,

2(2π)(n−1)/2

n!! − 2(2π)(n−1)/2 ∑n
i=1 λ2

i

(n+2)!!(ζ (3)
3 (λ))2

, n odd,

A(3)
1,3(λ) =

⎧⎪⎪⎨
⎪⎪⎩

(2π)n/2 ∑n
i=1 λ2

i

2(n+2)!!(ζ (3)
3 (λ))2

, n even,

(2π)(n−1)/2 ∑n
i=1 λ2

i

(n+2)!!(ζ (3)
3 (λ))2

, n odd.

3.5. Computing the zeroes of Tm(z) and Lm(z)

Let Bm+1 be the tridiagonal (m + 1) × (m + 1) matrix

Bm+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

b11 b12
b21 b22 b23

b32 b33 b34
. . .

. . .
. . .

bm m+1

⎞
⎟⎟⎟⎟⎟⎟⎠
bm+1 m bm+1 m+1
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and let Bk denote its k-th principal minor, that is the submatrix formed by the first k rows and columns. Then

det Bm+1 = bm+1 m+1 det Bm − bm+1 mbm m+1 det Bm−1.

Applying this to the matrix zIm+1 − Jm+1 where Im+1 is the (m + 1) × (m + 1) identity matrix and

Jm+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
β0 0 1

β1 0 1
. . .

. . .
. . .

1
βm−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, βk = (k + 1)(n + k)

(n + 2k)(n + 2k + 2)
, k = 0, . . . ,m − 1,

gives us the 3-term recurrence for the spherical Legendre polynomials in the hyperball. With

βk = (k + 1)(n + k − 1)

(n + 2k − 1)(n + 2k + 1)

we get the 3-term recurrence for the spherical Chebyshev polynomials in the hyperball. Consequently the zeroes z(m)
i of the

spherical orthogonal polynomial of degree m equal the eigenvalues of the tridiagonal matrix Jm . While for the hyperball the
matrix entries βk are simple and independent of the parameter λ, on the hypercube and the hypersimplex no simple form
for the coefficients in the 3-term recurrence [3] has been obtained.

3.6. Connection with univariate polynomials

For given ν , and with P (ν)
0 (z) = 1 and P (ν)

1 (z) = z, the well-known univariate monic orthogonal Gegenbauer polynomials

P (ν)
m (z) satisfy the 3-term recurrence

P (ν)
m+1(z) = zP (ν)

m (z) − m(m + 2ν − 1)

(2m + 2ν)(2m + 2ν − 2)
P (ν)

m−1(z).

With 2ν = n − 1 the Gegenbauer polynomials in the single variable z = sd(X) apparently coincide with our spherical
Chebyshev polynomials. With 2ν = n they coincide with our spherical Legendre polynomials. The univariate Gegenbauer
polynomials are orthogonal on the interval [−1,1] for the weight function w(z) = (1 − z2)(2ν−1)/2:

1∫
−1

zi P (ν)
m (z)

(
1 − z2)(2ν−1)/2

dz = 0, i = 0, . . . ,m − 1.

So the spherical orthogonal polynomials in the hyperball coincide with a different sequence of univariate Gegenbauer poly-
nomials, where the weight function depends on the dimension n. In terms of X = (x1, . . . , xn) we have

w(X) = (
1 − ‖X‖2

2

)(2ν−1)/2
.

4. Integration over the hypersimplex

4.1. Spherical Legendre polynomials (�1)

With the norm ‖X‖1 the moments and spherical Legendre polynomials are given by

c0(λ) = 2n/n!,

ci(λ) =
i∑

j2=0

j2∑
j3=0

· · ·
jn−1∑
jn=0

1 + (−1)i− j2

i + 1
· · · 1 + (−1) jn−1− jn

i + n − 1

1 + (−1) jn

i + n
λ

i− j2
1 . . . λ

jn−1− jn
n−1 λ

jn
n ,

L0(z) = 1, L1(z) = z,

L2(z) = z2 − 2

(n + 1)(n + 2)

n∑
i=1

λ2
i ,

L3(z) =
(

n∑
i=1

λ2
i

)
z3 − 12

(n + 3)(n + 4)

(
n∑

i=1

λ4
i +

n∑
i=1

∑
j>i

λ2
i λ

2
j

)
z.
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Fig. 3. Surface plots and contour lines.

Fig. 4. Zeroes of L2(λT X) with ‖λ‖1 = 1.

4.2. Legendre nodes and weights (�1)

The zero curves ζ
(m)
i (λ) of the polynomials Lm(z) occur in symmetric pairs. For n = 2 each pair coincides with one of

the level curves shown in Fig. 3. For m odd z = 0 is always a zero. In Theorem 2 the spherical orthogonal polynomials are
used with z = λT X . The zeroes of Lm(λT X) with ‖λ‖1 = 1 and n = 2 fill up a region similar to the one shown in Fig. 4.

The first few nodes and weights for integration over the hypersimplex are given by:

ζ
(2m−1)
m (λ) = 0, m = 1,2, . . . ,

ζ
(2)
1,2(λ) = ∓

√
2
∑n

i=1 λ2
i

(n + 1)(n + 2)
,
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ζ
(3)
1,3(λ) = ∓2

√
3

(n + 3)(n + 4)

√√√√∑n
i=1 λ4

i + ∑n
i=1

∑
j>i λ

2
i λ

2
j∑n

i=1 λ2
i

,

A(1)
1 (λ) = 2n

n! , A(2)
1,2(λ) = 2n−1

n! ,

A(3)
2 (λ) = 2n

(
1

n! − 2
∑n

i=1 λ2
i

(n + 2)!(ζ (3)
3 (λ))2

)
, A(3)

1,3(λ) = 2n ∑n
i=1 λ2

i

(n + 2)!(ζ (3)
3 (λ))2

.

5. Integration of multivariate parameterized functions

An obvious application of Theorem 2 is the symbolic–numeric multidimensional integration of parameterized functions.
Take for instance the integral appearing in the Appell function

F2(α,1,1;2,2;λ1, λ2) =
1∫

0

1∫
0

(1 − λ1x − λ2 y)−α dx dy

which satisfies the partial differential equations

x(1 − x)
∂2 F2

∂x2
− xy

∂2 F2

∂x∂ y
+ (

2 − (α + 2)x
)∂ F2

∂x
− y

∂ F2

∂ y
− αF2 = 0

and similarly with the role of x and y interchanged. The Appell function F2 arises frequently in various physical and
chemical applications, among which the evaluation of radiation field integrals [9,8]. We restrict ourselves to the domain
λ1 < 1, λ2 < 1, λ1 + λ2 < 1 where the integral is real-valued. By a change of variable this integral can be written as

F2(α,1,1;2,2;λ1, λ2) =
1∫

−1

1∫
−1

f (λ;λ1x + λ2 y)dx dy

with

f (λ; z) = 1

4

(
1 − λ1 + λ2 + z

2

)−α

.

Hence we can approximate

F2(α,1,1;2,2;λ1, λ2) ≈ G3(λ1, λ2) :=
3∑

i=1

A(3)
i (λ) f

(
λ; ζ (3)

i (λ)
)

with A(3)
i (λ) and ζ

(3)
i (λ) taken from Section 2. This leads to the symbolic approximation formula

G3(λ1, λ2) = 1

6(3λ4
1 + 10λ2

1λ
2
2 + 3λ4

2)

(
2α+3(2 − λ1 − λ2)

−α
(
λ4

1 + 5λ2
1λ

2
2 + λ4

2

)

+ 2α5
(
λ2

1 + λ2
2

)2
(

2 − λ1 − λ2 −
√

5

5

√
3λ4

1 + 10λ2
1λ

2
2 + 3λ4

2

λ2
1 + λ2

2

)−α

+ 2α5
(
λ2

1 + λ2
2

)2
(

2 − λ1 − λ2 +
√

5

5

√
3λ4

1 + 10λ2
1λ

2
2 + 3λ4

2

λ2
1 + λ2

2

)−α
)

.

To illustrate the quality of this approximation we compute a few evaluations of G3(λ1, λ2) for α = log(2), log(3/2),1/8,1/16
and (λ1, λ2) = r(cos( jπ/k), sin( jπ/k)) with j,k ∈ N. We compare these with the numerical results obtained using Radon’s
7-point degree 5 (m = 3) cubature formula on the square [−1,1] × [−1,1], computed for each individual combination of α
and (λ1, λ2), which we denote by R3 [10]. In Tables 1 and 2 one finds the exact value of F2(α,1,1;2,2;λ1, λ2) together
with the errors F2 − G3 and F2 − R3. It is clear that both approximations have the same accuracy. But expression G3(λ1, λ2)

provides a continuous extension, in terms of the parameters, in addition to the numeric values.
Note that the symmetry

F2(α,1,1;2,2;λ1, λ2) = F2(α,1,1;2,2;λ2, λ1)

is preserved by the symbolic integration rule, but not by Radon’s cubature formula. For λ2 = 0 the symbolic and Radon’s
cubature formula coincide.
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Table 1
F2(α,1,1;2,2; r cos jπ/k, r sin jπ/k) with α = log 2 and α = log 3/2.

α r j k F2(α,1,1;2,2; r cos jπ/k, r sin jπ/k) F2 − G3 F2 − R3

log 2 1/2 0 1 1.24878542341637 × 100 2.0× 10−5 2.0 ×10−5

1/2 1 2 1.24878542341637 × 100 2.0× 10−5 −6.3×10−6

1/2 1 1 8.63536332176800 × 10−1 5.8× 10−7 5.8×10−7

1/2 3 4 1.01276420123863 × 100 8.9× 10−6 7.1×10−6

1 0 1 3.25889070928323 × 100 9.8× 10−1 9.8×10−1

1 1 2 3.25889070928323 × 100 9.8× 10−1 2.3×10−1

1 1 1 7.72377702823892 × 10−1 1.2× 10−5 1.2×10−5

1 2 3 1.26581509450621 × 100 4.9× 10−3 4.8×10−3

1 5 4 7.02555439039178 × 10−1 1.7× 10−5 1.3×10−5

1 7 4 1.05976599939755 × 100 9.9× 10−4 8.2×10−4

5 5 4 3.77604178657645 × 10−1 7.6× 10−4 6.3×10−4

10 5 4 2.60473326815451 × 10−1 1.5× 10−3 1.2×10−3

log 3/2 1/2 0 1 1.13615560548628 × 100 6.4× 10−6 6.4×10−6

1/2 1 2 1.13615560548628 × 100 6.4× 10−6 −2.0×10−6

1/2 1 1 9.17024069560555 × 10−1 2.2× 10−7 2.2×10−7

1/2 3 4 1.00615026516751 × 100 3.1× 10−6 2.5×10−6

1 0 1 1.68198704527817 × 100 1.3× 10−1 1.3×10−1

1 1 2 1.68198704527817 × 100 1.3× 10−1 −1.8×10−2

1 1 1 7.72377702823892 × 10−1 4.9× 10−6 4.9×10−6

1 2 3 1.26581509450621 × 100 1.5× 10−3 1.4×10−3

1 5 4 8.11948001089517 × 10−1 6.9× 10−6 5.5×10−6

1 7 4 1.02793906532740 × 100 3.3× 10−4 2.7×10−4

5 5 4 5.60944616658580 × 10−1 3.9× 10−4 3.2×10−4

10 5 4 4.49648935245511 × 10−1 8.4× 10−4 7.2×10−4

Table 2
F2(α,1,1;2,2; r cos jπ/k, r sin jπ/k) with α = 1/8 and α = 1/16.

α r j k F2(α,1,1;2,2; r cos jπ/k, r sin jπ/k) F2 − G3 F2 − R3

1/8 1/2 0 1 1.03941973413604 ×100 1.0× 10−6 1.0 ×10−6

1/2 1 2 1.03941973413604 ×100 1.0× 10−6 −3.3×10−7

1/2 1 1 9.73416542767547 ×10−1 4.1× 10−8 4.1×10−8

1/2 3 4 1.00150741213994 ×100 5.5× 10−7 4.4×10−7

1 0 1 1.14285714496901 ×100 1.1× 10−2 1.1×10−2

1 1 2 1.14285714496901 ×100 1.1× 10−2 −3.9×10−3

1 1 1 9.53152098789471 ×10−1 9.5× 10−7 9.5×10−7

1 2 3 1.03657602454864 ×100 2.3× 10−4 2.2×10−4

1 5 4 9.37292569668350 ×10−1 1.4× 10−6 1.1×10−6

1 7 4 1.00667220285694 ×100 5.6× 10−5 4.6×10−5

5 5 4 8.34745461087668 ×10−1 9.8× 10−5 8.1×10−5

10 5 4 7.78937606474670 ×10−1 2.4× 10−4 2.1×10−4

1/16 1/2 0 1 1.01944130080770 ×100 4.5× 10−7 4.5×10−7

1/2 1 2 1.01944130080770 ×100 4.5× 10−7 −1.4×10−7

1/2 1 1 9.86592532406697 ×10−1 1.8× 10−8 1.8×10−8

1/2 3 4 1.00071082742536 ×100 2.4× 10−7 1.9×10−7

1 0 1 1.06666666856784 ×100 4.3× 10−3 4.3×10−3

1 1 2 1.06666666856784 ×100 4.3× 10−3 −1.6×10−3

1 1 1 9.76220334133076 ×10−1 4.3× 10−7 4.3×10−7

1 2 3 1.01778196026324 ×100 9.7× 10−5 9.4×10−5

1 5 4 9.68081140952200 ×10−1 6.3× 10−7 5.1×10−7

1 7 4 1.00312956738424 ×100 2.4× 10−5 2.0 ×10−5

5 5 4 9.13408320640060 ×10−1 4.7× 10−5 3.8×10−5

10 5 4 8.82255628091554 ×10−1 1.2× 10−4 1.0 ×10−4

6. Exact integration of multivariate polynomials

Theorem 2 can also be used for the exact numerical integration of any multivariate polynomial

P (X) =
d∑

|κ |=0

aκ Xκ .

It suffices to rewrite P (X) in the form

P (X) =
d∑

bκ

〈
κ

‖κ‖p
, X

〉|κ |
, 〈κ, X〉 =

n∑
κi xi .
|κ |=0 i=1
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Take m such that 2m − 1 is the smallest odd integer larger than or equal to the degree of P (X) and integrate∫
‖X‖p�1

w
(‖X‖p

)
P (X)dX =

d∑
k=0

∑
|κ |=k

bκ

∫
‖X‖p�1

w
(‖X‖p

)( 〈κ, X〉
‖κ‖p

)k

dX

=
d∑

k=0

∑
|κ |=k

bκ

m∑
i=1

A(m)
i (λ)

(
φ

(m)
i (λ)

)k
, λ = κ/‖κ‖p . (13)

Then Theorem 2 applies with λ = κ/‖κ‖p . The coefficients bκ of P (X) in the new basis 〈κ, X〉|κ | can be found from the
linear system

|κ |!
κ1! . . . κn!

∑
j1+···+ jn=|κ |

b j1... jn jκ1
1 . . . jκn

n = aκ1...κn , |κ | = 0, . . . ,d. (14)

This linear system of equations has a particularly interesting structure which makes it extremely easy to obtain the coeffi-
cients b j1... jn from the aκ1...κn . In order to explore this structure we partition the index set K = {(0, . . . ,0)}∪{κ: 1 � |κ | � d}
into

K (k,n)
0 = {

κ: |κ | = k, κi �= 0, i = 1, . . . ,n
}
, k = 1, . . . ,d,

K (k,n)

k1,...,kq
= {

κ: |κ | = k, κk1 = · · · = κkq = 0, κi �= 0, i �= k�, � = 1, . . . ,q
}
,

k = 1, . . . ,d, 1 � k1 < · · · < kq � n, 1 � q � n − 1,

K (k,n)
1,...,n = {

(0, . . . ,0)
}
.

For each |κ | = k = 0, . . . ,d we group the equations in the linear system (14) in the same way as the indices in K : clearly
b0...0 = a0...0, then first the equations indexed by K (k,n)

0 , then those by the different K (k,n)

k1
and so on. The equations indexed

by K (k,n)
0 only involve unknown coefficients indexed by K (k,n)

0 . The equations indexed by a set K (k,n)

k1
only involve unknowns

indexed by K (k,n)

k1
∪ K (k,n)

0 . Since the unknowns indexed by K (k,n)
0 have already been computed, these can be substituted.

Moreover, all systems indexed by one of the sets K (k,n)

k1
have the same coefficient matrix and hence it suffices to perform

only one LU decomposition for one set K (k,n)

k1
. Let us illustrate this by means of an example. Take n = 3 and k = 4. The linear

subsystem of equations determining the coefficients b j1 j2 j3 with j1 + j2 + j3 = 4 from the aκ1κ2κ3 with κ1 + κ2 + κ3 = 4,
when ordered as described above (to make the coefficient matrix fraction-free we have taken λ = κ in (13) instead of
λ = κ/‖κ‖p and have avoided redundancy in the λ in another way), looks like:(24 24 48

24 48 24
48 24 24

)(b112
b121
b211

)
=

(a211
a121
a112

)
,

( 12 64 108
54 96 54

108 64 12

)(b130
b220
b310

)
+

(4 8 32
6 24 24
4 32 8

)(b112
b121
b211

)
=

(a310
a220
a130

)
,

( 12 64 108
54 96 54

108 64 12

)(b103
b202
b301

)
+

( 8 4 32
24 6 24
32 4 8

)(b112
b121
b211

)
=

(a301
a202
a103

)
,

( 12 64 108
54 96 54

108 64 12

)(b013
b022
b031

)
+

( 8 32 4
24 24 6
32 8 4

)(b112
b121
b211

)
=

(a031
a022
a013

)
,

256b400 + (1 16 81 1 16 81 )

⎛
⎜⎜⎜⎜⎜⎝

b130
b220
b310
b103
b202
b301

⎞
⎟⎟⎟⎟⎟⎠ + (1 1 16 )

(b112
b121
b211

)
= a400,

256b040 + (81 16 1 1 16 81 )

⎛
⎜⎜⎜⎜⎜⎝

b130
b220
b310
b013
b022

⎞
⎟⎟⎟⎟⎟⎠ + (1 16 1 )

(b112
b121
b211

)
= a040,
b031
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256b004 + ( 81 16 1 81 16 1 )

⎛
⎜⎜⎜⎜⎜⎝

b103
b202
b301
b013
b022
b031

⎞
⎟⎟⎟⎟⎟⎠ + (16 1 1 )

(b112
b121
b211

)
= a004.

Let us analyze how many different λ really appear in (13). In case of integration over the unit ball in one of the �p norms,

then φ
(m)
i (λ1, . . . , λn) = φ

(m)
i (ν1, . . . , νn) where the ν j are merely a permutation of the λ j . Hence the number of different

nonzero λ is given by the cardinality of the set{
(1,0, . . . ,0)

} ∪ {
κ: 2 � |κ | � d, κ1 � κ2 � · · · � κn, 1 � κi � d/n, GCD(κ1, . . . , κn) = 1

}
.

We illustrate the above procedure with the integration of the following fifth-degree (d = 5, m = 3) bivariate polynomial
(n = 2) over the unit hypercube (�∞-norm):

P (x, y) =
5∑

i+ j=0

aijx
i y j

= 1 + x + y + 2xy − 6x3 + 18xy2 + 15y3 + 3x2 y2 + 5x3 y2 + 4x4 y + x5.

The integral is easy enough to obtain exactly,

1∫
−1

1∫
−1

P (x, y)dx dy = 16

3
,

but the example is given here to illustrate the principle of these new symbolic–numeric cubature rules. After rewriting
P (x, y) as

P (x, y) = 1 + x + y − x2 + (x + y)2 − y2 + 2(x + 2y)3 − (2x + y)3

+ 13

6
x4 − 1

24
(3x + y)4 + 5

64
(2x + 2y)4 − 1

24
(x + 3y)4 + 13

6
y4

+ 353

240
x5 − 49

15 000
(4x + y)5 + 199

15 000
(3x + 2y)5

− 83

7500
(2x + 3y)5 + 137

30 000
(x + 4y)5 − 289

120
y5

we can distinguish 6 polynomials of degree 5 to which Theorem 2 applies:

P1(z) = 1 + 2z − 2z2 + 13

3
z4 − 15

16
z5, λ(1) = (1,0), z = X T λ(1),

P2(z) = z2 + 5

4
z4, λ(2) = (1,1), z = X T λ(2),

P3(z) = 8z3, λ(3) = (1,1/2), z = X T λ(3),

P4(z) = −27

4
z4, λ(4) = (1,1/3), z = X T λ(4),

P5(z) = 3008

375
z5, λ(5) = (1,1/4), z = X T λ(5),

P6(z) = 5913

1000
z5, λ(6) = (1,2/3), z = X T λ(6).

Here we have made use of the fact that

1∫
−1

1∫
−1

P(λ;λ1x + λ2 y)dx dy =
1∫

−1

1∫
−1

P(λ;λ2x + λ1 y)dx dy

or more generally∫
· · ·

∫
‖X‖ �1

w
(‖X‖p

)
F
(
λ;λT X

)
dX =

∫
· · ·

∫
‖X‖ �1

w
(‖X‖p

)
F
(
λ;λT

P X
)

dX
p p
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where the vector λP is a permutation of the vector λ. Hence the symbolic–numeric nodes and weights φ
(3)
i (λ) and A(3)

i (λ)

need to be evaluated in 6 specific λ in order to obtain numeric nodes for the integration of P (x, y). In practice only
φ

(3)
2 (λ) and A(3)

2 (λ) need to be evaluated since φ
(3)
1 (λ) = 0 independently of λ, φ

(3)
3 (λ) = −φ

(3)
2 (λ) and A(3)

3 (λ) = A(3)
2 (λ)

(see Section 2 for the nodes and weights):

1∫
−1

1∫
−1

P (x, y)dx dy =
6∑

�=1

1∫
−1

1∫
−1

P�

(
λ

(�)
1 x + λ

(�)
2 y

)
dx dy

= A(3)
1

(
λ(1)

)
P (0,0) +

6∑
�=1

A(3)
2

(
λ(�)

)(
P�

(
φ

(3)
2

(
λ(�)

)) + P�

(−φ
(3)
2

(
λ(�)

)))

= 16

3
.

7. Minimal numeric cubature rules

From the above it is clear that cubature rules for the exact symbolic–numeric integration of polynomials of the form
P (λ;λT X) of degree 2m − 1 also form the basis of cubature rules for the exact numeric integration of multivariate polyno-
mials P (X) of degree 2m − 1. The relationship is even tighter. When we take a look at existing minimal numeric cubature
formulae, the distribution of the nodes is similar to that of the zero curves of the spherical orthogonal polynomials. The
nodes appear on semicircles and are mirrored with respect to the origin. To illustrate our believe that these spherical or-
thogonal polynomials are a good departure point for the construction of numeric Gaussian cubature formulae, we take a
closer look at the 7-point degree 5 Radon formula on the disk (�2-norm) [10]:∫ ∫

x2+y2�1

P5(x, y)dx dy = π

8

(
2P5(0,0) + P5

(
1√
2
,

1√
6

)
+ P5

(−1√
2
,−1

√
6

)
+ P5

(
1√
2
,−1

√
6

)

+ P5

(−1√
2
,1

√
6

)
+ P5

(
0,

√
2

3

)
+ P5

(
0,−

√
2

3

))
. (15)

This Radon formula can be deduced from the exact symbolic–numeric integration rule for degree 5 polynomials (m = 3) of
the form P5(λ;λ1x + λ2 y) as follows. Take the bivariate polynomial P5(x, y) with constant coefficients ai defined by

P5(x, y) =
5∑

i=0

ai(λ1x + λ2 y)i

and apply the 7-point numeric Radon formula (15) to

I =
∫ ∫

x2+y2�1

P5(x, y)dx dy.

This numeric formula is exact for I which equals

I = π

8
(8a0 + 2a2 + a4).

It is easy to verify, by means of a computer algebra system, that with (λ1, λ2) = (cos θ, sin θ) and

P5(λ; z) =
5∑

i=0

ai z
i,

the application of Radon’s formula is equivalent to the 7-point evaluation

I = π

8

(
2P5(λ;0) + P5

(
λ;

√
2

3
cos(π/6 − θ)

)
+ P5

(
λ;−

√
2

3
cos(π/6 − θ)

)

+ P5

(
λ;

√
2

3
cos(−π/6 − θ)

)
+ P5

(
λ;−

√
2

3
cos(−π/6 − θ)

)

+ P5

(
λ;

√
2

cos(π/2 − θ)

)
+ P5

(
λ;−

√
2

cos(π/2 − θ)

))
. (16)
3 3
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The latter expression is actually independent of θ . The choice θ = 0 identifies the application of Radon’s formula with the
symbolic–numeric formula

I = π

8

(
4P5(λ;0) + 2P5

(
λ; 1√

2

)
+ 2P5

(
λ; −1√

2

))

which uses the zeroes of L3(z) listed in Section 3.3. In a future work we expect to prove that from a symbolic cubature
formula of the form∫ ∫

x2+y2�1

P2m−1(λ;λ1x + λ2 y)dx dy =
n(m)∑
i=0

A(m)
i P2m−1(λ;λ1xi + λ2 yi)

a numeric cubature formula of the form∫ ∫
x2+y2�1

P2m−1(x, y)dx dy =
n(m)∑
i=0

A(m)
i P2m−1(xi, yi)

can be deduced. Applying this principle, for instance, to the above expression brings us directly from (16) back to (15) since
with λ1 = cos θ and λ2 = sin θ ,√

2

3
cos(π/6 − θ) = 1√

2
λ1 + 1√

6
λ2 → (x1, y1) =

(
1√
2
,

1√
6

)
,√

2

3
cos(π/2 − θ) =

√
2

3
λ2 → (x5, y5) =

(
0,

√
2

3

)
.

The conjectured principle has also been verified for the 12-point degree 7 Radon rule on the disk.

8. Conclusion

The number of symbolic–numeric nodes in the Gaussian cubature rules from Theorem 2 is minimal, namely m for a
polynomial of degree 2m − 1. Furthermore we have conjectured in Section 7 how to construct purely numeric cubature
rules with a minimal (or small) number of nodes. The proof of this conjecture and the search for cubature rules for general
multidimensional integrands with a minimal number of discrete numeric nodes is the subject of further investigation.
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