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linearly independent set of products of basically univariate polynomials. We show how
a new family of multivariate orthogonal polynomials, so-called spherical orthogonal
polynomials, leads to symbolic-numeric Gaussian cubature rules in a very natural way.
They can be used for the integration of multivariate functions that in addition may depend

Il\(ﬁrvﬁ%rii?ensional integration on a vector of parameters and they are exact for multivariate parameterized polynomials.
Gaussian cubature Purely numeric Gaussian cubature rules for the exact integration of multivariate polyno-
Symbolic-numeric mials can also be obtained.

Orthogonal polynomials We illustrate their use for the symbolic-numeric solution of the partial differential

equations satisfied by the Appell function F, which arises frequently in various physical
and chemical applications. The advantage of a symbolic-numeric formula over a purely
numeric one is that one obtains a continuous extension, in terms of the parameters, of the
numeric solution. The number of symbolic-numeric nodes in our Gaussian cubature rules
is minimal, namely m for the exact integration of a polynomial of homogeneous degree
2m—1.
In Section 1 we describe how the symbolic-numeric rules are constructed, in any
dimension and for any order. In Sections 2, 3 and 4 we explicit them on different domains
and for different weight functions. An illustration of the new formulas is given in Section 5
and we show in Section 6 how numeric cubature rules can be derived for the exact
integration of multivariate polynomials. From Section 7 it is clear that there is a connection
between our symbolic-numeric cubature rules and numeric cubature formulae with a
minimal (or small) number of nodes.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction
1.1. Classical orthogonal polynomials and Gaussian quadrature
Let R[z] denote the linear space of polynomials in the variable z with real coefficients and let the linear functional y
associate with z' the moment c; on the standard interval [—1, 1] for the weight function w(z):
1

1
y(Z)=ci= / w(2)Z dz, /w(z) dz > 0.
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In general, for an integrable function f(2),

1

y(f@)= / w(2) f(2)dz.

-1
A sequence of orthogonal polynomials V;(z), m > 0, can be defined by requiring that the polynomial
m .
Vim(2) = mefizl, degVip =m,
i=0
satisfies the conditions
y(ZVm(@)=0, i=0,....m—1. (1)
If we introduce the inner product

1

(f@.28)= / w(2) f(2)g(2)dz

-1
then condition (1) amounts to the orthogonality requirements
(z,Vm(@)=0, i=0,....m—1.

Up to a normalization, the orthogonal polynomial V;(z) can be computed from the linear system
m
Y cipjbmj=0, i=0,....m—1, (2)
j=0

which is directly obtained from (1). Condition (2) allows us to write down explicit determinant formulas for the orthogonal
polynomials Vp;(z) in terms of the Hankel determinants

Co Cm—1
Hn=| - . m=1, Ho=1

Cm—1 -+ C2m-2

Namely, when requiring V;;(z) to be monic, we can write

Co 0 Cm—1 Cm
1 : :
Vin(2) = I . . s Vo(2) =1.
m | Cm-1 o 2m—1
1 z . zm

It is well known that, if y is positive definite, the zeroes of the orthogonal polynomials V;(z) can be used as nodes in
so-called Gaussian quadrature rules. If we denote the zeroes of V,(z) by ¢>i(m), i=1,...,m, and

A(m) — < Vin(2) >’
Py z— "™ )Wh(p™)

then for every polynomial p(z) of degree 2m — 1 we find

; m
v(p@) = / w()p(2)dz = ZA§m)P(¢fm)).

-1 i=1

For more information we refer the reader, among many works on orthogonal polynomials, to [5,4].
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1.2. Spherical orthogonal polynomials

The orthogonal polynomials under discussion were first introduced in [2] in a different form and later in [3] in the
current form. Originally they were not termed spherical orthogonal polynomials because of a lack of insight into the mech-
anism behind the definition. In Section 3.6 we point out the difference with other definitions of multivariate orthogonal
polynomials.

In dealing with multivariate polynomials and functions we often prefer to switch from the Cartesian to the spherical
coordinate system. The Cartesian coordinates X = (x1,...,%,) € R" are then replaced by X = (x1,...,%n) = (M2, ..., An2)
with Ay, z € R where the directional vector A = (A1,..., A;) belongs for instance (but not necessarily) to the unit sphere
Sp={A: |[Allp =1}. Here | - ||, denotes one of the usual £,-norms. A normalization such as ||A|[, =1 only serves the
purpose of avoiding redundant representations. While A contains the directional information of X, the variable z contains
the (signed) distance information. With the multi-index « = (k1,..., k) € N" the notations X*, «! and |k| respectively
denote

K K1 K
X =Xx; X"
K!'=kK1!...kn!,
K| =K1+ 4+ Kn.

Two directional vectors can generate X, and hence z can be positive as well as negative. For given X, we choose the
directional vector A such that z=sd(X) where the signed distance function sd(X) is defined by

sd(X) =sgn(x) [ X|lp, k=min{j: x; # 0}.

For the sequel of the discussion we need some more notation. We denote by R[A] = R[Aq,..., A;] the linear space of n-
variate polynomials in A, with real coefficients, by R(1) = R(A1,..., ;) the commutative field of rational functions in A
with real coefficients, by R[1][z] the linear space of polynomials in the variable z with coefficients from R[A] and by R(})[z]
the linear space of polynomials in the variable z with coefficients from R().

Let us introduce the linear functional I acting on the variable z, as

r@)=c®
where c;(1) is a homogeneous expression of degree i in the parameters Ay:
)= cdk. 3)

|k |=i
For our purpose
cK=@/-~- f w(lIX[p)X* dX (4)
© IXlp<

where dX =dxq ...dx,. Hence

F(zi):ci(A):/... / w(||X||p)<ixkAk)idx

1Xlp<1

and I'(z') can rightfully be called a parameterized multidimensional moment. The n-variate polynomials under investigation
are of the form

Vi(X) =Vn(A:2) =Y bpz_;(0)7', (5a)
i=0
buz_i(W) = > bk (5b)
ic|=m2—i

The function Vp(X) is a polynomial of degree m in z with polynomial coefficients from R[A]. The coefficients
bman-1)(*), ..., by,2(1) are homogeneous polynomials in the parameters Ax. The function Vi, (X) does itself not belong
to R[X] but since V(X)) = Vpn(X; 2), it belongs to R[A][z]. Therefore the function V;(X) is given the name spherical poly-
nomial: with every A € S, a parameterized polynomial V;;(X) = Vn(X; 2) is associated which is a polynomial of degree m
in the variable z = sd(X).

Imposing the orthogonality conditions

r(ZVm(;2)=0, i=0,....,m—1, (6)
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implies that Vy,(A; z) satisfies for i =0,...,m—1,

M (ZVm(:2) =Y bya_ i) ()

j=0
i+j

:/ / mezﬂ(x)w IXlp) (ZXW) dx

IXip<1 J=0 k=1

n i n

=/ / w(||X||p)<ZxkAk> Vm<k;zxm) dX =0.

1Xl,<1 k=1 k=1

S

With (6) we can also associate the inner product

(zi,vm(k;z))zf--~ / w(lIX]p) (Z"W> Vm< Zxk)»k>
Xl <1

k=1

Hence (6) is equivalent to
(Z,Vm(r;2))=0, i=0,....m—1. 7)

Essentially, the orthogonality conditions (7) represent a parameterized orthogonality, expressed in the spherical variable z
that lives on each straight line spanned by A, but with multidimensional moments (4).
In addition, the orthogonality conditions translate to the parameterized linear system

m
Y i jMbpe_j(0)=0, i=0,....m—1.
j=0

As in the univariate case the orthogonality conditions (6) only determine Vy(A;z) up to a kind of normalization: m + 1
polynomial coefficients b,2_;(A) must be determined from the m parameterized conditions (6). How this is done, is shown
now. For more information on this issue we refer to [3,6].

With the c;(1) we define the polynomial Hankel determinants

co®) - m-1(M)
Hm(3) = E . ., How=1.

Cm—1(A) -+ Cam—2(X)
We call the functional I definite if
Hn(AM)#£0, m=>=0.

In what follows we assume that Vy,(A; z) satisfies (6) and that I" is a definite functional. Also we assume that Vy(}; 2), as
given by (5a)-(5b) is primitive, meaning that its polynomial coefficients b,>_;(1) are relatively prime. This last condition
can always be satisfied, because for a definite functional I" a solution of (6) is given by [3]

() ma()  cm(d)
Vin(h:2) = : Dol wio =1, 8)
Pm) | cp1 (V) Com-1(1)
1 z zZm

where the polynomial pp, (1) is a polynomial greatest common divisor of the polynomial coefficients of the powers of z
in this determinant expression. In the sequel we use both the notation V,(X) and V;;(A; z) interchangeably to refer to

(5a)-(5b).
1.3. Symbolic-numeric cubature rules
Let us now fix A =A™ and take a look at the projected spherical polynomials
Vn(A*2) = Vim(Ajz, ..., Ah2) (9)

on the slice X = zA*. From the definition of V,(X) it is clear that for each A* the functions Vy;(A*;z) are polynomials
of degree m in z. Are these projected polynomials themselves orthogonal? If so, what is their relationship to the classical
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univariate orthogonal polynomials? The answer to these questions is given in Theorem 1 and further elaborated in the next
sections.
Let us introduce the (univariate) linear functional c¢* acting on the variable z, by

(@) =c(x) =r()

In what follows we use the notation V;(z) to denote the univariate polynomials of degree m orthogonal with respect to the
linear functional c*. The reader should not confuse these polynomials with the Vy,(X; z) or the V;(X). Note that the Vp(2)
are computed from orthogonality conditions with respect to c¢*, which is a particular projection of I, while the V,(A*; 2)
introduced in (9) are a particular instance of the spherical polynomials orthogonal with respect to I".

[N (10)

Theorem 1. Let the monic univariate polynomials V,(z) satisfy the orthogonality conditions
*(ZVm(@) =0, i=0,...,m—1,
with c* given by (10), and let the multivariate functions V,;, (X) = Vi (X; 2) satisfy the orthogonality conditions (6). Then
Hn (M) Vin(2) = pm(A*) Vi (A*; 2)
=pmn(A)Vi(X*), X*=(Az ....1;2).

Proof. The proof consists of an easy verification. From (8) we know that

(¥ o ma (V) em(¥)

1 . .

V(A 2) = ——— : :
(52) Pm() | ey (3%) e cma1(A)

1 z zm

while Vi, (z) computed using the functional defined in (10) is given by

o) o mm1 (M) cm()
1 : :
Hm @A) | epoq 0%) e Cme10)
1 z zm

as outlined in Section 1. Hence
Hn(A*)Vin(2) = pm(A*)Vn(2*:2). O

In words, Theorem 1 says that the Vp,(2) and Vi (A*; z) coincide up to a normalizing factor py,(A*)/Hpn(A*). Or reformu-
lated in yet another way, it says that the orthogonality conditions and the projection operator commute.

With respect to the projection property it is important to point out that c*(z') does not coincide with the one-
dimensional version of ¢, given by (4), meaning (4) for n =1 and x = i. While in the one-dimensional situation, the
linear functional

1
c(Z)=ci= [ w(lxl)x'dx (11)
/

gives rise to the classical orthogonal polynomials, we do not immediately retrieve these classical polynomials from the
projection, because the projected functional ¢* given by (10) does not coincide with the functional ¢ given by (11). More on
this can also be found in Section 3.6.

If the functional I" is positive definite, meaning that

V2 eR*\{(0,0)}: Hn(»)>0, m>0,

(m)

then the zeroes z; can be viewed as a holomorphic function of A, namely zgm) = ¢l.(m) (1). Let us denote

Vin(2; 6™ (1)) ) a2)

z =™ )V 6™ ()

Then the following cubature formula can rightfully be called a Gaussian cubature formula. The proof can be found in [1].

A™ () = F(
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Theorem 2. Let P (A; z) be a polynomial of degree 2m — 1 belonging to R(A)[z], the set of polynomials in the variable z with coefficients
from the space of multivariate rational functions in the real Aj with real coefficients. Let the functional I" be positive definite. Then

m n
w(lXlp)P(: ATX)dX =Y AP WP W), ATX=) M.
IXlip<1 =1 k=1

The combination of both symbolic and numeric features in this Gaussian cubature formula is not easy to grasp because
of the conceptual differences between analytical and numerical methods. We illustrate in Section 5 how this symbolic-
numeric cubature rule can be used. The principle is the same as with classical numeric Gaussian quadrature, the difference
being here that the integration is multidimensional and that we integrate an entire parameterized family of functions in
one sweep.

While Theorem 2 immediately allows the exact multidimensional numerical integration of a family of multivariate pa-
rameterized polynomials of degree 2m — 1 in the variable AT X, we show in Section 6 that the result can easily be extended
to the exact integration of any multivariate polynomial of homogeneous degree 2m — 1. So Theorem 2 has a larger impact
than at first sight. Next we point out in Section 7 that there is a connection with purely numeric (not symbolic!) Gaussian
cubature rules with minimal nodes. This observation forms the basis of our future search for numeric cubature rules for
different degrees and in all dimensions.

The difference between our spherical orthogonal polynomials and the multivariate orthogonal polynomials in, for in-
stance, [7], although the weight functions are related, is that the latter are polynomial functions in the x; while the former
are parameterized polynomials in z, meaning that V;;(4; z) is a univariate polynomial on each straight line X = Az. But the
functions V;(A; z) are not polynomial in the x;.

In the next sections we present different families of spherical orthogonal polynomials, on different domains and for
different weight functions.

2. Integration over the hypercube
2.1. Spherical Legendre polynomials (£)

When the weight function is w(||X|o) = 1, then the spherical orthogonal polynomials can be called spherical Legendre
polynomials and we denote them by £;;(4; z). We now give explicit formulas for the moments c,, the first few polynomials
Lm(; z) and the nodes gi(m) (A) and weights A;m) (1) stemming from the use of these polynomials. With the norm | X||s

the domain is the hypercube [—1, 1]" and we have

co(r) =2",

Ci(k)Z/--- / (Zka) dx
IX[leo<1

k=1

i j2 jn—l i i :
_ i T+ (DT I+ (D27 14 (=1 )\ilsz)\ézsz 2
E E E = v , - , T
h0f0 =0 (i—Jj24+1D! G2 —Jjzs+ 1! (Gn+ D!

The spherical Legendre polynomials on the hypercube (we omit appending the norm to the notation because it should be
clear from the context when using the polynomials) are given by

Lo(2) =1, L1(2) =2z,

] n
L@=2-3) i,
i=1

n n n
b= (3301 )2 - (134t 0 S e
i=1 i=1

i=1 j>i
2.2. Legendre nodes and weights ({.o)

The zero curves gi(m) (1) of the polynomials £;;(z) occur in symmetric pairs. For n =2 each pair coincides with one of
the level curves shown in Fig. 1. For m odd z =0 is always a zero. In Theorem 2 the spherical orthogonal polynomials are
used with z= AT X. The zeroes of £;;(AT X) with ||A|lcc =1 and n =2 fill up a region similar to the one shown in Fig. 2.
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Fig. 1. Surface plots and contour lines.

Fig. 2. Zeroes of £(AT X) with [|A]loo = 1.

We list the first few nodes and weights for integration over the hypercube:

(2mDy=0, m=1,2,...,

A2
G0 =F =5

\1327 1 +1021 1Z]>1)‘2)‘2

G0 =7F

’

521’:1 i
APGy =2, APy =2"",
Y noa2
A§3)(A):2"(1—7Z('3_)1 ‘2>, AT () = _2(13_)1 .
3557 () 3(¢57 ()
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3. Integration over the hyperball

Now the norm in use is || X[ and hence the domain of integration is the unit hyperball. We remark that the moments
(and therefore the further formulas) depend on the dimension n. However, with ||A||2 =1 they do not depend on A anymore
and this allows to obtain more formulas.

3.1. Spherical Chebyshev polynomials

Let us first consider the weight function w(||X|2)=1/,/1— ||X||%. We give the first few spherical Chebyshev polynomials
Tm(X; 2), their zeroes and the cubature weights. They are given by

1=(=D™ 1y2 _L(@+)/2)  (—DRTD2 —~n 5 24i/2
e R i oo (Lker 402, n>2, neven,

14D o F(n4i)/2)  (=D1ROY2 ~n 524072
2 " Fodirh/) —mrin (k=1 Y2, n =3, nodd.

ci(A) =

The polynomials are

To(2) =1,
Ti(2) =z,

_l n
L) =22 — —— Y A2,
2(2) n—i—lg’

3 n
%(z)=z3—m(215>z,

i=1
and, more generally [3], they satisfy

Tn+1(2) = 2Tn(2) — matm=—2) (ZA?>Tm_1(Z), m>1.
i=1

m+2m—-3)(n+2m—1)

3.2. Chebyshev nodes and weights

The zero curves of the polynomials 7;,(z) form circles because they occur in symmetric pairs both when m is even and

We list the first few nodes and weights for integration over the unit hyperball:

m=Dy=0, m=1,2,...,

n 2
) Zi:])‘i
) =F =5
oM =TT
3 A
3) i=1"
2 =F | ==
51,3( )=7F n13

@n)">
AD Gy = | @D n even,
! | et
oo nhodd,
/2
2 Qnls. neven,
AD (1) = | 2@-DF
1,2 (27)+D/2
4@-D n odd,
27r)V/?2 @mV2Y A2
((n]z)l)!! - DI (31)(;)):2’ 1 even,
AP = T
2 (2mr)+D/2 (27)+D/2 p )‘iz wd
2h—DIT 2(n+1)!!(;3(3)(,\))2 , nodd,
Q)2 Ll)‘iz
e d oy’ | meven,
ACL ) = s
1.3 - (27-[)(H+1)/ZZ;_1 52
=5k nodd
) ) .
4+ 0))2
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3.3. Spherical Legendre polynomials (£3)

When the weight function is w(||X||2) = 1, then the moments and spherical orthogonal polynomials for the hyperball
are given by

1—(—+i-1 i—1!1201-2/2 i
ci(\) = G = (i D2, =2, neven,
1 - 1 1)n+i=1 1)112=1)/2 ;
+(n)l Al n/24 (nl—l DN (2;321 )\i)l/z, n >3, nodd,
Lo(2) =1,
L1(2) =z,
.1 n
Lo()=22— —— Y A2,
2(2) - ;
i=1
3 n
L3(2)=20 — —— A2z,
3(2) n+4<§ )
m@n+m—1) = )
L 2)=2zLn(2) — M1 Lm-1(2), m=>1.
m+1( ) m() (n+2m_2)(n+2m)<; i m 1( )

3.4. Legendre nodes and weights (¢3)

The zero curves of the polynomials £, (z) form circles because they occur in symmetric pairs both when m is even and
odd. For m odd z=0 is always a zero. The zeroes of L;;(AT X) fill up the region {z: minj_;, |{i(m) M <zl £ 1)
The first few nodes and weights for integration over the hyperball are given by:

2 Voy =0, m=1,2,...,

(2) Z?:] A7
S () = 2
(3) 32?:1 A7
(0 = Thid

(27‘[)”/2
A(])()\.) _ nll neven,
1 - 2(27.[)“1—1)/2
2em 7 podd,
(zﬂ)n/z
B neven,
(2) ()\’) 2n!!

m-1/2
U nodd,

n!!
emy?2 o'yl

, n even,
ADoy=] ™ eRrgor
2 ] 2em@-v2 2em b2y 02
o — e n odd,
n m+21¢ P )
n/2 \n 2
SCkep DS L Z(’;"\’, neven,
3) 242157 (1))
A1,3()L): (271)(”’”/22'-' 22
=12  nodd.

2102
3.5. Computing the zeroes of T, (z) and L (2)

Let Bp+q be the tridiagonal (m + 1) x (m + 1) matrix
bi1 b1z
ba1 b2z bas

bsy b3z b3y
Bmy1 =

bm m+1
bm-H m bm+1 m+1



938 A. Cuyt et al. / Applied Numerical Mathematics 61 (2011) 929-945

and let By denote its k-th principal minor, that is the submatrix formed by the first k rows and columns. Then
det Bmy1 =bmy1m+1det Bm — bmy1mbmma1 det By 1.

Applying this to the matrix zl;;+1 — Jme1 Where Ip4q is the (m+ 1) x (m + 1) identity matrix and

0 1
o 0 1
B 0 1 k+Dn+k
_ , — , k=0,....m—1,
Jm1 B n+20m L2k T 2) k m
1
Bm-1 O

gives us the 3-term recurrence for the spherical Legendre polynomials in the hyperball. With

(k+Dm+k—1)
(n+2k—1)(n+2k+1)

,3k =

we get the 3-term recurrence for the spherical Chebyshev polynomials in the hyperball. Consequently the zeroes zfm) of the
spherical orthogonal polynomial of degree m equal the eigenvalues of the tridiagonal matrix J,;. While for the hyperball the
matrix entries B are simple and independent of the parameter A, on the hypercube and the hypersimplex no simple form
for the coefficients in the 3-term recurrence [3] has been obtained.

3.6. Connection with univariate polynomials

For given v, and with P(()”) (z)=1 and Pﬁ”)(z) =z, the well-known univariate monic orthogonal Gegenbauer polynomials
P,(n” )(z) satisfy the 3-term recurrence
m(m+42v —1) pw
(2m+2v)2m +2v —2) P

PO (@) =2zPy () — ).

With 2v =n — 1 the Gegenbauer polynomials in the single variable z = sd(X) apparently coincide with our spherical
Chebyshev polynomials. With 2v =n they coincide with our spherical Legendre polynomials. The univariate Gegenbauer
polynomials are orthogonal on the interval [—1, 1] for the weight function w(z) = (1 — z2)?v—1D/2;

1
/pr&w(z)u —2) "V 4—0, i=0,...m-1.
-1

So the spherical orthogonal polynomials in the hyperball coincide with a different sequence of univariate Gegenbauer poly-
nomials, where the weight function depends on the dimension n. In terms of X = (x1, ..., X,) we have

Qv-1)/2
w(X) = (1-x)3)*" "
4. Integration over the hypersimplex
4.1. Spherical Legendre polynomials (¢1)

With the norm ||X||; the moments and spherical Legendre polynomials are given by

co(A) = 2"/n!,
Jn—1

1‘ . . o . .
14 (=1)—)2 1+ (=Dn=17dn 1 (=1)dn in—in
ci(n A2 1Ty e
i) = ZZ Z i+1 i+n—1 i+n 1 n-1 "
Jj2=0j3=0 Jjn=0

Lo(z) =1, L1(2) =z,

L= (n+1)(n+2 X]:

_ . 21,3 4 2
L3(2) = (Z;Ai)z (n+3)(n+4)<ZA +ZZA 22 )

i=1 j>i
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Fig. 3. Surface plots and contour lines.

Fig. 4. Zeroes of £(AT X) with [|A]; =1.

4.2. Legendre nodes and weights (1)

The zero curves ;“i(m) (1) of the polynomials £p(z) occur in symmetric pairs. For n = 2 each pair coincides with one of
the level curves shown in Fig. 3. For m odd z =0 is always a zero. In Theorem 2 the spherical orthogonal polynomials are

used with z= AT X. The zeroes of £,;;(AT X) with ||A|; =1 and n =2 fill up a region similar to the one shown in Fig. 4.

The first few nodes and weights for integration over the hypersimplex are given by:

2 Voy =0, m=1,2,...,

[2yy 2
2) _ i=1"
G =R G 2
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n 4 n 2.2
630 = 3 Dz A+ izt X jsi M A
n+3)(n+4) ST 2 ,

on 2n—]
(1 _Z (2) —
AVw= aBw=",
2 2
A(B) ()\) _ 2" l _ 2 Z?:] )\i A(3) )\) _ 2” Z?:l )"i
2T A\ 3) (512 1.3V = B3) 2
L m+2)NEGT) (n+2)1(¢57 (W)

5. Integration of multivariate parameterized functions

An obvious application of Theorem 2 is the symbolic-numeric multidimensional integration of parameterized functions.
Take for instance the integral appearing in the Appell function

11
Fyp(e,1,1;2,2; M,Az)://(l —MX—A2y) “dxdy
00

which satisfies the partial differential equations

52 2
F2 da°F; dF, oFy
x(1 —x) Xy—axay (2-(a +2)x)—x - y—ay —aF;=0

and similarly with the role of x and y interchanged. The Appell function F, arises frequently in various physical and
chemical applications, among which the evaluation of radiation field integrals [9,8]. We restrict ourselves to the domain
M <1, A2 <1, A1 + 22 <1 where the integral is real-valued. By a change of variable this integral can be written as

1

Fa(a,1,1;2,2; )»1,)»2)Z//f()»;?quL)»z}/)dXdy
14

FOuz) = }1(1 _ M)f .

with

2
Hence we can approximate

3
Fa(er, 1,152,211, 42) & G3 (. A2) i= D AP ) F(r: £ ()
i=1

with Al@) (1) and {l@ (1) taken from Section 2. This leads to the symbolic approximation formula

1
6(317 + 101222 +313)

+295(3% 423)° (2 A — xz——\/

G3(hy, Aa) = (2‘”3(2 — A1 = A2) (AT + 50943 4 13)

4 242 4\ —o
314 +1oxlxz+3x2>
A3 +23

+295(32 +x§)2<2 —h— A+ —\/

To illustrate the quality of this approximation we compute a few evaluations of G3(A1, A1) for « =log(2), log(3/2),1/8,1/16
and (A1, A2) =r(cos(jm /k), sin(jm /k)) with j, k € N. We compare these with the numerical results obtained using Radon’s
7-point degree 5 (m = 3) cubature formula on the square [—1, 1] x [—1, 1], computed for each individual combination of o
and (A1, A2), which we denote by R3 [10]. In Tables 1 and 2 one finds the exact value of Fy(«,1,1;2,2; A1, A2) together
with the errors F, — G3 and F, — R3. It is clear that both approximations have the same accuracy. But expression G3(A1, A2)
provides a continuous extension, in terms of the parameters, in addition to the numeric values.

Note that the symmetry

Fo(a,1,1;2,2; 01, 02) = Fa(a, 1,15 2,2; A2, A1)

is preserved by the symbolic integration rule, but not by Radon’s cubature formula. For A =0 the symbolic and Radon’s
cubature formula coincide.

324 100233 + 3A§>—“>
2 2 :
23+ 23
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Table 1
Fa(a,1,1;2,2;rcos jm /k, rsin jm /k) with o =log2 and o =log3/2.
o r j k Fy(a,1,1;2,2;rcos jm /k,rsin jm /k) Fy — G3 Fy —R3
log2 1/2 0 1 1.24878542341637 x 10° 2.0x 107 2.0x 107>
1/2 1 2 1.24878542341637 x 10° 2.0x107° —6.3x1076
1/2 1 1 8.63536332176800 x 10~ 5.8x10~7 5.8x10~7
1/2 3 4 1.01276420123863 x 10° 8.9x 1076 7.1x1076
1 0 1 3.25889070928323 x 10° 9.8x 107! 9.8x 107!
1 1 2 3.25889070928323 x 10° 9.8 x 107! 2.3x107!
1 1 1 7.72377702823892 x 10~ 1.2x107° 1.2x107°
1 2 3 1.26581509450621 x 10° 49x%x1073 48x1073
1 5 4 7.02555439039178 x 10~ 1.7%x107° 1.3x107°
1 7 4 1.05976599939755 x 10° 9.9x 1074 8.2x1074
5 5 4 3.77604178657645 x 10~ 7.6x107% 6.3x107*
10 5 4 2.60473326815451 x 10~ 1.5x1073 12x1073
log3/2 1/2 0 1 1.13615560548628 x 10° 6.4x10°° 6.4x10°°
1/2 1 2 1.13615560548628 x 10° 6.4x10°6 —2.0x107®
1/2 1 1 9.17024069560555 x 10~ 2.2x1077 2.2x1077
1/2 3 4 1.00615026516751 x 10° 3.1x10°® 2.5x1076
1 0 1 1.68198704527817 x 10° 1.3x107! 1.3x107!
1 1 2 1.68198704527817 x 10° 1.3x 107! —-1.8x1072
1 1 1 7.72377702823892 x 10~ 49x10°6 49x10°6
1 2 3 1.26581509450621 x 10° 1.5%x1073 1.4%x1073
1 5 4 8.11948001089517 x 10" 6.9x 1076 5.5x10°6
1 7 4 1.02793906532740 x 10° 3.3x107* 2.7x1074
5 5 4 5.60944616658580 x 10~ 3.9x107* 3.2x107%
10 5 4 4.49648935245511 x 10~} 8.4x107* 7.2x1074
Table 2
Fa(a,1,1;2,2;rcos jm /k, rsin jm /k) with o =1/8 and o = 1/16.
o r j k Fa(a,1,1;2,2;rcos jm /k, rsin jm /k) Fy —G3 Fy —R3
1/8 1/2 0 1 1.03941973413604 x 10° 1.0x10°6 1.0x10°6
1/2 1 2 1.03941973413604 x 10° 1.0x 1076 —3.3x1077
1/2 1 1 9.73416542767547 x 10~ 41x1078 41x10°8
1/2 3 4 1.00150741213994 x 10° 5.5%x1077 4.4x1077
1 0 1 1.14285714496901 x 10° 1.1x1072 1.1x1072
1 1 2 1.14285714496901 x 10° 1.1x1072 —3.9%1073
1 1 1 9.53152098789471 x 10~} 9.5%x 1077 9.5%x1077
1 2 3 1.03657602454864 x 10° 2.3x1074 2.2x107%
1 5 4 9.37292569668350 x 10~ 1.4%x10°6 1.1x10°6
1 7 4 1.00667220285694 x 10° 56x107° 4.6x107>
5 5 4 8.34745461087668 x 10~ 9.8x107° 8.1x107°
10 5 4 7.78937606474670 x 10~ 2.4x107% 2.1x107*
1/16 1/2 0 1 1.01944130080770 x 10° 4.5%x1077 45%x1077
1/2 1 2 1.01944130080770 x 10° 4.5x 1077 —1.4x1077
1/2 1 1 9.86592532406697 x 10~! 1.8x1078 1.8x1078
1/2 3 4 1.00071082742536 x 10° 2.4x1077 1.9%x 1077
1 0 1 1.06666666856784 x 10° 43%x1073 43x1073
1 1 2 1.06666666856784 x 10° 4.3 %1073 -1.6x 1073
1 1 1 9.76220334133076 x 10~! 43 %1077 43x1077
1 2 3 1.01778196026324 x 10° 9.7x 107> 9.4x 107>
1 5 4 9.68081140952200 x 10" 6.3x1077 5.1x1077
1 7 4 1.00312956738424 x 10° 2.4x107° 2.0x 107>
5 5 4 9.13408320640060 x 10~ 4.7x107° 3.8x107°
10 5 4 8.82255628091554 x 10~ 1.2x1074 1.0x1074

6. Exact integration of multivariate polynomials

Theorem 2 can also be used for the exact numerical integration of any multivariate polynomial

d
P(X) = Z ae X~.

xc|=0

It suffices to rewrite P(X) in the form

P(X)= ) be

|k

d

=0

o\
(o) wx=
el

n

ZK,’X,’.

i=1
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Take m such that 2m — 1 is the smallest odd integer larger than or equal to the degree of P(X) and integrate

X k
w(IXlp)P(X)dX = ZZbK f (I1x ||p)<<KK >> dx

el

IXlp<1 k=0lel=kxj,<1
d m ;
K
=Y b Y AWM W) a=k/lklp. (13)
k=0 |k|=k  i=1

Then Theorem 2 applies with A = k/|«|p. The coefficients b, of P(X) in the new basis (k, X)¥! can be found from the
linear system
l«|! . .
T > bjgdi iR =0k, lK]=0,....d. (14)
1:...Kn' . ~
it jn=lel

This linear system of equations has a particularly interesting structure which makes it extremely easy to obtain the coeffi-
cients bj, j, from the a,, . ,.In order to explore this structure we partition the index set K ={(0,...,0)}U{x: 1< k| <d}
into

K™ =i Ikl =k, 1 £0, i=1,...,n}, k=1,....d,

I .
K™ o =i Il =k, iy == ki, =0, G #0, i ke, £=1,....q},
k=1,...,d, 1<k <---<kg<n, 1<qg<n—1,
k,
KM ={,....0)}.
For each |[k|=k=0,...,d we group the equations in the linear system (14) in the same way as the indices in K: clearly

bo..o =ap..0, then ﬁrst the equations indexed by K(k "™ then those by the different K(k ™ and so on. The equations indexed
by K(()k " only involve unknown coefficients indexed by K(()k " The equations indexed by aset K ,ﬁ’:’") only involve unknowns
indexed by K,E':’") u K((]k’"). Since the unknowns indexed by K™ have already been computed, these can be substituted.
Moreover, all systems indexed by one of the sets Ké’f’") have the same coefficient matrix and hence it suffices to perform

only one LU decomposition for one set K,E’l""). Let us illustrate this by means of an example. Take n = 3 and k = 4. The linear
subsystem of equations determining the coefficients bj, j,j, with ji 4 j> + j3 =4 from the ai,,; With k1 + K2 + k3 =4,
when ordered as described above (to make the coefficient matrix fraction-free we have taken A =« in (13) instead of
A=«/llk|lp and have avoided redundancy in the A in another way), looks like:

24 24 48 b112 az11
(24 48 24) <b121> = ((1121) ,
48 24 24 ba11 aiz
64 108 b130 4 8 32 b112 asio
96 ) <b220> (5 24 24) <b121> = (azzo),
108 64 b310 4 32 8 b211 ai3o0

64 108 b1o3 4 32 bi12 aso1
]08 64 b30] 4 8 b21] aios
( 108)
108

64 bo13 32 4\ /b2 ag31
96 bo22 24 6 || bi21 ) =1{a02 |,
64 bo31 8 4/ \ban ao13
b13o
b
bzzo bi1s
256b400+(1 16 81 1 16 81) b31° +(1 1 16) | bi21 | = a0,
b103 b1
202
b3o1
b130
b
bzzo b1t
256boso+(81 16 1 1 16 81) b31° +(1 16 1){ bi21 | = aos0,
bo13 by
022

bos1



A. Cuyt et al. / Applied Numerical Mathematics 61 (2011) 929-945 943

b1o3

b

b202 b112
256bgos + (81 16 1 81 16 1) b3°1 +(16 1 1){ b121 | = aoa.

b013 b211

022

bo31

Let us analyze how many different A really appear in (13). In case of integration over the unit ball in one of the £, norms,
then ¢i(m)(k1, oA = ¢i(m)(v1, ..., Vp) where the v; are merely a permutation of the ;. Hence the number of different

nonzero X is given by the cardinality of the set
{,0,...,0}Ufk: 2< k| <d, k1 = Kk2 >+ 2 kn, 1<k <d/n, GCD(k1, ..., Kkn) =1}.

We illustrate the above procedure with the integration of the following fifth-degree (d =5, m = 3) bivariate polynomial
(n=2) over the unit hypercube (£,,-norm):

5
Px.y)= Y agx'yl
i+j=0
=14+x+y+2xy— 6x> + 18xy2 + 15y3 +3x2y2 +5x3y2 +4x4y+x5.
The integral is easy enough to obtain exactly,
11

//P(x, y)dxdy = 13—6

-1-1
but the example is given here to illustrate the principle of these new symbolic-numeric cubature rules. After rewriting

P(x,y) as

P, y)=T+x+y—x*+x+y)*—y*+2x+2y)° - 2x+y)°

13 , 1 4 5 s 1 4 13 4
—Xx'— =3 —(2x+2y)" — — 3 —
+ X 52 CX+Y) +64( X+2y)" - o (x+3y)" + 5V
353 ; 49 5 199 5
U 4 3x+2
*240% " 15000 ™ TV 150002 T2V
83 137 289
_ 22 ox+3v) 4v)° — 22705
7500 2% 37 55000 X A T 1507
we can distinguish 6 polynomials of degree 5 to which Theorem 2 applies:

15

22, AW =01,0), z=x"2D,
16

2, 13 4
Pi1(z2)=142z-2z +?z
5
Pz(z):z2+zz4, 2@ =1,1), z=xT2?,
P3(2) =823, 1 =(1,1/2), z=X"2®,

27
Pa(z) = ‘124’ AW =(1,1/3), z=X"A®,

3008
Ps(z) = ——2°, A =(1,1/4), z=X"2O,
5(2) 375 (1,1/4)
5913 5
= A® =(1,2/3), z=xT1©®,
Pe(2) 10002 (1,2/3), z
Here we have made use of the fact that
11 11
//P(A;A1x+kzy)dxdy://P(A; A2x + A1y)dxdy
-1-1 —1-1

or more generally

W(||X||p)f(/\:“x)dx=/--- / w(IXllp)F (% 1hX) dX

IXlp<1 1Xlp<1
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where the vector Ap is a permutation of the vector A. Hence the symbolic-numeric nodes and weights qﬁie‘)(k) and Al@ )
need to be evaluated in 6 specific A in order to obtain numeric nodes for the integration of P(x, y). In practice only

¢(3)(A) and AG)(A) need to be evaluated since ¢>(3) (A) = 0 independently of A, ¢(3)(A) ¢>(3) (A) and A§3) ) = A§3) A)
(see Section 2 for the nodes and weights):

1 11

//P(x y)dxdy = Z//Pg )L(Z)x—i-)»(e)y)dxdy

211 =195

6
= AP 00)P0.0-+ 3 AL () (Pugf” () + Pu(-45 ()
=1

7. Minimal numeric cubature rules

From the above it is clear that cubature rules for the exact symbolic-numeric integration of polynomials of the form
P(x; AT X) of degree 2m — 1 also form the basis of cubature rules for the exact numeric integration of multivariate polyno-
mials P(X) of degree 2m — 1. The relationship is even tighter. When we take a look at existing minimal numeric cubature
formulae, the distribution of the nodes is similar to that of the zero curves of the spherical orthogonal polynomials. The
nodes appear on semicircles and are mirrored with respect to the origin. To illustrate our believe that these spherical or-
thogonal polynomials are a good departure point for the construction of numeric Gaussian cubature formulae, we take a
closer look at the 7-point degree 5 Radon formula on the disk (£;-norm) [10]:

// Ps(x, y)dxdy—§<2P5(O 0)+P5<\/_ f)+P5<f 1\/_>+P5(%,—1«/E>

x2+y2<1
-1 2 2
Ps( —=,1v6) + P o,\/j P 0,—\ﬁ . 15
+5<«/5 >+ 5( 3>+ 5( 3 (15)
This Radon formula can be deduced from the exact symbolic-numeric integration rule for degree 5 polynomials (m = 3) of

the form Ps5(A; A1x + Ay) as follows. Take the bivariate polynomial Ps5(x, y) with constant coefficients a; defined by

5

Ps(x,y) =Y ai(x+A2y)’
i=0

and apply the 7-point numeric Radon formula (15) to

// Ps(x, y)dxdy.

x+y?<1

This numeric formula is exact for I which equals
4
I= §(8(10 + 2a; + aq).

It is easy to verify, by means of a computer algebra system, that with (A1, A2) = (cos#@, sin#) and

5
Ps(hi2) = aiz,

i=0

the application of Radon’s formula is equivalent to the 7-point evaluation

= %(27%()»; 0) + Ps <A; \/gcos(n/G - 6)) +Ps (A; —\/gcos(n/ﬁ - 9))
2 2
+Ps (A; \/;cos(—n/G — 0)) +Ps <k; —\/;cos(—n/G — 9))
2 2
+Ps (A; \/;cos(n/2 - «9)) +Ps (A; —\/;cos(n/z - 9))). (16)
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The latter expression is actually independent of 6. The choice & = 0 identifies the application of Radon’s formula with the
symbolic-numeric formula

T 1 -1
I==(4P5(x;0)+2 A — 2 A —
8( P00+ PS( ﬁ>+ PS( ﬁ))

which uses the zeroes of £3(z) listed in Section 3.3. In a future work we expect to prove that from a symbolic cubature
formula of the form

n(m)

// Pom—1 (s mx+ Agy)dxdy = A Po_1 (s Mxi + 22¥1)
2y2<1 i=0
a numeric cubature formula of the form
n(m)
// Pam-1(x, yydxdy =" A™ Pom_1(xi, yi)
i=0

x24+y2<1

can be deduced. Applying this principle, for instance, to the above expression brings us directly from (16) back to (15) since
with A1 =cos6 and A, =siné,

2 1 1 1 1
\/;cos(n/G—G) = EM + %)»2 = (%1, y1) = (ﬁ %>

\/5 20 —\/EA = 0\/5
5605(71/ —0)= 3 z—>(><5,ys)—<, §>.

The conjectured principle has also been verified for the 12-point degree 7 Radon rule on the disk.
8. Conclusion

The number of symbolic-numeric nodes in the Gaussian cubature rules from Theorem 2 is minimal, namely m for a
polynomial of degree 2m — 1. Furthermore we have conjectured in Section 7 how to construct purely numeric cubature
rules with a minimal (or small) number of nodes. The proof of this conjecture and the search for cubature rules for general
multidimensional integrands with a minimal number of discrete numeric nodes is the subject of further investigation.
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