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Abstract. Because of the importance of special functions, several books
and a large collection of papers have been devoted to the numerical com-
putation of these functions, the most well-known being the NBS hand-
book by Abramowitz and Stegun. But up to this date, symbolic and
numeric environments offer no routines for the validated evaluation of
special functions. We point out how a provable correct function evalua-
tion can be returned efficiently.

1 Introduction

Functions that are termed special have explicitly known and simple represen-
tations as infinite/asymptotic series and/or continued fractions. Together the
convergence domains of these representations often cover the full area of interest
for users of these functions. Hence they lend themselves easily for a variable
precision implementation. While the use of series to approximate a function in
numeric software is well established, that of continued fractions is far from tradi-
tional. In [1] we describe how a combination of both techniques leads to validated
software. The accumulation of round-off errors is tracked and bounded above
while the accumulation of truncation errors is subject to divide-and-conquer.

We assume to have at our disposal a scalable precision, IEEE 754-854 com-
pliant, floating-point implementation of the basic operations, square root and
remainder, comparisons, base and type conversions, at least in the rounding
mode round-to-nearest. Such an implementation is characterized by four param-
eters: the internal base β, the precision p and the exponent range [L,U ]. Here
we aim at least at implementations for β = 2 with precisions p ≥ 53, and at
implementations for use with β = 2i or β = 10i where i > 1. The IEEE 754-854
standard was revised in 2008. For our toolkit to be widely applicable, we do not
expect the available floating-point implementation to support more advanced
features such as exactly rounded mixed precision fused operations (including
the assignment operation). We do however assume that the base conversions
(between decimal and base β) are exactly rounded.

The goal is to compute a special mathematical quantity such as exp(−x2) or√
π or Γ (1/x). We refer to this quantity as Y = f(yx), where yx is the argument

built from an exact argument x (in base β and precision p) passed by a user,
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and f is the mathematical expression which is to be evaluated in yx to yield Y .
Of course yx and Y suffer several finite precision and truncation errors, which
we now analyze.

2 Round-off error accumulation and control

We denote by ~ the exactly rounded (to the nearest, with appropriate tiebreaker)
floating-point implementation of the basic operation ∗ in the chosen base β and
precision p. For floating-point numbers x and y, following the IEEE standards
and in the absence of overflow and underflow, the basic operations are carried
out with a relative error of at most u(p) := 1/2β−p+1 which is also called half a
unit-in-the-last-place in precision p:

x~ y = (x ∗ y)(1 + δ), |δ| ≤ u(p), ∗ ∈ {+,−,×,÷}.

The same holds for the square root, the remainder, the conversions between
internal formats and the base conversions.

In order to compute a relative error bound for a sequence of operations, it
is necessary to keep track of all these error terms. A basic result, given in [2,
p. 63], says that if all |δi| ≤ u(p), ρi = ±1 and nu(p) < 1, then

n∏
i=1

(1 + δi)ρi = 1 + θn, |θn| ≤ γn(p) =
nu(p)

1− nu(p)
. (1)

This result is very convenient, as it allows us to rewrite any number of products
and quotients of factors 1 + δi in an error analysis. Note that the reverse does
not hold, meaning that not any expression 1 + θn with θn bounded above in
absolute value by γn(p), can be rewritten as a product of n factors (1 + δi)ρi .

Perturbations as in (1) appear in the error analysis of all compound expres-
sions involving the basic operations, square root, remainder and conversions.
The values θn and bounds γn(p) keep track of the accumulation of the round-off
errors involved.

3 Truncation error accumulation and control

Let Ỹi be an approximation of the mathematical quantity Yi with a relative error
εi,

Ỹi = Yi(1 + εi), i = 1, . . . ,m.

Moreover, let the exact quantity Y be given in terms of the Yi and approximated
by the value Ỹ , such that with σi = ±1,

Ỹ = Y (1 + ηm), 1 + ηm =
m∏
i=1

(1 + εi)σi , |ηm| ≤ κm(p).
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In [1] we show how to distribute the threshold κm(p) over the individual trun-
cation errors εi to guarantee that |ηm| ≤ κm(p). Usually, the imposed threshold
κm(p) for |ηm| is a small multiple of the half unit-in-the-last-place u(p). If

|εi| ≤ µi
κm(p)

1 + κm(p)
, i = 1, . . . ,m,

m∑
i=1

µi = 1, (2)

then
m∏
i=1

|1 + εi|σi ≤ 1 + κm(p).

The weights µi, i = 1, . . . ,m are chosen depending on the difficulty with which
the operands Ỹi in the expression for Ỹ are obtained.

4 Putting it all together

Our aim eventually is to deal with the general situation where

Ỹ = Y (1 + ηm)(1 + θn), |(1 + ηm)(1 + θn)| ≤ 1 + 2u(p) = 1 + β−p+1. (3)

Here the floating-point round-off errors δi have accumulated in θn and all ap-
proximation errors of a different nature εi in ηm.

To achieve (3) all floating-point operations must be carried out in a (slightly
larger) working precision p̂ than the destination precision p for Ỹ . Then the error
θn is bounded above in absolute value by γn(p̂) which is a fraction of 2u(p). In
order to guarantee (3), the accumulated error ηm must be bounded above in
absolute value by (2u(p) − γn(p̂))/(1 + γn(p̂)). This in turn leads to individual
bounds

|εi| ≤ µi
2u(p)− γn(p̂)

1 + 2u(p)
, i = 1, . . . ,m.

In [1] this toolkit of ideas is illustrated for the computation of the error function
and the complementary error function on the real line.

The collection of special functions that can be implemented reliably using
this technique includes the incomplete gamma and Gamma functions, Dawson’s
integral, the error and complementary error function, the Fresnel integrals, the
exponential integrals, the hypergeometric and confluent hypergeometric family,
the Bessel functions and modified Bessel functions for integer and half integer
argument.
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