
11

Validated Computation of Certain Hypergeometric Functions

MICHEL COLMAN, ANNIE CUYT, and JORIS VAN DEUN, Universiteit Antwerpen

We present an efficient algorithm for the validated high-precision computation of real continued fractions,
accurate to the last digit. The algorithm proceeds in two stages. In the first stage, computations are done in
double precision. A forward error analysis and some heuristics are used to obtain an a priori error estimate.
This estimate is used in the second stage to compute the fraction to the requested accuracy in high precision
(adaptively incrementing the precision for reasons of efficiency). A running error analysis and techniques
from interval arithmetic are used to validate the result.

As an application, we use this algorithm to compute Gauss and confluent hypergeometric functions when
one of the numerator parameters is a positive integer.

Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: Approximation—Rational approximation;
G.4 [Mathematical Software]: Reliability and robustness

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Validated software, continued fractions, hypergeometric functions

ACM Reference Format:
Colman, M., Cuyt, A., and Van Deun, J. 2011. Validated computation of certain hypergeometric functions.
ACM Trans. Math. Softw. 38, 2, Article 11 (December 2011), 20 pages.
DOI = 10.1145/2049673.2049675 http://doi.acm.org/10.1145/2049673.2049675

1. INTRODUCTION

The hypergeometric function of Gauss [Abramowitz and Stegun 1964, Chap. 15] is the
analytic continuation of the series

2F1(a, b; c; z) = 1 + ab
c

z
1!

+ a(a + 1)b(b + 1)
c(c + 1)

z2

2!
+ · · · . (1)

The parameters can be arbitrary complex numbers, provided that c is not a negative
integer or zero. Defining

P2k = 2F1(a + k, b + k; c + 2k; z),
P2k+1 = 2F1(a + k, b + k + 1; c + 2k + 1; z),

for k = 0, 1, 2, . . ., it is shown in Jones and Thron [1980, p. 200] that

Pn = Pn+1 + cn+1zPn+2, n ≥ 0

Authors’ address: Middelheimlaan l, B-2020 Antwerpen, Belgium; email: annie.cuyt@ua.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0098-3500/2011/12-ART11 $10.00

DOI 10.1145/2049673.2049675 http://doi.acm.org/10.1145/2049673.2049675

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:2 M. Colman et al.

where

c2k+1 = − (a + k) (c − b + k)
(c + 2k) (c + 2k + 1)

, k ≥ 0, (2)

c2k = − (b + k) (c − a + k)
(c + 2k − 1) (c + 2k)

, k ≥ 1. (3)

From this recurrence relation, one obtains the following continued fraction for the ratio
of two hypergeometric functions [Jones and Thron 1980, p. 200],

2F1(a, b; c; z)

2F1(a, b + 1; c + 1; z)
= 1 + c1z

1 + c2z

1 + . . .

, (4)

where z /∈ [1,∞). According to Pincherle’s theorem [Pincherle 1894; Gautschi 1967],
this continued fraction converges to the ratio of two minimal solutions of the three-term
recurrence relation. Because 2F1(a, 0; c; z) = 1 it is clear that 2F1(a, n; c; z) for positive
integer n can be computed as a product of continued fractions [Lorentzen 1992]

2F1(a, n; c; z) =
[

n∏
k=1

2F1(a, k − 1; c − n + k − 1; z)

2F1(a, k; c − n + k; z)

]−1

or using the algorithm described in Section 3 of Gautschi [1967]. Both require the
computation of one or more continued fractions of the form (4).

The case of the confluent hypergeometric function is very similar. This function is
defined by the series

1F1(a; b; z) = 1 + a
b

z
1!

+ a(a + 1)
b(b + 1)

z2

2!
+ · · · , (5)

whenever b is not a negative integer or zero. Now we define

P2k = 1F1(a + k; b + 2k; z),
P2k+1 = 1F1(a + k + 1; b + 2k + 1; z),

for k = 0, 1, 2, . . . and we then have Jones and Thron [1980, p. 206]

Pn = Pn+1 + dn+1zPn+2, n ≥ 0

where

d2k+1 = − b − a + k
(b + 2k) (b + 2k + 1)

, k ≥ 0, (6)

d2k = a + k
(b + 2k − 1) (b + 2k)

, k ≥ 1. (7)

The corresponding continued fraction for the ratio of two confluent hypergeometric
functions is given by Jones and Thron [1980, Chap. 6]

1F1(a; b; z)

1F1(a + 1; b + 1; z)
= 1 + d1z

1 + d2z

1 + . . .

,

where z can be anywhere in the complex plane. Also in this case 1F1(0; b; z) = 1 so that
1F1(n; b; z) for positive integer n can be computed as described previously.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:3

In addition, several functions appear for a special choice of the parameters in either
(1) or (5) instead of as a (product of) quotient(s) of (confluent) hypergeometric funtions.
Many of these also enjoy continued fraction representations [Cuyt et al. 2008], such
as the incomplete gamma functions, the error and complimentary error function, the
Bessel and spherical Bessel functions of integer order, Dawson’s integral, the exponen-
tial integrals, to name just a few.

Details on the computation of the product (and how to distribute the error over the in-
dividual factors in the product) are given in Backeljauw et al. [2009]. Here we limit our
attention to the computation of the continued fractions. Of course, there already exists
a vast literature concerning the computation of hypergeometric functions, and several
software implementations are available. We refer to Section 5.5 in Lozier and Olver
[1994] for a survey of the literature and software up to 1994. An updated version from
March 2000 can be obtained online at http://math.nist.gov/mcsd/Reports/2001/nesf+. It
is far from our ambition to provide the ultimate algorithm to compute hypergeometric
functions, but the continued fractions given above nicely illustrate the more general
framework of this paper. Many special functions satisfy continued fraction expansions
that, in combination with Taylor series expansions, often cover a large part of the do-
main. This article is part of on ongoing project to provide a generic framework for the
validated multiprecision computation of special functions, as described in more detail
in Backeljauw et al. [2009]. At the moment, this generic technique is based on a combi-
nation of Taylor series and continued fractions, but it will be extended in the future to
incorporate other methods. The fact that we aim to provide validated software, sets this
project aside from the available software mentioned in Lozier and Olver [1994], which
for some functions (such as the hypergeometric) may be more efficient, but in general
does not provide guaranteed reliable error bounds. In fact, as far as we know, existing
validated software for mathematical functions (usually based on interval arithmetic)
is mostly limited to the elementary functions.

So we discuss an algorithm for the validated high-precision computation of continued
fractions of the form

∞

K
n=1

an

1
:= a1

1 + a2

1 + a3

1 + . . .

,

where the an are real. Validated in this context means that the returned result is guar-
anteed to have the requested accuracy. We limit our attention to fractions of this form
because almost any continued fraction with real coefficients can easily be transformed
into this form [Cuyt et al. 2008, Ch. 1].

The algorithm proceeds in two stages. First, a double precision computation uses
forward error analysis and some heuristics to obtain an index n and an error estimate
for the corresponding approximant. In the second stage, we compute this approximant
in high precision and use a running error analysis and some techniques from interval
arithmetic to validate the result. The working precision is dynamically adapted to at
least the actually achieved accuracy at any given point. This greatly increases speed,
as other algorithms use a large share of their time working with insignificant digits.
On the other hand, it also enables the use of more precision if necessary to overcome a
predicted loss of accuracy along the way.

The algorithm does not depend on any specific multiprecision library and can be
implemented using any of the freely (or commercially) available libraries. Ideally, this
library should support directional rounding, but workarounds can be made to simulate
rounding operations [Kearfott 1996].

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:4 M. Colman et al.

Sections 2 and 3 provide some necessary theoretical background. The error analysis
underlying our algorithm is done in Section 4, and the algorithm itself is discussed in
detail in Section 5. Some caveats and implementation issues are given in Section 6.
To end this article, we explain how this algorithm is used to compute the Gauss and
confluent hypergeometric functions, and some examples are given.

2. PRELIMINARIES

Two outstanding references for the theory of continued fractions are Jones and Thron
[1980] and Lorentzen and Waadeland [1992]. We only give a very short and intuitive
introduction to this subject and refer to these books for more information.

A continued fraction f is an infinite expression of the form

f =
∞

K
n=1

an

bn
:= a1

b1 + a2

b2 + a3

b3 + . . .

,

the value of which corresponds to the limit of the sequence of approximants

f1 = a1

b1
, f2 = a1

b1 + a2

b2

, f3 = a1

b1 + a2

b2 + a3

b3

, · · ·

if this limit exists. In that case, the continued fraction is said to converge. The an and
bn are called partial numerators and partial denominators, respectively.

We define the tail ti as

ti :=
∞

K
n=i+1

an

bn
= ai+1

bi+1 + ai+2

bi+2 + . . .

.

We also define the linear fractional transformation

sn : x → an

bn + x
.

Note that the continued fraction consists of a composition of such linear fractional
transformations. In fact, the nth approximant is given by

fn = s1 ◦ s2 ◦ · · · ◦ sn(0) (8)

and if we replace 0 by tn then we obtain the continued fraction f . It is well known
[Lorentzen 2003] that replacing 0 by a good tail estimate t̃n ≈ tn speeds up the conver-
gence of the sequence of approximants. These are now called modified approximants,
and we denote them by fn(t̃n). Note that fn(0) = fn and fn(tn) = f .

As discussed in the introduction, we assume that all bn are equal to 1, since this is
not an essential restriction (as long as all bn are different from zero, the fraction can
always be transformed to a fraction that has the same sequence of approximants, and
where all bn are equal to 1). A very simple example of such a continued fraction is the
1-periodic fraction where all an are equal to a. It is not difficult to prove that

∞

K
n=1

a
1

= −1 + √
1 + 4a

2
, (9)

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:5

if a ≥ −1/4. Otherwise, the fraction diverges. Similarly, the 2-periodic continued frac-
tion with a2k+1 = a and a2k = b equals (note the abuse of notation, which is used in the
sequel also)

∞

K
n=1

a, b
1

= a − b − 1 ±
√

4a + (1 − a + b)2

2
, (10)

where the plus sign should be taken if a + b > −1 and the minus sign otherwise. This
fraction also only converges when the number under the square root is positive.

3. TAIL ENCLOSURES

An essential part of the algorithm consists in finding an interval that is guaranteed
to contain the tail tn for a particular n (this interval need not be small, as long as it
does not contain the value −1). The formulas in this section are given for t0, but it is
clear that formulas for ti are obtained by simply replacing an with an+i. The formulas
are easily proved by induction, so we omit the proofs. As usual, fn refers to the nth
approximant.

3.1. Using Finite Approximants

We distinguish between the case where all an are positive (eventually from a certain
n on) and the case where all an are negative.

(1) If an > 0, then

0 < f2 < f4 < · · · <

∞

K
n=1

an

1
< · · · < f3 < f1.

(2) If − 1
4 < an < 0, then

−1
2

< 2a1 <
a1

1 + 2a2
< · · · <

∞

K
n=1

an

1
< · · · < f3 < f2 < f1.

These inequalities are special cases of the following more general formulas:

(1) If an > 0 and 0 ≤ w1,k ≤ tk ≤ w2,k, then

f2k(w1,2k) ≤
∞

K
n=1

an

1
≤ f2k+1(w1,2k+1),

f2k(w2,2k) ≥
∞

K
n=1

an

1
≥ f2k+1(w2,2k+1).

(2) If − 1
4 < an < 0 and − 1

2 ≤ w1,k ≤ tk ≤ w2,k, then

fk(w1,k) ≤
∞

K
n=1

an

1
≤ fk(w2,k).

3.2. Using Periodic Continued Fractions

The values of 1-periodic and 2-periodic continued fractions are given by (9) and (10).
These can be used to obtain tail estimates t̃n. We use the notation a∞ := limn→∞ an and
t∞ := limn→∞ tn = K a∞

1 , whenever these values exist.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:6 M. Colman et al.

(1) If − 1
4 ≤ L ≤ an ≤ R ≤ 0, then

−1
2

≤ K L
1

≤
∞

K
n=1

an

1
≤ K R

1
≤ 0.

(2) If − 1
4 ≤ L ≤ an ≤ R ≤ 0 and a2n ≥ a∞ and a2n+1 ≤ a∞, then

−1
2

≤ K L
1

≤ K L, a∞
1

≤
∞

K
n=1

an

1
≤ K a∞, R

1
≤ K R

1
≤ 0.

(3) If − 1
4 ≤ L ≤ an ≤ R ≤ 0 and a2n ≤ a∞ and a2n+1 ≥ a∞, then

−1
2

≤ K L
1

≤ K a∞, L
1

≤
∞

K
n=1

an

1
≤ K R, a∞

1
≤ K R

1
≤ 0.

(4) If 0 ≤ L ≤ an ≤ R, then

0 ≤ K L, R
1

≤
∞

K
n=1

an

1
≤ K R, L

1
.

(5) If 0 ≤ L ≤ an ≤ R and a2n ≥ a∞ and a2n+1 ≤ a∞, then

0 ≤ K L, R
1

≤
∞

K
n=1

an

1
≤ a1

1 + (a2/1 + t∞)

≤ a1

1 + t∞
≤ K a1

1
≤ K R, L

1
.

(6) If 0 ≤ L ≤ an ≤ R and a2n ≤ a∞ and a2n+1 ≥ a∞, then

0 ≤ K L, R
1

≤ K a1

1
≤ a1

1 + t∞
≤ a1

1 + (a2/1 + t∞)

≤
∞

K
n=1

an

1
≤ K R, L

1
.

(7) If 0 ≤ a∞ ≤ an+1 ≤ an, then

t∞ ≤ a1

1 + (a2/1 + t∞)

≤
∞

K
n=1

an

1
≤ a1

1 + t∞
.

(8) If 0 ≤ an ≤ an+1 ≤ a∞, then

a1

1 + t∞
≤

∞

K
n=1

an

1
≤ a1

1 + (a2/1 + t∞)
≤ t∞.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:7

(9) If −1 < L ≤ an ≤ R and a2na2n+1 ≤ 0 and a∞ = 0 and

− a1 > 0, then 0 < a1 ≤ f4 ≤
∞

K
n=1

an

1
≤ f3 ≤ f2,

− a1 < 0, then − 1 ≤ a1 ≤ f2 ≤
∞

K
n=1

an

1
≤ f4 ≤ f3 < 0.

Note that the bounds for positive partial numerators are much wider than the bounds
for negative partial numerators.

Concerning cases (2) and (3), when L ≤ an ≤ R ≤ 0 and a2n ≥ a2n+2 ≥ a∞ and
a2n+1 ≤ a2n+3 ≤ a∞ and L < − 1

4 and a∞ > − 1
4 , the value K L

1 does not exist and possibly
not even K L,a∞

1 . We refer to the description of the algorithm of the Gauss continued
fraction in Section 8.1.2 for an example of how to obtain a lower bound. The formulas
for the upper bound remain valid.

4. ERROR ANALYSIS

It is well known [Gautschi 1967; Jones and Thron 1974] that a continued fraction
approximant is best computed using the backward recurrence scheme

F (n)
n+1 = t̃n

F (n)
k = ak

1 + F (n)
k+1

, k = n, n − 1, . . . , 1

fn(t̃n) = F (n)
1

From this scheme and from Eq. (8), it follows that the error propagation in the compu-
tation of a continued fraction is best understood from a detailed error analysis of the
linear fractional transformation sn.

Let us assume that we have at our disposition a base β floating point environment of
variable (adjustable) precision. When the working precision is p, then one unit in the
last place (ULP) of a normalized floating point number corresponds to

ULP(p) = β1−p.

We often omit the explicit dependence on p (especially when it is clear what the current
working precision is).

Let x̃ denote an approximation to the unknown quantity x, then the relative error r
is defined by

r =
∣∣∣∣x − x̃

x

∣∣∣∣ .
In interval arithmetic, one bounds the numerator (absolute error) of this expression,
even though the quantity x remains unknown. In that case, it makes more sense to
define

r̃ =
∣∣∣∣x − x̃

x̃

∣∣∣∣ .
It is easily seen that r and r̃ are related by

r̃
1 + r̃

≤ r ≤ r̃
1 − r̃

and
r

1 + r
≤ r̃ ≤ r

1 − r
, (11)

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:8 M. Colman et al.

whenever they are both smaller than one. So if we want that r ≤ ε for a given ε, then
it is sufficient to make sure that r̃ ≤ ε/(1 + ε).

We define the accuracy q of x̃ with respect to x, and the approximate accuracy q̃, by

q := − logβ(r), q̃ := − logβ(r̃). (12)

These quantities correspond roughly to the number of significant β-digits of x̃.
Assume that we know an enclosing interval Tn for the tail tn, that is, tn ∈ Tn. Take as

an approximation t̃n for tn one of the endpoints of Tn, Then, we know that

r̃n =
∣∣∣∣ tn − t̃n

t̃n

∣∣∣∣ ≤
∣∣∣∣Tn

t̃n

∣∣∣∣ = R̃n,

(where |Tn| refers to the length of the interval), and because t̃n equals one of the
endpoints of Tn, we also know the direction of the error, that is,

tn = t̃n(1 + σnr̃n) (13)

where σn = ±1 is known. Here, σn = 1 indicates the direction of larger absolute value
(away from zero) and σn = −1 that of smaller absolute value (towards zero).

When computing t̃n−1 ≈ tn−1 from t̃n using the transformation sn, we assume that the
addition 1+ t̃n is performed exactly by adapting the working precision accordingly (this
can be done by looking at the mantissa and exponent of t̃n, but we omit the details). We
then have

t̃n−1 = an(1 + αn)
1 + t̃n

(1 + δn)

where αn is the relative error from computing an (which can, in general, not be repre-
sented exactly) and δn is the error from the division. Using Eq. (13), some computations
yield that

tn−1 − t̃n−1

t̃n−1
= −

t̃nσnr̃n

1 + t̃n
(1 + αn) (1 + δn) + αn + δn + αnδn(
1 + t̃nσnr̃n

1 + t̃n

)
(1 + αn) (1 + δn)

. (14)

This formula forms the basis of our entire algorithm. The sign of αn and δn can be
chosen in the case of directional rounding. We have to distinguish between two cases.

(1) If
t̃nσn

1 + t̃n
> 0,

then use rounding away from zero such that αn > 0 and δn > 0. It is clear that in
that case σn−1 = −1. Furthermore, it is easily proved that the upper-bound R̃n−1
for the relative error r̃n−1 is given by the absolute value of (14), with σnr̃n replaced
by R̃n (this follows essentially from the fact that the function (a + bx)/(1 + x) is
increasing with x whenever b > a > 0).

(2) If
t̃nσn

1 + t̃n
< 0,

then use rounding towards zero such that αn < 0 and δn < 0. In this case, σn−1 = 1
and R̃n−1 is given by the absolute value of (14) with σnr̃n replaced by −R̃n. However,
this only holds if R̃n|t̃n/(1 + t̃n)| < 1, of course. Otherwise, the error (14) can become
unbounded.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:9

Contrary to a fixed precision computation, where the values of αn and δn are given, we
choose those values by once more adjusting the working precision. Note that, in the
first case, we may rewrite the upper-bound R̃n−1 as

R̃n−1 = R̃′′
n−1

(
1 + αn + δn + αnδn

(1 + αn) (1 + δn)
· 1

R̃′
n−1

)
,

with

R̃′
n−1 = R̃n

∣∣∣∣ t̃n
1 + t̃n

∣∣∣∣ , R̃′′
n−1 = R̃′

n−1

1 + R̃′
n−1

.

The value R̃′′
n−1 is an upper bound for the relative error in the absence of rounding errors

(this can also be obtained from formula (14) by putting αn and δn to zero, replacing σnr̃n
by R̃n and taking the absolute value). So if we want to limit the loss of accuracy due to
rounding errors to no more than λ digits, we should have that

1 ≤ 1 + αn + δn + αnδn

(1 + αn) (1 + δn)
· 1

R̃′
n−1

≤ βλ. (15)

If the precision to realize this is pn, then we know that |δn| ≤ ULP(pn) because we
use directional rounding. Furthermore, we demand that pn is such that the partial
numerators an are delivered with an error of at most |αn| ≤ 2ULP(pn). Substituting
these values into (15) gives a quadratic equation in ULP(pn), from which we obtain the
required precision pn:

pn ≥ 1 − logβ

(
1
4

√
1 + 8

1 − R̃′
n−1(βλ − 1)

− 3
4

)
.

This analysis can be repeated for the second case with only minor changes to the
formulas. We find that in this case

pn ≥ 1 − logβ

(
−1

4

√
1 + 8

1 + R̃′
n−1(βλ − 1)

+ 3
4

)
.

If the errors are small, then R̃′′
n−1 ≈ R̃′

n−1 and we thus have

R̃0 ≈ R̃n

n∏
i=1

∣∣∣∣ t̃i
1 + t̃i

∣∣∣∣ · βnλ. (16)

Note that this formula is obtained by ignoring second order error terms in the division.
In this error estimate the factor R̃n is an upper bound of the error made by approximat-
ing the nth tail tn by t̃n. From the interval sequence theorem given in Cuyt et al. [2006]
we learn that the factor

∏n
i=1 |t̃i/(1 + t̃i)| estimates by how much the initial error R̃n

shrinks while you execute the backward recurrence to compute f = t0. So the product
R̃n

∏n
i=1 |t̃i/(1 + t̃i)| is an estimate of the truncation error upperbound R̃0. The factor βnλ

bounds the roundoff error, which starts with βλ and is magnified by the same factor in
every step of the backward algorithm, hence the nth power. So if we want the total loss
of accuracy due to roundoff errors to be limited to approximately m digits (m need not
be integer, and in a large base β it better not), we simply choose λ = m/n.

5. ALGORITHM

We are now in a position to explain the algorithm. An important feature is that the
error formulas derived in the previous section are used twice.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:10 M. Colman et al.

First, the computations are done in double precision under the assumption that
we can separate roundoff error and truncation error as in formula (16). These double
precision error computations are very accurate, although not guaranteed to be correct.

Next we compute the continued fraction in high precision (adapting the working
precision as explained). Now every error is accounted for and the end result is validated.

The algorithm proceeds along the following steps, each of which is discussed in more
detail as follows.

(1) Estimate the index n for which the modified approximant fn(t̃n) has a relative error
r0 = |t0 − fn(t̃n)|/|t0| not exceeding a given tolerance ε.

(2) Obtain a guaranteed enclosure for the corresponding tail tn.
(3) Compute the expected accuracy of the approximant fn in double precision.
(4) If the expected accuracy is too low, increase the index n and repeat the previous

steps until a suitable n is found.
(5) Start computing fn in double precision, using interval arithmetic to maintain a

guaranteed enclosure.
(6) When the limits of machine precision are reached, continue the computations in

high precision and start a running error analysis to obtain a guaranteed a posteriori
error bound.

(7) Compare the a posteriori accuracy to the requested accuracy, restart if necessary.

The iterations (2)–(4) can be optimized to avoid duplicate calculations as much as
possible. A restart in step (7) is only necessary in very difficult cases where the initial
a priori estimate is inaccurate due to the restrictions of double precision. In the case
of the continued fraction for the ratio of two Gauss hypergeometric functions, this only
happens for z extremely close to 1 (see the example in Section 9).

5.1. A First Rough Guess for n

This rough estimate is not very critical, but a better estimate saves work in the rest of
the computations.

For a requested relative error bound R0 ≤ ε, in other words R̃0 ≤ ε/(1 + ε), compute
the accuracy q̃0 by (12). Then, add the number of digits m that are allowed to be lost to
roundoff to obtain

q̂0 = q̃0 + m.

For a limit 1-periodic fraction, that is, a continued fraction for which limn→∞ an = a∞ >
−1/4, we assume whenever a∞ �= 0 that for large n the tail tn is approximately equal
to t∞ = K a∞

1 , given by (9). For a requested accuracy q̂0, we then get from formula (16)
(assuming that the tail estimate t̃n has no correct digits and thus R̃n ≈ 1) that

n ≈ q̂0

logβ |1 + 1/t∞| .

If a∞ = 0, then 1 + tn ≈ 1 and tn−1 = an/(1 + tn) ≈ an so that the accuracy after n steps
is approximately equal to

q̂0 ≈
n∑

i=1

logβ

∣∣∣∣1 + ai+1

ai+1

∣∣∣∣ .
Adding terms until the sum exceeds q̂0 gives the required value for n.

These two cases cover the continued fractions for the Gauss and confluent hyper-
geometric functions discussed in Section 8. For more complicated continued fractions,
a different method for estimating n is needed. For limit 2-period fractions, formula (10)
can be of use.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:11

5.2. Tail Estimate and Enclosure

For the value of n just obtained, we need an interval that is guaranteed to contain the
tail tn. Several formulas are given in Section 3. These formulas cover most cases that
occur in practice. However, it may be that a guaranteed enclosing interval cannot be
found because n is not large enough (in many cases, the partial numerators an are only
smooth functions of n when n is larger than some treshold, see Section 8 for examples).
If this is the case, n is increased (which also increases the accuracy, so this is not a
problem).

5.3. Expected Accuracy of f n(t̃n)

Taking one of the endpoints of the enclosing interval as an estimate t̃n for tn and taking
the width of the interval as an upper bound for the absolute error |Tn| = R̃n|t̃n|, we can
apply formula (14) repeatedly to get an upper bound R̃0 for the relative error. However,
since the roundoff errors in t̃n have been accounted for, we put both αn and δn equal to
0 (so, in fact, we compute R̃′′

0). The expected accuracy is then

q̃′′
0 = − logβ R̃′′

0.

If, in the course of these computations, it happens that R̃n|t̃n/(1+ t̃n)| ≥ 1 while t̃nσn/(1+
t̃n) < 0, we cannot continue (see the error analysis in the previous section). In this case,
we simply put q̃′′

0 equal to the accuracy at this index and proceed to Step 5.4 in the
algorithm.

5.4. Increasing n

If the expected accuracy q̃′′
0 of fn(t̃n) is less than q̂0, we have to increase n. Since we have

gained on average κ = q̃′′
0/n digits per linear fractional transformation, we increase n

by (q̂0 − q̃′′
0)/κ. There are two tacit assumptions here, which we should discuss.

First, there is the assumption that each linear fractional transformation increases
the accuracy by the same amount (or that the final accuracy is a linear function of n).
This is only the case when all t̃i are equal and the errors are small, as can be seen from
formula (16).

The other assumption is that the values t̃i for i ≤ n are independent of the starting
value t̃n (or that the same values are obtained when starting from a different n). This
is obviously not true. However, when starting the recurrence from a certain n and
corresponding t̃n, and going back to t̃0, the values t̃i more and more approach the actual
tails ti and the errors become smaller (i.e., accuracy increases).

Therefore, in practice it is better to disregard the fractional transforms with i close
to n in the definition of κ, because in these transforms not enough accuracy has been
built up yet. Instead, one should define κ as

κ = q̃′′
0 − q̃′′

n,n′

n′ ,

where q̃′′
n,n′ is some heuristically predetermined value and n′ < n is the index such that

the accuracy gain between n and n′ is at least q̃′′
n,n′ . The computations from n′ to 0 do

not have to be redone, because it is assumed that the tails in this part have converged
sufficiently to their exact values.

Even if either of these assumptions is not satisfied, we are not facing a real problem,
because we keep repeating 5.3 and 5.4 until a suitable value of n is found.

5.5. Double Precision Interval Computation

Since we want to limit the amount of work that needs to be done in multiprecision
as much as possible, we start computing the modified approximant fn(t̃n) in double

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:12 M. Colman et al.

precision. The computation of the tail estimates t̃i is carried out in some implementation
of double precision interval arithmetic, so that we have guaranteed enclosures. When
the guaranteed accuracy of t̃i does not improve anymore from a certain index k on, then
we have reached the limits of double precision interval arithmetic. The value of k and
the corresponding accuracy q̃k of the tail estimate t̃k are stored for (possible) future use
in Section 5.7.

5.6. Multiprecision Computation

We now start the computations in high precision, using the tail estimate t̃k at the index
k just obtained. The working precision is adapted twice during the computation of each
linear fractional transform. First, to incorporate exact addition and then to account for
rounding errors, as explained in Section 4. It is clear that we take λ = m/k here. We
use formula (14) to compute the error estimate along with the continued fraction itself,
using rounding away from zero or towards zero as explained.

5.7. Accuracy Check

In most cases, the accuracy is exactly what was requested and the algorithm ends here.
However, in some exceptionally difficult cases (when some of the tails are very close to
−1), a restart is needed. If the final accuracy q̃ f < q̃0, we redo all the computations,
but now requesting an accuracy of q̃k + (q̃0 − q̃ f) at the index k.

In even more exceptional cases, the error has become so huge that the algorithm
had to abort before reaching the top of the continued fraction. Since we have no idea
what happens to the accuracy in the remaining iterations, we assume that it remains
more or less constant. This means that we consider the missing accuracy to be equal
to the requested final accuracy minus the achieved (possibly negative) accuracy at the
aborting index. We then proceed as before. Examples to illustrate this are given in
Section 9.

6. IMPLEMENTATION ISSUES

The previous section contains the core of our algorithm, but to turn this into a working
program requires the discussion of several additional issues.

A working implementation of our algorithm that also incorporates the computations
needed to evaluate (confluent) hypergeometric functions (see the next section), can be
found at http://www.cfhblive.ua.ac.be/evaluate+. This is a C++ program that uses the
MpIeee multiprecision floating point library [Verdonk et al. 2001a; 2001b; Backeljauw
2009]. this library supports computations in basis β = 2 j or β = 10k for j = 1, . . . , 24
and k = 1, . . . , 7.

We list some of the implementation issues that are dealt with in this software.

(1) If the working precision needed for exact addition is too high (and thus too slow),
we take a lower precision instead and include an additional error term.

(2) Error bound (14) is exact, that is, every error is accounted for. In practice, to speed
up computations we overestimate second order error terms in the division by a
constant amount as soon as the accuracy is high enough, instead of computing
them exactly.

(3) The value of m (number of digits lost to roundoff) is chosen heuristically. When used
to determine the working precision, as explained in Section 4, it is set to 1/128.
When used to increase the requested accuracy, as explained in Section 5.1, it is set
to an even safer 1/8. The latter is because q̃′′

0 is merely an expected accuracy that
satisfies q̃′′

0 ≥ q̂0. The correct q̃0 is validated in Section 5.7.
(4) As an extra safety margin, the index n estimated as in Section 5.1 is increased

by 10.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:13

(5) The value of q̃′′
n,n′ is set to 30 bits (approximately nine decimal digits). Again this is

a heuristic value that works well in practice.
(6) It may happen that a partial numerator is zero (either because an is exactly zero, or

because of underflow in double precision). It may also happen that t̃n = 0 or t̃n = −1
(because of roundoff). These cases are dealt with appropiately.

(7) The error computations that are done in double precision also suffer from roundoff
errors themselves. If these accumulate too much, the double precision accuracy
estimate becomes unreliable. We monitor these roundoff errors assuming worst-
case behavior, and when, at a certain index n, they have become too large, the
double precision computation must be aborted. We then assume that the accuracy
remains more or less constant in the lower indices, and proceed immediately to the
validated computation. The examples in Section 9 illustrate this case. Note that
this is not the same as the case mentioned at the end of Section 5.3.

(8) When the algorithm succeeds, it returns an endpoint of the enclosing interval, and
a relative error. Depending on the rounding mode requested by the user, we return
this endpoint, the other endpoint or the midpoint of the corresponding interval.
This requires some additional computations.

7. COMPUTING THE PARTIAL NUMERATORS

The implementation of the partial numerators an is of course different for each con-
tinued fraction and should be provided by the user. In this section, we explain the
necessary steps in more detail.

The most important point is that two implementations are necessary: a double-
precision implementation with guaranteed error bounds, and a high-precision imple-
mentation that delivers an for any n and any requested error and rounding direction.

The double-precision implementation is necessary in step (5) of the algorithm, when
we start computing the continued fraction in double precision using some implemen-
tation of interval arithmetic, as explained in Section 5.5. It suffices that for any n
the implementation returns an enclosing interval for an, or equivalently a value for an
and a guaranteed error bound. This can be done using interval arithmetic, or using a
classical error analysis as described below.

The high-precision implementation should return the value of an within the relative
error αn, which can be positive or negative (indicating the rounding mode), as explained
in the error analysis in Section 4. These αn are not known in advance, but determined
at runtime. Obviously, variable precision arithmetic is required to achieve such imple-
mentation of an. A detailed error analysis (such as the one in Section 4) provides the
precision required for the computation of an to yield a certain error αn. We illustrate
this for the case of the coefficient a2k+1 = c2k+1z in the continued fraction (4) for the ratio
of two Gauss hypergeometric functions, when the parameter b is a positive integer n.

In the following error analysis, we assume that the simple integers n, k, n−k, 2k and
2k + 1 can be represented exactly. Of course, in the actual code it should be checked
whether this is true and no overflow occurs. We also assume that the parameters a and
c are both positive numbers. The analysis for the case where one or both is negative, is
analogous. If we denote the computed coefficient by ã2k+1, it follows that

ã2k+1 = (a(1 + δa) + k) (1 + δ+)(c(1 + δc) − (n − k)) (1 + δ−) (1 + δ∗)
(c(1 + δc) + 2k)(1 + δ+) (c(1 + δc) + 2k + 1) (1 + δ+) (1 + δ∗)

× z(1 + δz) (1 + δ∗) (1 + δ/)
= a2k+1(1 + α2k+1)

where each subscripted δ is bounded above by ULP(p2k+1,α)/2 and p2k+1,α denotes the
precision in which we compute a2k+1.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:14 M. Colman et al.

From Chapter 3 of Higham [2004] and from Backeljauw et al. [2009], it follows that

|α2k+1| ≤ (ν(k) + 12)ULP(p2k+1,α)
2 − (ν(k) + 12)ULP(p2k+1,α)

(17)

where

ν(k) =
⌈ |c| + |n − k|

|c − (n − k)|
⌉

and ·� denotes upward rounding to integer. From (17), we can compute the precision
p2k+1,α that is needed to guarantee a relative error α2k+1 for a2k+1. As explained in
the paragraph following (15), the high precision implementation of a2k+1 is assumed to
guarantee an upper bound for |α2k+1| of at most 2ULP(p2k+1) where p2k+1 is the precision
in which the linear fractional transformation s2k+1 is computed. An implementation
need not use directional rounding in the computation of a2k+1 but instead return one
end of the enclosing interval ã2k+1/(1 ± |α2k+1|).
8. HYPERGEOMETRIC FUNCTIONS

In the introduction, we explained how the Gauss and the confluent hypergeometric
function can be computed as a product of continued fractions whenever one of the
numerator parameters is an integer. This is a nice application of the algorithm that we
presented in the previous section. Of course, in order to deliver a validated result for the
hypergeometric functions, the rounding errors in the product of the continued fractions
also have to be taken into account. This can be done in a rather straightforward manner.
A full analysis of this problem can be found in Backeljauw et al. [2009]. The only
particularity that remains to be discussed here is how to obtain guaranteed enclosures
for the tails.

8.1. Gauss Hypergeometric Function

From formulas (2)–(3) in the introduction, we see that the an are given by

an = −
(
a + n−1

2

) (
c − b + n−1

2

)
(c + n − 1) (c + n)

z, n odd,

an = −
(
b + n

2

) (
c − a + n

2

)
(c + n − 1) (c + n)

z, n even.

A first thing to note is that a∞ = limn→∞ an = −z/4. How the an approach this limit
depends on the values of the parameters. For both even and odd n, one finds that

d
dn

an = (−1)n(1 − 2a + 2b)n2 + O(n)
4(c + n − 1)2(c + n)2 z.

The coefficient of n2 in this expression is zero if a − b = 1
2 . This obviously has a major

impact on the behavior of the partial numerators, so we look at both possibilities
separately.

8.1.1. First Case: a − b = 1
2 . Replacing b by a − 1

2 in the definition of the partial numer-
ators shows that, in this case, the formulas for odd and even indices are the same,

an = −
(
a + n−1

2

) (
c − a + n

2

)
(c + n − 1) (c + n)

z,

while the derivative is given by

d
dn

an = (c − 2a + 1) (2a − c) (2n + 2c − 1)
4(c + n − 1)2(c + n)2 z.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:15

The sign of the derivative is constant for n > 1/2 − c, so for these n the partial numer-
ators increase or decrease monotonically to the limit. This is not enough yet: we also
need to make sure that the sign of the partial numerators themselves does not change.
This is the case when n is greater than (1 − 2a), 2(a − c) and (1 − c).

There is one more thing that needs to be checked. If a∞ < 0, we also need to find out
from which n on the partial numerators are greater than − 1

4 . This is the case for

n >
1
2

⎛
⎝1 − 2c +

√
(1 − 4a + 2c)2z − 1

z − 1

⎞
⎠ .

Using all this knowledge we can now simply apply the appropriate formulas from
Section 3. For negative a∞ use case (2) from Section 3.1 or case (1) from Section 3.2.
For positive a∞ use cases (7) and (8) from Section 3.2.

8.1.2. Second Case: a − b �= 1
2 . From the different signs of the coefficients of n2 in the

derivatives, we can immediately see that the limit is approached from both sides. Either
the odd partial numerators increase and the even ones decrease, or vice-versa.

We now look at the sign of both the partial numerators and their derivatives. We
omit the computations, which are tedious but straightforward, and simply state the
result. The index has to be greater than the maximum of the numbers

(1 − c), (1 − 2a), (1 − 2c + 2b), (−2b), 2(a − c),

c + c2 + 4ab − 4ac ± √
(2a − c − 1) (2a − c) (c − 2b − 1) (c − 2b)

2a − 2b − 1
+ 1,

c − c2 + 4bc − 4ab ± √
(2a − c − 1) (2a − c) (c − 2b − 1) (c − 2b)

2a − 2b − 1
,

(the last two formulas correspond to the zeros of the derivatives), in order to guarantee
no sign changes in an or its derivative.

If the partial numerators are positive, we can simply use cases 5 and 6 from
Section 3.2.

For a∞ < 0 we need to determine the index from which the partial numerators are
greater than − 1

4 . These indices can be determined exactly, but the formulas look very
complicated. Suffice it to say that, if z is very close to 1, and the values of a, b and c are
rather large, the partial numerators only rise above − 1

4 for an enormous index n. Since
we do not want to calculate millions or even billions of iterations, a special algorithm
is necessary for this case. As mentioned at the end of Section 3, the formulas for the
upper bound are still valid, but to obtain the lower bound, we proceed as follows. This
algorithm is based on the same kind of reasoning that lead to the different cases in
Section 3.

(1) Let k be the index from which the partial numerators are greater than −1/4. Let d
be equal to (k − n)/10, rounded down to the next even number.

(2) Calculate K ak,a∞
1 , conservatively rounded down to underestimate the tail tk.

(3) Let k0 = k, and k = k − d.
(4) Calculate K

ak,ak0−1

1 , conservatively rounded down.
(5) If this value does not exist (divergent 2-periodic continued fraction), reduce d but

keep it even. Then go back to step (3).
(6) Otherwise, the new lower bound is the minimum of the old bound and the value

from step (4).

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:16 M. Colman et al.

(7) Go back to step (3) if k > n, except if d ≤ 2 and k is within integer range (since it
will be quicker to just start with this tail rather than extending the algorithm here
at such a slow rate d).

For other cases, a collection of formulas from Section 3 for different scenarios can be
used.

8.2. Confluent Hypergeometric Function

In this case, it follows from (6)–(7) that

an = − b − a + (n − 1)/2
(b + n − 1) (b + n)

z, n odd,

an = a + n/2
(b + n − 1) (b + n)

z, n even,

and thus a∞ = 0. For large enough n, the odd and even partial numerators alternate
in sign. Monotic convergence starts when n is larger than both

1 + 2a − 2b +
√

(2a − b) (1 + 2a − b)

and

−2a +
√

(2a − b) (1 + 2a − b),

obtained from the zeros of the derivative of an. Since a is assumed to be integer, the
expression under the square root can never be negative. Furthermore, it can be checked
that both odd and even partial numerators do not change sign if n is larger than both
expressions above. In order to use case 9 from Section 3.2, we need to know the index
n for which the partial numerators are certainly greater than −1. Some computations
yield that this occurs (for both odd and even numerators) when

n >
1
4

(2 − 4b + |z| +
√

4 − 4z − 16az + 8bz + z2).

If the expression under the square root is negative, then the partial numerators are
greater than −1 for all n.

9. EXAMPLES

We conclude this article with some examples to illustrate the algorithm. Without loss
of generality, all examples are done in base β = 10.

Note that the last two examples in this section do not illustrate the computation
of the Gauss hypergeometric function itself, but only the Gauss continued fraction
(4). The computation of the function as a product of continued fractions (as explained
in the introduction) is detailed in Sections 2 and 8 of Backeljauw et al. [2009]. The only
additional difficulty is distributing the requested accuracy over the individual factors
in the product.

Although the examples in this section only illustrate the continued fraction for the
Gauss hypergeometric function, it is clear that the case of the confluent hypergeometric
function is similar.

9.1. An Easy Example

As a first example, we compute 2F1(1
2 , 1; 3

2 ; −1), which equals arctan 1 = π
4 . We do this

by calculating the Gauss fraction for a = c = 1
2 , b = 0 and z = −1, with an extra

inversion afterwards. We take ε = 10−10000, which corresponds to approximately 10000
decimal digits.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:17

The rough guess for n from Section 5.1 yields (with an extra safety margin of 10)
an index n = 13072. The double precision runtime error analysis in Section 5.3 (de-
tailed in Section 4) predicts that we can reach an accuracy of 33274.88 bits by starting
with the tail 0.2071067814 . . . , which is an underestimate (σn = 1) of tn with an ac-
curacy of 31.89147 bits (obtained from |Tn|). Since 10000 decimal digits correspond to
33219.28 bits, we have almost 56 bits of safety margin.

We then start computing the fraction in double precision interval arithmetic until we
reach n = 13044, with an overestimating tail of 0.20710678144629 In the process,
we have improved the tail estimate accuracy to at least 48 bits.

Continuing the computations in high precision yields the result

f0(t̃n) = 0.7853981633974483(...)381409391990740773 . . .

which we know to be an overestimate because σ0 = −1. The corresponding error is
bounded by 0.54717 ULP on the 10000th digit. We return the middle of the interval,
so we make a correction of half this error, which yields:

0.7853981633974483(...)38140939196338206 . . .

Now let’s compare with the actual value of π
4 :

0.7853981633974483(...)3814093919641680699 . . .

The only thing left to check is whether or not our algorithm has been efficient. Was
this number of iterations really necessary, and haven’t we lost too much accuracy
because of rounding errors? Well, here is the accurate result of doing 13044 iterations
with the same starting tail in Mathematica:

f0(t̃n) = 0.7853981633974483(...)381409391990723990 . . .

9.2. Example with One Restart

We now look at a calculation that is considerably more difficult. With all the extra
precautions listed in Section 6, a restart occurs only in a very limited number of
situations. We calculate the Gauss continued fraction with

a = −
√

640003

b =
√

40002

c =
√

10001

z =
√

99
10

The square roots are only introduced to avoid having round numbers. We only request
1000 digits this time (3322 bits), or ε = 10−1000.

The educated guess for the number of iterations is n = 16244. Getting a tail estimate
as explained in Section 5.2 is proving to be more difficult than last time. We obtain
the interval [−0.5173271 . . . ,−0.4891708 . . .], which guarantees only about 4 bits of
accuracy.

The estimated accuracy increases steadily, up to about 7526 bits around n = 600, but
then stagnates and starts decreasing. At around n = 500, the estimated accuracy has
decreased to 7510 bits and continues to go down. At n = 427, we have an estimated
accuracy of 7484 bits, but the algorithm has detected that by now the error estimates
in double precision have lost too much accuracy to be of any further use. As explained
in Section 6, item (7), we assume that the accuracy remains constant from now on and
proceed immediately to the validated computation.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:18 M. Colman et al.

We therefore compute the fraction in double precision interval arithmetic, as ex-
plained in Section 5.5. At n = 3488, we reach the limits of double precision with a new
tail of

−0.535727099 . . . ,

accurate up to at least 45 bits.
From here on, we switch to high precision. As before, the accuracy increases up to

around n = 600, where it reaches 3363 bits. Then it starts decreasing. Contrary to what
we hoped, this loss does not stop and we end up with only q̃ f = 2792.10 bits. A restart
is needed.

The target is now to get at least 575 bits at n = 3488, which is 530 bits more than
with the tail estimate at the last attempt (the difference between 3322 and 2792, as
explained in Sections 5.5 and 5.7). Using again the rough guess from Section 5.1 gives
a new starting index n = 3488 + 2827. The double precision error analysis shows that
we get an accuracy of 1384 bits at n = 3488, which is certainly more than the 575 bits
that we needed.

We start the double precision interval computations at n = 3488 + 2827 and this
time we reach the limits of double precision at n = 4399, the new starting index for the
high-precision computation. We obtain the following result:

8.947978583453710(...)659278566391688349088

The maximum error is estimated to be 0.4145328 ULP on the 1000th digit, so the
midpoint value is

8.947978583453710(...)65927856639189561553

The correct value is

8.947978583453710(...)659278566391757938216

9.3. Diabolical

Now let us take z really close to one:

a =
√

100003

b =
√

100001

c = −
√

8000002

z = 1 − 2−40.

We request the same accuracy as in the previous example. This turns out to be quite
a stress test. First of all, due to the proximity of the partial numerators to −1/4, a
theoretical tail estimate as in Section 5.2 can only be made for n = 24110809.

According to 5.3, this is expected to yield a final accuracy of q̃′′
0 = 98307 bits, of

course without certainty. The double precision estimates seem to degrade too much at
n = 2522. Again, we refer to the explanation in Section 6, step (7).

We compute about 24 million iterations in double precision interval arithmetic up
to n = 5479, when the limits of machine precision are reached and we switch to high
precision computation.

The accuracy increases to 3362 bits around n = 2800, but then starts going down
faster and faster. Around n = 1000, the tails are close to −1.5 so the relative error
triples at every iteration, or a loss of about 1.6 bits. At lower n, the tails get even closer
to −1 and we lose 3 bits per iteration or more. Finally, the accuracy goes below 0 at
n = 162.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

Validated Computation of Certain Hypergeometric Functions 11:19

A restart is needed to get 3322 bits (1000 decimal digits) of extra accuracy at n = 5479.
The new index for the high precision computation becomes n = 6260. Now the accuracy
increases to 6694 bits. Just like the first time, we start losing accuracy from here. At
n = 162, the accuracy has dropped to 3329 bits. This is still more than the requested
final accuracy but the losses continue. We reach the top of the fraction f0(t̃n) with only
q̃ f = 2822.73 bits left.

At least on this second attempt we managed to do the entire continued fraction,
so now we know exactly how much accuracy is missing. After another restart, a new
starting point for the high precision computation is n = 6314. The calculation is started
again, the accuracy climbs, then goes down again, and finally reaches about 3330 bits.
The final result (interval midpoint) is:

−0.11180394391500178784(...)81551034637840259044053

The error bound is 0.000247 ULP on the 1000th digit. The actual correct value is:

−0.11180394391500178784(...)81551034637840259044052349

9.4. Comparison with Other Software

In order to convince the reader that these examples are really hard and that a lot of
existing software is not capable to deal with them, we have carried out the same numer-
ical examples in the software packages listed for hypergeometric function evaluation
in the software index of Olver et al. [2010]:

—the Gnu Scientific Library version 1.13,
—Thompson’s Atlas for computing mathematical functions [Thompson 1997],
—the multiprecision Cephes library (see Netlib),
—Maple 14.

The first two libraries only provide double precision implementations, so we only
expect double precision evaluations in return. The Cephes library provides implemen-
tations at several (higher than double) precisions to verify a double precision special
function evaluation. We measure the duration of all computations using the C-function
time. In Maple, we ask for the same high number of digits as in the examples using its
decimal multiprecision capabilities. We also measure the elapsed time in the successful
cases and bound it to 24 hours in the unsuccessful cases. All runs were performed on a
machine equipped with an Intel T9300 CPU (2.5GHz) with 4GB of memory, using only
one single core. Only the operating system was running in the background.

GSL returns the first example in less than a second but fails in the second and third
example where it returns an error.

The Thompson library returns completely erroneous results in the second and third
case and is unable to produce double precision output for the first example within
12 hours of runtime.

The multiprecision Cephes library gets the first example wrong, returns 28 reliable
decimal digits for the second example and an error for the third example.

Maple returns the first function evaluation within 48 seconds, is unable to produce an
answer for the second case within 24 hours and returns an undefined for the third case.
Note that a computer algebra system may rewrite and simplify a requested function
evaluation symbolically before starting the actual computation that gives them an
unfair advantage over floating-point libraries.

Our implementation compares very favorably with this. We return high precision
validated results in all three cases, not merely approximations, and this in just over
6 minutes for the diabolical example. When requiring only double-precision results (say
ε = 10−15), then the first example also terminates in less than a second.

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

11:20 M. Colman et al.

REFERENCES

ABRAMOWITZ, M. AND STEGUN, I. A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington,
D.C.

BACKELJAUW, F. 2009. A library for radix-independent multiprecision IEEE-compliant floating-point arith-
metic. Tech. rep. 2009-01, Department of Mathematics and Computer Science, Universiteit Antwerpen.

BACKELJAUW, F., BECUWE, S., CUYT, A., AND VAN DEUN, J. 2009. Validated evaluation of special mathemat-
ical functions. Tech. rep. 2009–04, Department of Mathematics and Computer Science, Universiteit
Antwerpen.

CUYT, A., PETERSEN, V. B., VERDONK, B., WAADELAND, H., AND JONES, W. B. 2008. Handbook of Continued Fractions
for Special Functions. Springer, New York.

CUYT, A., VERDONK, B., AND WAADELAND, H. 2006. Efficient and reliable multiprecision implementation of
elementary and special functions. SIAM J. Sci. Comput. 28, 4, 1437–1462 (electronic).

GAUTSCHI, W. 1967. Computational aspects of three-term recurrence relations. SIAM Rev. 9, 24–82.
HIGHAM, N. J. 2004. The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24, 4,

547–556.
JONES, W. B. AND THRON, W. J. 1974. Numerical stability in evaluating continued fractions. Math.

Comp. 28, 127, 795–810.
JONES, W. B. AND THRON, W. J. 1980. Continued fractions. Encyclopedia of Mathematics and its Applications,

vol. 11. Addison-Wesley, Reading, MA.
KEARFOTT, R. B. 1996. Rigorous Global Search: Continuous Problems. Nonconvex Optimization and its Appli-

cations, vol. 13. Kluwer Academic Publishers, Dordrecht.
LORENTZEN, L. 1992. Computations of hypergeometric functions by means of continued fractions. In Com-

putational and Applied Mathematics, I, C. Brezinski and U. Kulish, Eds., Elsevier Science Publishers,
North Holland, 305–314.

LORENTZEN, L. 2003. A priori truncation error bounds for continued fractions. Rocky Mountain J. Math. 33, 2,
409–474.

LORENTZEN, L. AND WAADELAND, H. 1992. Continued Fractions with Applications. Studies in Computational
Mathematics, vol. 3. North-Holland Publishing Co., Amsterdam.

LOZIER, D. W. AND OLVER, F. W. J. 1994. Numerical evaluation of special functions. In Mathematics of Compu-
tation 1943–1993: A Half-Century of Computational Mathematics. Proceedings of Symposia in Applied
Mathematics, vol. 48. American Mathematical Society, Providence. 79–125.

OLVER, F. W., LOZIER, D. W., BOISVERT, R. F., AND CLARK, C. W. 2010. NIST Handbook of Mathematical Functions.
Cambridge University Press, Cambridge, UK. Software Index: http://dlmf.nist.gov/software.

PINCHERLE, S. 1894. Delle funzioni ipergeometriche e di varie questioni ad esse attinenti. Giorn. Mat.
Battaglini 32, 209–291.

THOMPSON, W. 1997. Atlas for Computing Mathematical Functions. Wiley.
VERDONK, B., CUYT, A., AND VERSCHAEREN, D. 2001a. A precision- and range-independent tool for testing

floating-point arithmetic. II: Conversions. ACM Trans. Math. Softw. 27, 1, 119–140.
VERDONK, B., CUYT, A., AND VERSCHAEREN, D. 2001b. A precision- and range-independent tool for testing floating-

point arithmetric. I: Basic operations, square root, and remainder. ACM Trans. Math. Softw. 27, 1,
92–118.

Received July 2009; revised May 2010 and March 2011; accepted May 2011

ACM Transactions on Mathematical Software, Vol. 38, No. 2, Article 11, Publication date: December 2011.

