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Abstract We reconstruct an n-dimensional convex polytope from the knowledge
of its directional moments. The directional moments are related to the projection
of the polytope vertices on a particular direction. To extract the vertex coordinates
from the moment information we combine established numerical algorithms such
as generalized eigenvalue computation and linear interval interpolation. Numerical
illustrations are given for the reconstruction of 2-d and 3-d convex polytopes.
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1 Introduction

The reconstruction of the boundary of a shape from its moments is a problem that
has only partially been solved. For instance, when the shape is a polygon [15, 25], or
when it defines a quadrature domain in the complex plane [18], it has been proved
that its boundary can be reconstructed exactly from the knowledge of its moments.
Both results admit no obvious extension to higher dimensions. The technique in [6]
is applicable in higher dimensions, but the authors reconstruct a shape’s character-
istic function, or more generally, a square-integrable function defined on a compact
domain. The reconstruction algorithm for polygons is based on Davis’ exact inte-
gration formula [7] of a function in the complex plane. For polynomial functions,
Davis’ formula can be seen as a low dimensional case of identities attributed to
Brion [2]. Based on the latter, Gravin, Lasserre, Pasechnik and Robins proposed the
reconstruction of an n-dimensional convex polytope in exact arithmetic [16].

Brion’s integration formula over a polytope does not relate moment information
directly to the vertices of the convex polytope, but rather to the projections of these
vertices onto some 1-dimensional subspace. To recover the projections, we recognize
an inverse problem that arises in several areas [12, 19, 21, 22, 26] and can be solved
numerically as a generalized eigenvalue problem.

After recovering the projections of the vertices on various one-dimensional sub-
spaces, there remains the problem of matching different projections (in different
directions) of the same vertex, with that vertex. In this paper we describe how to solve
this issue, without resorting to exact arithmetic. The problem cannot be solved with
ordinary interpolation or least squares approximation. But using an interval interpo-
lation technique [28], we understand why we need n + 1 projections (or more) to
solve the matching.

Our method is the result of combining techniques from quite different mathemat-
ical disciplines: integer lattices, computer algebra, numerical linear algebra, interval
methods, inverse problems. The complete algorithm, the outline of which draws on
[16], consists of the following steps:

1. The exact number of vertices r is computed from an upper boundR and moments
up to order 2R + 1 − n, in a sample of directions.

2. For n + 1 (or more) directions, the projections of the vertices are obtained as
the generalized eigenvalues of a structured pair of matrices whose entries are
determined from the directional moments up to order 2r − n − 1.

3. Each of these projections is then matched to the corresponding vertex and
its coordinates are computed as the coefficients of an n-dimensional interval
interpolant.

We demonstrate the results obtained in dimension 2 and 3 in Section 6 and report
on a challenge in Section 7. The different steps in our algorithm involve Hankel
matrices, in the singular value decomposition for the computation of r , as well as
in the generalized eigenvalue problem delivering the vertex projections. Structured
matrices with real elements have condition numbers that grow exponentially with
their size [3, 4], and the size of our matrices is determined by the number of vertices
of the polytope. In Section 6 double precision allows us to reconstruct polytopes
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up to 12 vertices. In Section 7 we are required to use high precision floating-point
arithmetic for the polyhedron with 57 vertices that represents a brilliant diamond cut.

The paper is organized as follows. In Section 2 we introduce directional moments
together with Brion’s formulae. In Section 3 we review Prony’s method and the
related eigenvalue problem to determine the projections of the vertices from the direc-
tional moments. In Section 4 we discuss the determination of the number of vertices.
In Section 5 we present an algorithm to solve the matching problem. Numerical
illustrations are given in Sections 6 and 7 where we reconstruct 2-d and 3-d convex
polytopes.

2 Geometric and directional moments

In this section we present identities attributed to Brion. These identities are central
in [1] to establish the complexity of the computation of the moments of a polytope.
Brion’s identities are also at the core of the solution of the inverse problem proposed
in [16]. They can actually be seen as a generalisation of Davis’ integration formula
that was used to solve the shape-from-moment problem in 2-d [15, 25].

We consider a convex polytope in R
n determined by the set of its r vertices V .

Abusing the notation, V also denotes the polytope itself.
The geometric moments are

mα =
∫
V

xα dx =
∫

. . .

∫
V

x
α1
1 . . . xαn

n dx1 . . . dxn, α = (α1, . . . , αn) ∈ N
n.

The order of the geometric moment mα is |α| = α1 + . . . + αn. These moments can
be expressed as a multivariate polynomial in the coordinates of the vertices [29]. A
complexity analysis for the computation based on Brion’s identities is offered in [1]
for exact arithmetic.

The moment in the direction δ ∈ R
n of order k is

mk(δ) =
∫
V
〈x, δ〉k dx, k ∈ N,

where 〈·, ·〉 denotes the usual scalar product in R
n.

One can obtain any directional moment of order k from the geometric moments of
order k with the multinomial formula

mk(δ) =
∑
|α|=k

(
k

α

)
mα δα.

Conversely, geometric moments of order k can be obtained from the directional
moments of order k in

(
n+k−1

k

)
distinct directions by solving a linear system of

equations.
In the context of polygon retrieval (n = 2) from tomographic data [15, 25], geo-

metric moments and then complex moments are computed from directional moments.
Complex moments can be understood as moments in the direction δ = (1, i). At
the core of this shape-from-moments problem is Davis’ integration formula for an
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analytic function f on the polygon V in the complex plane [7]∫∫
V

f ′′(x + i y) dxdy =
∑
v∈V

av f (v),

where the vertices v ∈ V are here interpreted as complex numbers. Assuming that v̌

and v̂ are the vertices adjacent to v, the coefficients in Davis’ formula are

av = Vv

(v − v̌)(v − v̂)
,

where Vv is the oriented area of the parallelogram defined by the vectors with vertices
v̌ − v and v̂ − v.

This formula bears a generalisation to any dimension, known as Brion’s identi-
ties. The formula relates the directional moments to the projections of the vertices.
This allows us to work directly with directional moments, which are data that can be
deduced from tomographic measurements.

Theorem 2.1 [16] Provided that the orthogonal projections of the r vertices of the
convex polytope V on the direction δ are distinct, we have the following equalities

(k+n)!
k! mk(δ) = ∑

v∈V
av(δ) 〈v, δ〉n+k, k ≥ 0,

and
0 = ∑

v∈V
av(δ) 〈v, δ〉n−k, 1 ≤ k ≤ n,

(2.1)

where the av(δ) depend on δ and the adjacent vertices of v in a triangulation of V .
Moreover

av(δ) �= 0, v ∈ V. (2.2)

The formula for the coefficients av(δ) is given in [2, Section 10.3] when V is a
simple convex polytope. That is, each vertex in the polytope has exactly n adjacent
vertices. Let Vv be the set of n adjacent vertices of v. The volume Vv of the par-
allepiped determined by Vv is obtained through the determinant of the edge vectors
of Vv . Then

av(δ) = Vv∏
u∈Vv

〈v − u, δ〉
. (2.3)

In particular, for a simplex 	 with vertices v0, v1, . . . , vn,

(k+n)!
k!

∫
	
〈x, δ〉k dx = V

n∑
i=0

〈vi, δ〉k+n∏
j �=i

〈vi − vj , δ〉
= V

∑
k0+...+kn=k

〈v0, δ〉k0 . . . 〈vn, δ〉kn

(2.4)
where V = Vv0 = . . . = Vvn . Notice that this is actually a polynomial in δ though
we shall use its more compact rational expression.

For a more general convex polytope, one has to consider a partition of the polytope
into simplices that does not introduce any additional vertex [2, Theorem 3.1]. The
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coefficients av(δ) for the convex polytope is then a sum of its siblings in the formulae
for the simplices. That they do not vanish is proved in [16].

The directions δ ∈ R
n to which the theorem applies are those for which 〈u, δ〉 �=

〈v, δ〉 for all distinct u, v ∈ V . Those are the generic directions. We examine what
happens when δ fails to be generic in this meaning.

On one hand, Brion’s identities are correct for any δ that does not make the denom-
inators of av vanish. However, if δ is a direction for which the coefficients av(δ)

are well defined but for which there are two distinct vertices u, v ∈ V such that
〈u, δ〉 = 〈v, δ〉, we can write the formula with less than r terms. The linear recur-
rence introduced in Section 3 is then of order less than r and the associated Hankel
matrix is of rank less than r .

In addition, when 〈v0, δ〉 = . . . = 〈vp, δ〉 for distinct vertices v0, . . . , vp ∈ V that
belong to the same simplex of any triangulation, there is a formula similar to (2.1)
where the p+1 terms 〈vi, δ〉n+k are replaced by terms 〈v0, δ〉n+k , (n+k)〈v0, δ〉n+k−1,
. . . , (n+ k) . . . (n+ k −p + 1)〈v0, δ〉n+k−p. This can be deduced from the rightmost
expression in (2.4). The Hankel matrix constructed in Section 3 is still of rank r and
admits 〈v0, δ〉 as a generalized eigenvalue of multiplicity p + 1. See for instance [10,
24].

3 Recovering the projections of the vertices

In this section we address the problem of retrieving the projections V(δ) =
{〈v, δ〉 | v ∈ V} of the vertices of the convex polytope V from its directional moments
mk(δ). We recognize an inverse problem that has appeared in several areas [12, 15,
16, 19, 22, 25, 26]. While [16] approach the problem with Prony’s method, we favor
a formulation in terms of generalized eigenvalues.

The standing assumption is that the projections of the vertices on the direction δ

are pairwise distinct. Thus |V(δ)| = |V| = r . Also, we assume in this section that
the number of vertices is known. We discuss in next section how this number can be
retrieved from the knowledge of the moments.

From the directional moments (mk(δ))k we introduce the sequence (μk(δ))k∈N of
modified directional moments defined by

μk(δ) = 0, 0 ≤ k ≤ n − 1,

μk(δ) = k!
(k−n)! mk−n(δ), k ≥ n.

By Theorem 2.1 there exist r non-zero real numbers av(δ) such that this sequence
satisfies μk(δ) = ∑

v∈V av(δ) 〈v, δ〉k, k ∈ N. The goal is to retrieve the r elements
〈v, δ〉 of V(δ) from (μk(δ))k and hence (mk(δ))k . This is an instance of the following
problem.

Inverse problem Consider a sequence (μk)k∈N such that for some non-zero real
(or complex) numbers a1, . . . , ar and pairwise distinct real (or complex) numbers
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w1, . . . wr ,

μk =
r∑

i=1

ai wk
i , ∀k ∈ N, (3.1)

The problem is to find the wi from the knowledge of r and (μk)0≤k≤2r−1. It can be
tackled by Prony’s method or as a generalized eigenvalue problem1.

In this paper we deal with computed directional moments. In comparison to mea-
sured directional moments, we can work with a selected precision and we do not take
care of noise effects in the data. When working with measured information and hav-
ing 2R − n moments available per direction, it is best to replace the square r × r

Hankel matrices by rectangular R × r Hankel matrices and introduce Least Squares
or Maximum Likelihood methods to solve this inverse problem [9, 13, 26].

First one observes that the sequence (μk)k is a solution of a recurrence equation
of order r , namely

μk+r = pr−1 μk+r−1 + . . . + p0 μk, (3.2)

where (−p0, . . . , −pr−1, 1) are the coefficients of the polynomial

p(z) =
r∏

i=1

(z − wi) = zr − pr−1 zr−1 − . . . − p1 z − p0.

Applying (3.2) for k = 0, . . . , r − 1 leads to the linear system
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ0 μ1 . . . μr−1

μ1 . .
.

... . .
. ...

. .
.

μr−1 . . . μ2r−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H

(0)
r

⎛
⎜⎜⎜⎜⎜⎜⎝

p0
p1
...
...

pr−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

μr

μr+2
...
...

μ2r−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.3)

From (μk)0≤k≤2r−1 we can retrieve the characteristic polynomial p of the underly-
ing recurrence by solving the above linear system2. The sought numbers w1, . . . , wr

are the roots of this polynomial. Theses two steps (solving the linear system and
computing the roots of the entailed polynomial) are known as Prony’s method. It was
introduced in [27] and is used in the context of the shape-from-moments problem
in [16, 25]. The authors of [15, 21] introduce a solution in terms of the generalized
eigenvalues of a pencil of matrices. It is based on the following facts.

1The problem can also be addressed through pole estimation or Padé techniques since the generating

function
∑

k≥0 μk tk =
r∑

i=1

ai

1−wi t
is a rational function. This is also observed in [17]

2A Hankel system can be changed to a Toeplitz system. Here, the Toeplitz system is the one that arises
when looking for the denominator 1 − pr−1 t − . . . − p0 tn of the generating function of (μk)k∈N.
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We can recast (3.3) into the matrix equality:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ0 μ1 . . . μr−1

μ1 . .
.

... . .
. ...

. .
.

μr−1 . . . μ2 r−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H

(0)
r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 p0

1
. . .

... p1

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 . . . 0 1 pr−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ1 μ2 . . . μr

μ2 . .
.

... . .
. ...

. .
.

μr . . . μ2 r−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H

(1)
r

.

(3.4)
The last column of the matrix on the right hand side comes from Equation (3.3),

while the other columns are simply shifts of the columns in the matrix on the left
hand side.

Let us introduce the following notations from [19, Section 7.5] for the matri-
ces arising in the above equality. The r × r Hankel matrix with first row given by(
μd . . . μr+d−1

)
is denoted by H

(d)
r . The companion matrix of the characteris-

tic polynomial of the recurrence (3.2) is denoted by P . The matrix equality (3.4)
becomes H

(0)
r P = H

(1)
r , and more generally we have H

(d)
r P = H

(d+1)
r for d ≥ 0.

Since w1, . . . , wr are the roots of p(z) = zr −pr−1 zr−1−. . .−p1 z−p0,we have⎛
⎜⎜⎜⎜⎝

1 w1 · · · wr−1
1

...
...

...
...

...
...

1 wr · · · wr−1
r

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Wr

⎛
⎜⎜⎜⎜⎝

0 . . . 0 p0

1
. . .

...
...

...
. . . 0 pr−2

0 . . . 1 pr−1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
P

=

⎛
⎜⎜⎜⎜⎝

w1 0
. . .

. . .

0 wr

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
D

⎛
⎜⎜⎜⎜⎝

1 w1 · · · wr−1
1

...
...

...
...

...
...

1 wr · · · wr−1
r

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Wr

.

Let D and Wr be respectively the diagonal and the Vandermonde matrices defined
by w1, . . . , wr and appearing in the above equality. The latter can thus be writ-
ten Wr P = DWr . The wi being pairwise distinct, Wr is invertible and P W−1

r =
W−1

r D. That is, w1, . . . , wr are the eigenvalues of P and W−1
r is a matrix of

eigenvectors for P . From H
(1)
r = H

(0)
r P in (3.4) we can deduce

H(1)
r W−1

r = H(0)
r W−1

r D,

and more generally, H
(d+1)
r W−1

r = H
(d)
r W−1

r D, for d ∈ N. Thus w1, . . . , wr

are the generalized eigenvalues of the matrix pencils
(
H

(d+1)
r , H

(d)
r

)
and W−1

r is a

matrix of associated generalized eigenvectors.
Computing generalized eigenvalues is a classical problem in numerical linear alge-

bra [8, 14, 20]. The structured problem we consider here is unfortunately known to be
potentially ill-conditioned. Following [4] we can give an upper bound for the condi-
tioning of the generalized eigenvalue problem as a constant multiplied by the square
of the condition number of the Vandermonde matrix Wr .

To come back to our initial problem of retrieving V(δ) from (μk(δ))k we introduce

the pencil of Hankel matrices
(
H

(1)
r (δ), H

(0)
r (δ)

)
. Its generalized eigenvalues are the
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elements of V(δ). From those we can construct a matrix of generalized eigenvec-
tors, given by the inverse of the Vandermonde matrix Wr(δ). The condition number
of Wr(δ) is denoted κ(δ). To reduce the conditioning of the generalized eigenvalue
problem, which is of order κ(δ)2, we consider polytopes lying in the unit ball.

4 Estimating the number of vertices

So far, the number r of vertices has been assumed to be given. But r can also be
an unknown of the problem. In this section, we discuss how to numerically retrieve
this number from the Hankel matrices H

(0)
k (δ) formed from the sequence of modified

directional moments (μk(δ))k in a generic direction δ.
One first observes that H

(0)
r+�(δ) is at most of rank r for any � ≥ 0. Indeed

the sequence (μk(δ))k∈N satisfies a recurrence (3.1) of order r . For any � > 0,
each of the last � columns of H

(0)
r+�(δ) is thus a linear combination of the pre-

vious r columns. Now, noting w1, . . . , wr the elements of V(δ), we examine the
Vandermonde factorisation of the Hankel matrix:

H
(0)
k (δ)=

⎛
⎜⎜⎜⎝

1 1 · · · 1
w1 w2 · · · wr

...
...

. . .
...

wk−1
1 wk−1

2 · · · wk−1
r

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
tWk(δ)

⎛
⎜⎜⎜⎜⎝

a1(δ) 0 · · · 0
0 a2(δ)

. . .
...

...
. . .

. . . 0
0 · · · 0 ar(δ)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A(δ)

⎛
⎜⎜⎜⎝

1 w1 · · · wk−1
1

1 w2 · · · wk−1
2

...
...

. . .
...

1 wr · · · wk−1
r

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Wk(δ)

.

(4.1)
For a generic direction δ, the r elementswi of V(δ) are pairwise distinct and therefore
detH(0)

r (δ) �= 0. It follows that H(0)
r+�(δ) is exactly of rank r , for all � ≥ 0.

Based on this observation, if a strict upper bound R for the number of vertices
r is given, then r can be determined as the rank of H

(0)
R (δ). A caveat is that this

matrix may be ill-conditioned. The condition number of H
(0)
r (δ) is determined by the

condition number of Wr(δ) and A(δ) in (4.1). For this we also refer to the discussion
in [12] and [23] that examine the situation in the context of sparse interpolation. The
condition number of the Vandermonde matrix Wr(δ) depends on the distribution of
the numbers in V(δ), the set of the projections of the vertices in the direction δ [11].
As for the matrix A(δ), having one of the ai(δ) too small can also lead to an incorrect
(numerical) rank for H

(0)
R . Since we can (even randomly) select multiple directions

for the projections, we can retain only those directions for which not both Wr(δ)

and A(δ) are too ill-conditioned. Alternatively we could apply the rank estimates for
Hankel matrices of [5].

Therefore, if we have an overestimation R of the number of vertices we can
recover the exact number from the analysis of the numerical rank of H

(0)
R (δ). In

practice we analyze the singular values of H
(0)
R (δ) computed by a Singular Value

Decomposition [8, 14]. This is discussed on specific cases in Sections 6 and 7.
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5 Reconstruction of the vertices from their projections

In this section we show how to retrieve the set of vertices V from their projections
onto several directions δ. A difficulty to overcome is that the sets of projections we
start from are not ordered; we have to match elements of different sets as projection of
the same vertex. This rules out classical interpolation or least square approximation.
Our approach is based on the interval interpolation scheme presented in [28]. To
simplify our line of arguments on the relative error we assume that the polytope is
already contained in the unit ball, a situation to which we shall reduce in practice.

Let � be a set of s > n vectors δ in the unit sphere Sn. The assumption is that
for each δ ∈ � we have a set of approximations Ṽ(δ) for the values of V(δ) =
{〈v, δ〉 | v ∈ V}, the projections of the vertices on the direction δ. The result should
be a set Ṽ of r vectors in R

n that consists of approximations for the set of vertices V
of the polytope. Note that with our assumptions, all the elements of V(δ) are in the
interval [−1, 1].

The approximations in Ṽ(δ) are obtained from the modified directional moments
(μk(δ))0≤k≤2r−1 as discussed in Section 3. They are computed as generalized eigen-
values and the conditioning of this problem is given by the square of the condition
number κ(δ) of the Vandermonde matrix Wr(δ) made of these generalized eigen-
values. Therefore, an element w of Ṽ(δ) is actually understood as the center of an
interval [w−, w+] of size 2ε(δ) where ε(δ) should be taken as

ε(δ) = O
(
κ(δ)2 εμ(δ)

)
, (5.1)

where εμ(δ) is the bound on the relative error for the input modified directional
moments (μk(δ))0≤k≤2r−1.

For an element in Ṽ(δ), we do not know which projection is an approximation of
which vertex. So we need to find the correct labelling of the projections concurrently
with the computation of the vertex coordinates. An algorithm for the reconstruc-
tion of the vertex coordinates can be based on the computation of r linear interval
interpolants in n variables, of the form

qu : Sn → [−1, 1]
δ �→ 〈u, δ〉

with u = t (u1, . . . , un) ∈ R
n, (5.2)

where Sn is the unit sphere. The set Ṽ of n-tuples of coefficients u used to define
those r interpolants are the approximations to the set V of the polytope vertices.
The interpolation condition has to reflect the fact that the r functions qu interpolate
exactly one w-value per Ṽ(δ) but s of those values across the sets Ṽ(δ). Formally,
this can be written as

∀u ∈ Ṽ, ∀δ ∈ �, ∃ ! w ∈ Ṽ(δ) s.t. qu(δ) ∈ [w−, w+]. (5.3)

We remark at this point that any set of n projections can be interpolated by a func-
tion of the form qu(δ), even if the width of the intervals is zero. At the same time
any combination of s projections can be approximated in the least squares sense by
a function of the form qu(δ). So none of these classical approaches is very useful
in figuring out which projections belong to the same vertex v ∈ V . But an interval
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interpolant through at least n + 1 disjoint intervals does the job: the nonzero interval
width compensates for overdetermining the linear interpolant by at least one inter-
polation condition. The interval interpolant is stringing the intervals, containing the
projections, like beads on the graph of the interpolating function. Any interval, mean-
ing any projection, through which it passes, is marked as belonging to the same
vertex.

An interval interpolation problem does not need a priori to have a unique solution:
sufficiently small perturbations of the coefficients in the linear form may not violate
the interval interpolation conditions. However, Salazar Celis et al. [28] provides a
method to compute the most robust interval interpolant of the form (5.2). By this we
mean the interpolant that stays away as far as possible from violating the interpolation
conditions imposed by the interval bounds. This is based on the following line of
thoughts: The interpolation conditions given by intervals define a polyhedral cone.
Our robust interval interpolant is given by the Chebychev direction of this polyhedral
cone. This latter is a one-dimensional subspace which contains the centers of the
inscribed balls with maximal radius (maximal for a certain distance given explicitly
in [28]). Computing a Chebychev direction is then reduced to a convex optimization
problem.

Because of the labelling problem of the approximate projections, the interval inter-
polation algorithm becomes a 2-step procedure. In a first step we take the subset
�̂ of the n best conditioned directions in �. Consider the n-tuples in the Cartesian
product

∏
δ∈�̂

Ṽ(δ) and select those for which the unique (non-interval) interpolant

intersects one interval of Ṽ(δ) for each of the s − n remaining directions δ ∈ � \ �̂.
They reflect a correct labelling of the projections. These better conditioned directions
�̂ are usually near to one another and that drastically cuts down the combinatorial
aspect of the procedure by a continuity argument.

Since in this first step the coordinates of the vertices are computed from only
n of the s available directions, the obtained values are not maximally accurate.
This leads us to the following second step. After ordering the s sets Ṽ(δ) of r

values according to the vertex they are a projection of, the coordinates of each
vertex can be computed to maximal accuracy from the total of its s projec-
tions. To this end the interval interpolation method can be continued with the
computation of the most robust interval interpolants satisfying (5.3) following
[28].

6 Simulations

We now illustrate the proposed approach for the reconstruction of polytopes from
their directional moments. For our simulations we consider centered and scaled poly-
topes: The origin is the center of gravity of the polytope and the vertices lie in the unit
ball. This geometric normalisation corresponds to a transformation on the moments
as described in [15].

The vertices of the polytope are to be reconstructed from directional moments.
The proposed reconstruction of a convex polytope in dimension n requires directional
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moments in at least n + 1 generic directions. The order of the moments required
in each direction then depends on the number r of vertices: we need directional
moments up to order 2r − n − 1. In dimension 2 this can be compared to [25], where
the complex moments up to order 2r − 3 are obtained from directional moments up
to the same order in 2r − 2 directions by inverting a matrix with binomial coeffi-
cients. One should note though that this approach removes the necessity of matching
the projections. Gravin et al. [17] suggests a generalisation of this approach to higher
dimensions.

For a given direction δ, the directional moments mk(δ) are computed in
double precision and used to form the entries of the pair of Hankel matri-

ces
(
H

(1)
r (δ), H

(0)
r (δ)

)
described in Section 3. The algorithm consists of 3 main

steps:

1. Determine the number r of vertices by analyzing the singular values of the Han-
kel matrix H

(0)
R (δ) for R > r big enough and a few number of random directions

δ, as described in Section 4.
2. Compute the generalized eigenvalues for the pair of matrices

(
H

(1)
r (δ), H

(0)
r (δ)

)
in at least n + 1 nearby directions δ as in Section 3. Determine the condition
number κ(δ) of Wr(δ), the Vandermonde matrix formed with these generalized
eigenvalues.

3. Recover the vertices Ṽ from their approximate projections Ṽ(δ) using the interval
interpolation technique described in Section 5 with the error estimate based on
κ(δ).

The first two steps are performed using standard numerical linear algebra rou-
tines from the NAG library through the Maple interface. In particular, Step 1 makes
use of the implementation of the Singular Value Decomposition and Step 2 the QZ-
algorithm [30]. Step 3 is implemented in Matlab. All computations in this section are
performed in double precision.

In step 2, we sample a number of directions and retain those for which the condi-
tion number of the Vandermonde matrix Wr(δ) is the smallest. The condition number
indeed depends on the direction: κ(δ) depends on the distribution of the projected
vertices [11]. In particular it increases when the projections of two vertices get closer
to one another.

Furthermore, to cut down on the combinatorial complexity of the interpolation
scheme in the last step, it makes sense to select directions reasonably close to one
another. Selecting a generic reference direction δ̂ with a reasonable condition number
κ(δ) and other directions in the neighborhood. Note that here non disjoint inter-
vals for the approximations of the projections on a direction δ would induce a poor
condition number κ(δ) of the Vandermonde matrix Wr(δ).

6.1 Reconstruction of polygons

We begin our simulations with the reconstruction of 2-dimensional polygons. A
direction δ = (cos θ, sin θ) is represented by an angle θ ∈] − π

2 , π
2 ]. The projection

of vertex with coordinates (v1, v2) is given by v1 cos θ + v2 sin θ . Then the interval
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(a) Hexagon, symmetry axes

and bisectors

(b) Condition number κ (δ)
with respect to the direction

δ = (cos θ, sin θ)

(c) Singular values of H (0)
7 (δ) (d) Interpolation with intervals

of width 10 − 10

Fig. 1 Regular hexagon

interpolation problem formulated in terms of θ is

v1 cos θ + v2 sin θ ∈ [w−, w+], for a single w ∈ Ṽ(θ).

where w− = w − ε(δ) and w+ = w + ε(δ) as in Section 5.

6.1.1 Reconstruction of a regular hexagon

The regular hexagon (r = 6) is presented in Fig. 1a with its symmetry axes and their
bisectors. The symmetry axes correspond to the non generic directions. The condition
number κ(δ) increases drastically when δ approaches these directions.



Numerical reconstruction of convex polytopes 1091

The number r of vertices is retrieved as the rank of H
(0)
R (δ), for R large enough

and arbitrary directions δ. Here R = 7 is sufficient to reliably analyse the rank from
the singular values. These are plotted in Fig. 1c for three directions picked at random.

In Figure 1b the condition number κ(δ) is plotted for 300 equidistant generic
directions. A minimal value is reached for directions bisecting two consecutive
axes of symmetry. This leads us to choose the reference direction δ̂ with angle

(a) Centered and scaled polygon with reference direction

(b) Singular values of H (0)
15 (δ) (c) Interpolation with intervals

of width 10− 4

Fig. 2 Polygon with 12 vertices
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(a) Centered and scaled polyhedron with reference direction

(b) Singular values of H (0)
11 (δ) (c) Interpolant for one vertex

Fig. 3 First polyhedron with 10 vertices

θ̂ = − 5π
12 . It corresponds to one of the bisectors. We then take 4 nearby directions

θ̂ ± 0.05, θ̂ ± 0.10. For each of the 5 directions we construct the pair of Hankel
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(a) Centered and scaled polyhe-

dron with reference direction

(b) Singular values of H (0)
12

Fig. 4 Second polyhedron with 10 vertices

matrices
(
H

(1)
6 (δ), H

(0)
6 (δ)

)
and compute their generalized eigenvalues. For these

directions κ(δ) is around 300. We therefore take interval of size 2× 10−10 according
to (5.1).

We compute the interval interpolants from the 5 sets of projections V(θ̂ +
k 0.05), k = −2, −1, 0, 1, 2. The relative error on the computed projections is
bounded overall by 4.9× 10−12 for the 5 chosen directions. The coordinates of the 6
different vertices of the regular hexagon are recovered as the coefficients of the inter-
polants graphed in Fig. 1d. The relative error on each computed coordinate compared
to its true value is bounded overall by 3.1 × 10−12.

6.1.2 Reconstruction of a polygon with 12 vertices

In this second simulation, we consider a centered and scaled 12-gon. It is drawn in
Fig. 2a.

As in the case of the hexagon above, the number of vertices is retrieved by com-
puting the singular values of H

(0)
15 (δ) in 3 directions δ. From Fig. 2b we deduce that

the numerical rank is r = 12.
After inspecting some directions, we choose the reference direction δ̂ with θ̂ =

0.379521 (arrow in Fig. 2a) and 4 other nearby directions θ̂ ±0.01, θ̂ ±0.02. The pro-
jections of the vertices on these directions are obtained as the generalized eigenvalues

of the pairs of Hankel matrices
(
H

(1)
12 (δ), H

(0)
12 (δ)

)
whose entries are obtained from

the respective modified directional moments (μk(δ))0≤k≤21. The condition number
κ(δ) of the matrix of generalized eigenvectorsW12(δ) is around 7×105 for all 5 direc-
tions. The relative error on the computed projections compared to their true values is
bounded by 5.0 × 10−6.
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(a) Side view and reference direction δ0

(b) Top view (c) In perspective

Fig. 5 Diamond

From these 5 sets V(θ̂ − 0.02),V(θ̂ − 0.01),V(θ̂),V(θ̂ + 0.01),V(θ̂ + 0.02), we
compute the 12 linear interval interpolants. According to (5.1) we take intervals of
size 2ε = 10−4. The relative error in each coordinate is bounded by 5.3 × 10−5.

Note that even the two very close vertices in the top right corner in Fig. 2a are
recovered with the accuracy mentioned above. The distance between them is only of
the order of 10−2.

6.2 Reconstruction of polyhedra

We now consider the reconstruction of convex polyhedra in dimension 3. The
dimension does not introduce new difficulties in our method. A direction δ is rep-
resented by a unit vector (cos(θ) cos(φ), cos(θ) sin(φ), sin(θ)) with (θ, φ) lying in
] − π

2 , π
2 ]×] − π

2 , π
2 ]. The projection of the vertex v = (v1, v2, v3) on δ = (θ, φ)

equals v1 cos(θ) cos(φ) + v2 sin(θ) cos(φ) + v3 sin(φ). The tuples of coordinates
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(v1, v2, v3), for v ∈ V , are the unknowns in the linear interval interpolation problem
qv(δ) ∈ [w−, w+] for a single w ∈ Ṽ(δ), as described in Section 5.

6.2.1 Reconstruction of a polyhedron with well-distributed vertices

We first consider the polyhedron with 10 vertices represented in Fig. 3a.
We retrieve the number of vertices of the polyhedron by computing the numerical

rank of the Hankel matrix H
(0)
11 (δ) in 3 different directions δ. The singular values of

H
(0)
11 (δ) are plotted in Fig. 3b for three random directions.
After inspecting several directions, we select (θ̂ , φ̂) = (−1.256637, 0.261799) for

the reference direction δ̂ and 4 other nearby directions where the condition number
κ(δ) is of order 104. δ̂ is indicated by an arrow and a dotted line in Fig. 3a. We

(a) 50 digits (b) 60 digits

(c) 70 digits (d) 80 digits

Fig. 6 Singular Values of H
(0)
65 (δ) for several computational precision
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take the nearby directions as (θ̂ + ε, φ̂), (θ̂ , φ̂ + ε), (θ̂ − ε, φ̂ − ε) and (θ̂ + ε, φ̂ −
ε) with ε = 0.01. For each direction δ, the pair of matrices

(
H

(1)
10 (δ), H

(0)
10 (δ)

)
is

built with directional moments up to order 16. The generalized eigenvalues of the

pairs
(
H

(1)
10 (δ), H

(0)
10 (δ)

)
provide the projections of the vertices with a relative error

bounded by 8.2 × 10−8.
We compute the 10 linear interval interpolants using intervals of width 2 × 10−7

for the projections. In Fig. 3c we show one of those surfaces. The cross denotes
the approximate locus of the 5 projections obtained as generalized eigenvalues. The
coordinates of the 10 vertices of the polyhedron are obtained as the coefficients of
the interpolants. The relative error on this final result is bounded by 5.1 × 10−6.

6.2.2 Reconstruction of a polyhedron with close vertices

Here we examine a polyhedron with 10 vertices and a triangular face of relatively
small size (see the top of Fig. 4a).

In Fig. 4b we plot the singular values of H
(0)
12 (δ) for 3 random directions δ. The

gap between the tenth and the eleventh singular value appears for at least one of the
directions.

We choose the reference direction (θ̂ , φ̂) = (−0.994838, −0.994838) for which
the condition number κ(δ) is 4.2 × 104. It is indicated in Fig. 4a by an arrow and a
dotted line. We additionally pick the nearby directions (θ̂ + ε, φ̂), (θ̂ , φ̂ + ε), (θ̂ −
ε, φ̂ − ε) and (θ̂ + ε, φ̂ − ε) with ε = 0.01. For each direction the pair of matrices(
H

(1)
10 (δ), H

(0)
10 (δ)

)
is built with directional moments up to order 16. The projections

Fig. 7 Error observed when operating with 70 digits



Numerical reconstruction of convex polytopes 1097

(a) Error on the retrieved pro-

jections

(b) Error on the retrieved ver-

tex coordinates

Fig. 8 Error for different computational precisions

Ṽ(δ) of the vertices on those directions are retrieved as the generalized eigenvalues

of
(
H

(1)
10 (δ), H

(0)
10 (δ)

)
with a relative error bounded by 5.1 × 10−7.

We determine the 10 interpolants for our sets of projections using intervals of
width 2 × 10−6. The coordinates of the 10 vertices appear as the coefficients of the
interpolants. The relative error on these is bounded by 6.2 × 10−6.

7 Diamond

As a challenge we choose an actual brilliant cut of a diamond. It is given as a convex
polyhedron with 57 vertices and represented in Fig. 5. The stone girdle consists of
pairs of vertices very close to one another. The number of vertices and the small
distance between the projections of the vertices severely impact the condition number
κ(δ) of the Vandermonde matrix W57(δ): double precision is no longer enough to
retrieve sufficiently accurate values for the projections. We rely on the software floats
of Maple to provide the needed number of digits for the computations.

To reliably retrieve the number of vertices, we use a precision of 70 digits. Figure
5 tracks the singular values of H

(0)
65 (δ) for 8 random directions δ and in different

computational precisions.
After sampling a rather large number of directions, we select the reference direc-

tion (θ̂ , φ̂) = (0.261799, 1.047198) shown in Fig. 6a. The condition number κ(δ̂) for
this direction is 1.67 × 1033. We choose 4 nearby directions with a similar condition
number (θ̂ + ε, φ̂), (θ̂ , φ̂ + ε), (θ̂ − ε, φ̂ − ε) and (θ̂ + ε, φ̂ − ε) where ε = 0.0001.
Computing with 70 digits we expect to retrieve the projections of the vertices with a
relative accuracy of at least 10−3.

For each of the 5 selected directions δ, the pair of matrices
(
H

(1)
57 (δ), H

(0)
57 (δ)

)
is

built with the directional moments up to order 110. The projections of the vertices
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are obtained as the generalized eigenvalues. The relative error is actually bounded by
8.1 × 10−8.

We compute the 57 interpolants in double precision using intervals of width 5 ×
10−6. The coordinates of the vertices are the coefficients in those interpolants. The
relative error is bounded by 7.8×10−5. We plot the error for all the vertices in Fig. 7.

In Fig. 8 we report on the error using various computational precisions. For com-
putations with less than 65 digits we do not recover all the projections while the
complete set of coordinates of the vertices can be retrieved only if we use at least 70
digits.
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