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Abstract. The representation or order reduction of a rational trans-
fer function by a linear combination of orthogonal rational functions
offers several advantages, among which the possibility to work with pre-
scribed poles and hence the guarantee of system stability. Also for mul-
tidimensional linear shift-invariant systems with infinite-extent impulse
response, stability can be guaranteed a priori by the use of a multivariate
Padé-type approximation technique, which is again a rational approxi-
mation technique. In both the one- and multidimensional case the choice
of the moment functional with respect to which the orthogonality of the
functions in use is imposed, plays a crucial role.

1 Introduction

Let {ci}i∈N be a sequence of complex numbers and let c be a linear functional
defined on the space of polynomials C[t] with complex coefficients c(ti) = ci,
i = 0, 1, . . . Then c is called the moment functional determined by the moment
sequence {ci}i∈N. By means of c a formal series development of h(z) with co-
efficients ci (for instance a transfer function h(z) with impulse response ci for
i = 0, 1, 2, . . .) can be viewed as

h(z) =
∞∑

i=0

ciz
i = c(1) + c(t)z + c(t2)z2 + . . . = c

(
1

1 − tz

)
. (1)

Let Ln = span{1, . . . , tn} denote the space of polynomials of degree n and let
∂V denote the exact degree of a polynomial V (t) ∈ C[t]. A sequence of polyno-
mials {Vm(z)}m∈N is called orthogonal with respect to the moment functional c
provided that Vm ∈ Lm \ Lm−1 and

c
(
tiVm(t)

)
= 0, i = 0, . . . , m − 1, c

(
V 2

m(t)
)

�= 0. (2)

For an arbitrary polynomial Vm(z) ∈ Lm with coefficients bi, we can also con-
struct the associated polynomial Wm−1(z) by

Wm−1(z) = c

(
Vm(t) − Vm(z)

t − z

)
. (3)
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Then Wm−1 ∈ Lm−1 with coefficients ai =
∑m−1−i

j=0 cjbi+j+1 [3, p. 10]. It can
be proven [3, p. 11] that the polynomials W̃m−1(z) = zm−1Wm−1(1/z) and
Ṽm(z) = zmVm(1/z) satisfy [3, p. 11]

(
h − W̃m−1/Ṽm

)
(z) =

∞∑

i=q

diz
i (4)

with q = m. In this way it is easy to obtain rational approximants W̃m−1/Ṽm

for a given transfer function h(z). Choosing Vm(z) in (4) allows to control the
poles of the rational approximant. If however Vm(z) is fixed by the orthogonality
conditions (2), then q = 2m in (4) and many more moments are matched, but
the control over the poles is lost.

We recall that a system is called bounded-input bounded-output (BIBO) sta-
ble if the output signal is bounded whenever the input signal is bounded. Since
stability is guaranteed when the rational approximant has all its poles inside the
unit disk or polydisk, respectively, the aim is to obtain a rational function either
in one or in more variables, that has this property.

Rational approximants of higher numerator degree can be obtained in the
following way. If we define a linear functional c(k)(ti) = ck+i and set

h(z) =
k∑

i=0

ciz
i + zk+1hk(z), (5)

W
(k+1)
m−1 (z) = c(k+1)

(
Vm(t) − Vm(z)

t − z

)
(6)

W̃m+k(z)/Ṽm(z) =
k∑

i=0

ciz
i + zk+1W̃

(k+1)
m−1 (z)/Ṽm−1(z) (7)

then (4) generalizes to
(
h − W̃m+k/Ṽm

)
(z) =

∞∑

i=q

diz
i (8)

with q = m + k + 1 for arbitrary polynomials Vm(z) and q = 2m + k + 1 when
Vm(z) satisfies the orthogonality conditions (2).

In (1)–(4), a linear functional is defined in terms of the impulse response, and
the rational function that approximates the transfer function matches as many
of the initial impulse response coefficients, also called Markov parameters, as
possible. This corresponds to a good approximation of the transient behaviour
of the system for small time. In this paper we discuss the generalization of the
steps (1)–(4), namely

– defining a linear functional c using information collected from the transfer
function h as in (1),

– computing a numerator polynomial W̃m−1(z) as in (3), possibly in combina-
tion with (2) for the denominator polynomial Ṽm(z),

– setting up a sequence of rational approximants to the transfer function h(z)
as in (4) or (8),

in two ways.
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The approximation of h(z) in (4) may be improved when also the steady
state of the system is approximated. This means that the transfer function is
not only approximated in the neighborhood of z = 0, but also near z = ∞. The
coefficients of the series expansion at infinity are called time moments. Matching
some of the Markov parameters and some of the time moments corresponds to
rational approximation in two points. This idea can be generalized as follows.
Instead of approximating in just two points, one can find a rational approximant
interpolating in several points, some of which may coincide [5].

Instead of considering one variable z, one can also study multidimensional
systems and transfer functions, which arise in problems like computer-aided
tomography, image processing, image deblurring, seismology, sonar and radar
applications, and many other problems. As an illustration we consider the fil-
tering of signals, which is concerned with the extraction and/or enhancement of
information contained in either a one-dimensional or multidimensional sequence
of measurements. Noises can be filtered from spoken messages as well as from
picture images.

The former generalization is dealt with in Section 2 while the latter is in-
troduced in Section 3. In both sections the aim is to provide an a priori stable
rational approximant since for model reduction techniques the issue of stability
of the reduced rational system is an important one. In Section 2 the rational
approximants are obtained by combining generalizations of (3) and (2), while in
Section 3 the approximants are constructed for appropriately chosen denomina-
tor polynomials in combination with (3) for the numerator.

2 Orthogonal Rational Functions Analytic Outside the
Unit Disk

In frequency domain methods, it is assumed that the information about the
system transfer function is not given by moments defined in 0 and infinity or
at arbitrary points in the complex plane, but they are given in the frequency
domain, which for a discrete time system is the complex unit circle T. So what
can be measured are not the samples of the transfer function h, but samples
of its power spectrum |h(z)|2 for many values of z ∈ T. Using autocorrelation
techniques, one actually knows the coefficients of the Fourier series |h(z)|2 =∑

k∈Z
ckzk where z = eiω. We can now define a moment functional for the

Laurent polynomials by setting c(ti) = c−i for all i ∈ Z. Since we are working
on T we reformulate the orthogonality conditions (2) as follows. A sequence of
polynomials {Vm(z)}m∈N is orthogonal with respect to the moment functional c
provided that Vm(z) ∈ Lm \ Lm−1 and

c
(
tiVm∗(t)

)
= 0, i = 0, . . . , m − 1, c (Vm(t)Vm∗(t)) �= 0, (9)

where for any function f we define f∗(z) = f(1/z).1

1 Observe that for t ∈ T, f∗(t) = f(t).
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Knowing c, the problem is still to approximate h. The original approach [9,8] is
to construct an autoregressive (AR) approximant, i.e., one of the form Rm(z) =
Kzm/Ṽm(z) with K a constant and Vm the orthogonal polynomial with respect
to c. A relation similar to (4) can be derived, not for the transfer function h but
for “half the Fourier series” Ω(z) = c0 + 2

∑
k>0 ckzk.

We now give a generalization that results in an approximant Rm with a non-
constant numerator (ARMA model). Consider a sequence αk with |αk| < 1 for
all k. The classical AR case will pop up as the special situation where all αk = 0.
The αk will turn out to play a multiple role (i) as the zeros of the approximant
Rm, (ii) as the reciprocals of the poles of the orthogonal rational functions (which
generalize the orthogonal polynomials) and (iii) as the interpolation points for
the multipoint version of the approximation (4) to Ω.

Consider the kernel D(t, z) = (t+z)
(t−z) with formal expansion [4, p. 240]

D(t, z) = 1 + 2
∞∑

k=1

ak(t)zπk−1(z), ak(t) =
1

πk(t)
, πk(z) =

k∏

i=1

(z − αi). (10)

Then, assuming for simplicity of notation but without loss of generality, that∫ π

−π
|h(eiθ)|2dθ = 1, we get, at least formally,

Ω(z) =
∫ π

−π

D(eiθ, z)|h(eiθ)|2dθ = c0 + 2
∞∑

k=1

ckzπk−1(z),

c0 = 1, ck =
∫ π

−π

ak(eiθ)|h(eiθ)|2dθ, k = 1, 2, . . . .

(11)

Observe that if all αk = 0, then πk(z) = zk, and the ck are the trigonometric
moments, in other words the Fourier coefficients of |h(z)|2 for z ∈ T. Since the
definition of Ω does not depend on the choice of the αk, we can see that Ω(z) is
the same as introduced above. It is an analytic function in |z| < 1.

For general prefixed αk, let ak(t) be given by (10) and ck be given by (11).
One can define a linear functional c on the space L = span{1, a1(t), a2(t), . . .}
via c(ak) = ck, k = 0, 1, 2, . . .. For negative k, we set a−k = ak∗, so that c−k =
ck, and using partial fraction expansion, we may even assume that the linear
functional c is defined on L · L∗ = L + L∗ where L∗ = {f : f∗ ∈ L} by the
relation c(ak) = ck, k ∈ Z.

The sequence of orthogonal polynomials becomes a sequence of orthogonal
rational functions with polynomials as a special case. A sequence of rational
functions Vm(z) ∈ Lm = span{1, a1(z), . . . , am(z)} is called orthogonal with
respect to the moment functional c defined on L·L∗ as outlined above, provided
that Vm ∈ Lm \ Lm−1 and that the rational functions Vm satisfy the relations
(9) with ti replaced by the rational basis ai(t) = 1/πi(t) from (10). It turns out
that for m ≥ 1, the associated functions Wm defined by

Wm(z) = c
(
D(t, z)(Vm(t) − Vm(z))

)

also belong to Lm [4, Eq. (4.21)].
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Moreover one has interpolation properties of the following type [4, Theo-
rem 6.1.4]

Ω(z) − Wm(z)
Vm(z)

= zπm(z)g+(z), g+ analytic in |z| < 1

Ω(z) − Wm∗(z)
Vm∗(z)

= (zπm(z))∗g−(z), g− analytic in |z| > 1, including ∞.

The ratios are well defined because the linear functional is positive definite,
which implies that the zeros of Vm are all in |z| > 1 and hence, the zeros
of Vm∗ are all in |z| < 1. In case all αk = 0 (the polynomial or AR case),
we match the first m coefficients of the series expansion of Ω in z = 0 and
in z = ∞ respectively. In general, as the above interpolation properties show,
the AR interpolation conditions in z = 0 are replaced by ARMA interpolation
conditions in z = 0, α1, . . . , αm and the AR interpolation conditions in z = ∞
are distributed over the points z = ∞, 1/α1, . . . , 1/αm taking multiplicity into
account. This is multipoint moment matching.

To come to the original problem of approximating h itself, one makes use of
the determinant formula [4, Theorem 4.2.6]

1
2

(Wm(z)Vm∗(z) + Wm∗(z)Vm(z)) =
1 − |αm|2

(1/z − αm)(z − αm)
.

Recall that for z ∈ T, Ω(z) is the real part of |h(z)|2, in other words |h(eiω)|2 =
1
2 (Ω(eiω) + Ω∗(eiω)). It then follows, after dividing the previous relation for
z = eiω by Vm(z)Vm∗(z) = |Vm(z)|2, that

|h(eiω)|2 ≈
∣∣∣∣

K

(eiω − αm)Vm(eiω)

∣∣∣∣
2

=
∣∣∣∣
Kπm−1(eiω)

Pm(eiω)

∣∣∣∣
2

, Vm(eiω) =
Pm(eiω)
πm(eiω)

,

with K =
√

1 − |αm|2. Knowing that h is analytic in |z| > 1 if the system
is stable, we can approximate it by Kπm−1/Pm as described above. Note that
the αk which are chosen as the poles of space Lm of rational functions are
interpolation points when approximating Ω and that they now show up as the
zeros of the approximating transfer function.

3 Homogeneous Padé-Type Approximants Analytic
Outside the Unit Polydisk

To deal with multivariate polynomials and functions we switch between the
cartesian and the spherical coordinate system. The cartesian coordinates X =
(x1, . . . , xn) ∈ Cn are then replaced by X = (ξ1z, . . . , ξnz) with ξk ∈ C, z ∈ R

where the directional vector ξ = (ξ1, . . . , ξn) belongs to the unit sphere Sn =
{ξ : ||ξ||p = 1}. Here || · ||p denotes one of the usual Minkowski norms. While ξ
contains the directional information of X , the variable z contains the (possibly
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signed) distance information. With the multi-index κ = (κ1, . . . , κn) ∈ Nn the
notations Xκ, κ! and |κ| respectively denote

Xκ = xκ1
1 . . . xκn

n ,

κ! = κ1! . . . κn!,
|κ| = κ1 + . . . + κn,

and with X , we associate its signed distance

sd(X) = sgn(x1)||X ||p.

Note that it is always possible to choose ξ such that z = sd(X). For the sequel of

the discussion we need some more notation. We denote by C[ξ] := C[ξ1, . . . , ξn]
the linear space of n-variate polynomials in ξk with complex coefficients, by
C(ξ) := C(ξ1, . . . , ξn) the commutative field of rational functions in ξk with
complex coefficients, by C(ξ)[z] the linear space of polynomials in the variable z
with coefficients from C(ξ) and by C[ξ][z] the linear space of polynomials in the
variable z with coefficients from C[ξ].

Let us introduce the linear functional C acting on the signed distance variable
z as C(zi) = ci(ξ), where ci(ξ) is a homogeneous expression of degree i in the
ξk : ci(ξ) =

∑
|κ|=i cκξκ. Then C is a multivariate moment functional with mul-

tidimensional moments cκ. Multivariate orthogonality with respect to the linear
functional C can be defined [6]. The n-variate polynomials under investigation
here, are of the form

Vm(X) = Vm(z) =
m∑

i=0

Bm−i(ξ)zi, Bm−i(ξ) =
∑

|κ|=m−i

bκξκ.

The function Vm(X) is a polynomial of degree m in z with polynomial coefficients
from C[ξ]. The coefficients B0(ξ), . . . , Bm(ξ) are homogeneous polynomials in the
parameters ξk. The function Vm(X) does itself not belong to C[X ], but as Vm(X)
can be viewed as Vm(z), it belongs to C[ξ][z]. Therefore the function Vm(X) can
be coined a spherical polynomial: for every ξ ∈ Sn we can identify the function
Vm(X) with the polynomial Vm(z) of degree m in the variable z = sd(X).

With an arbitrarily chosen Vm(X) we can associate the function Wm−1(X)
defined by

Wm−1(X) = Wm−1(z) = C

(
Vm(t) − Vm(z)

t − z

)
.

One can show [2] that Wm−1(X) is a polynomial of degree m − 1 in z, but not
that it is a polynomial in X . Instead it belongs to C[ξ][z] and has the form

Wm−1(X) = Wm−1(z) =
m−1∑

i=0

Am−1−i(ξ)zi.
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For the polynomials Ṽm(X) and W̃m−1(X) defined by

Ṽm(X) = Ṽm(z) = zmVm(z−1) =
m∑

k=0

B̃k(ξ)zk =
m∑

k=0

⎛

⎝
∑

|κ|=k

b̃κXκ

⎞

⎠ ,

W̃m−1(X) = W̃m−1(z)=zm−1Wm−1(z−1)=
m−1∑

k=0

Ãk(ξ)zk =
m−1∑

k=0

⎛

⎝
∑

|κ|=k

ãκXκ

⎞

⎠ ,

and belonging to C[X ], it can be proved that [2]

(
fṼm − W̃m−1

)
(X) =

(
f Ṽm − W̃m−1

)
(z) =

∞∑

i=m

di(ξ)zi =
∞∑

i=m

⎛

⎝
∑

|κ|=i

dκXκ

⎞

⎠ .

As in (5)–(8), the linear functional C and the rational function W̃m−1/Ṽm(X)
can be generalized to C(k) and W̃m+k/Ṽm(X).

Now let us consider a multidimensional LSI system with IIR [7] and transfer
function H(X) = F (Y )/G(Y ) where F (Y ) and G(Y ) are polynomials in the
variables yi = x−1

i and Y = (y1, . . . , yn). In terms of the impulse response cκ

(without loss of generality we restrict ourselves to support on the first quadrant),
we have:

H(X) =
∞∑

|κ|=0

cκY κ.

The system is stable if G(Y ) has all its zeroes strictly inside the unit poly-
disc. A stable identification or model order reduction of H(X) can be given by
W̃m+k(Y )/Ṽm(Y ) provided Ṽm(Y ) has all its zeroes inside the unit polydisc [1].

Let us illustrate the above in the context of IIR filter design (n = 2). An ideal
lowpass filter can be specified by the frequency response (x1 = exp(it1), x2 =
exp(it2))

H
(
eit1 , eit2

)
=

{
1 (t1, t2) ∈ T ⊂ [−π, π] × [−π, π]
0 (t1, t2) �∈ T

where T is usually a symmetric domain. For T = [−π/8, π/8] × [−π/8, π/8] we
have for instance

cκ1,κ2 =
sin

(
π
8 κ1

)

πκ1

sin
(

π
8 κ2

)

πκ2
.

Let us in addition impose the quadrant symmetry conditions

W̃m+k

Ṽm

(
eit1 , eit2

)
=

W̃m+k

Ṽm

(
e−it1 , eit2

)
=

W̃m+k

Ṽm

(
eit1 , e−it2

)

=
W̃m+k

Ṽm

(
e−it1 , e−it2

)
.

Then with the choice

V2(Y ) = 1.94145z2 − 1.30911(ξ1 + ξ2)z + 0.340194(ξ2
1 + ξ2

2) + 0.000033ξ1ξ2
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Fig. 1. Frequency response W̃2(eit1 , eit2)/
Ṽ2(eit1 , eit2)
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Fig. 2. Contours of frequency response

which guarantees a stable filter, we find

W̃2(Y )
Ṽ2(Y )

=

303.351 + 91.0655(ξ1 + ξ2)z−1 + 126.936(ξ2
1 + ξ2

2)z−2 − 110.584ξ1ξ2z
−2

358.005 (1.94145 − 1.30911(ξ1 + ξ2)z−1 + 0.340194(ξ2
1 + ξ2

2)z−2 + 0.000033ξ1ξ2z−2)

The frequency response W̃2(eit1 , eit2)/Ṽ2(eit1 , eit2) is shown in Figure 1. The
contour lines |(W̃2/Ṽ2)(eit1 , eit2)| = 0.1 and |(W̃2/Ṽ2)(eit1 , eit2)| = 0.5 are shown
in Figure 2.
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