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Abstract

The discrete Fourier transform is one of the top
ten algorithms of the 20-th century, frequently
used in the analysis of signals. It is known to be
very stable and of low computational complexity.
When the bandwidth is large or the spectrum is
sparse, sampling at the Shannon-Nyquist rate may
however be prohibitive.

We propose a new hybrid technique that exploits
the spectral sparsity. Several shifted and decimated
but uniformly sampled data sets are collected. The
aliased discrete Fourier spectra are corrected for
the aliasing effect by a combination with Prony’s
method. In our approach both the decimation
factor and the time shift can be large and thus
violate the Shannon-Nyquist theorem.

The resulting technique delivers the same
accuracy as the non-decimated Fourier transform,
uses fewer samples and achieves a smaller
computational cost. Also, the method is suitable
for parallellization.
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1 Introduction

The Discrete Fourier Transform (DFT) is widely used
ever since the beginning of the digital era, especially in
digital signal processing. It is now possible to analyze
large streams of samples using procedures of low com-
putational complexity. Traditionally signals are ana-
lyzed that exhibit a dense structure in the frequency
domain. Recently the interest has shifted to the anal-
ysis of signals that have a sparse frequency represen-
tation [1].

*Correspondence: matteo.briani@uantwerpen.be

Universiteit Antwerpen, Middelheimlaan 1, Antwerp, BE

Full list of author information is available at the end of the article
†This research is supported by the Instituut voor Wetenschap en

Technology - IWT

In several applications a serious need arises to ex-
ploit this sparsity. For instance, high speed analog-to-
digital converters go hand in hand with a high cost
and high consumption but low bit resolution [2]. In
order to capture inputs within a wide spectral range,
the sparsity of the signal has to be exploited. An-
other domain is that of inverse source problems re-
lated to physics driven fields governed by linear par-
tial differential equations [3, 4]. These fields are of-
ten non-bandlimited and therefore require extremely
dense sampling to be in accordance with the classical
Shannon-Nyquist sampling theorem [5, 6].

So-called parametric methods [7, 8, 9], based on
Prony’s result [10], are an obvious choice to make
good use of sparsity in the frequency domain. The
frequency resolution of these methods is not bound
by the amount and time span of the available sam-
ples, unlike with Fourier methods. However, some ex-
tra care has to be taken because of their sensitivity to
noise [11]. We restrict ourselves here to a discussion of
sub-Nyquist sampling techniques that adhere to some
underlying uniform sampling scheme, which is in the
focus of our new approach. We do not compare our
contribution to methods containing a probabilistic el-
ement such as [12], where (pseudo)-random permuta-
tion is used, or [13] which is based on the compressed
sensing paradigm.

Several papers venture into uniform or regular sub-
Nyquist sampling. In [14] the DFT is computed from
fewer samples than required, collected at a rate that
does not obey the Shannon-Nyquist theorem, but the
spectral analysis suffers from aliasing. This is corrected
by means of an additional set of samples that is close
enough to the first one, meaning that the time shift
is smaller than the Nyquist sampling step. A result of
the same kind is presented in [15] where an alias free
DFT results from applying the Chinese remainder the-
orem to two sets of samples collected at sub-Nyquist
rates that are coprime. The concept of coprime sam-
plers is also used in [16] where two DFT filter banks
using different sampling rates are combined to achieve
a higher spectral accuracy than achieved by each filter
bank separately. In [17, 18] a sparse DFT is computed
from two sub-sampled signals differing by a time shift
of one Shannon-Nyquist step. In case a collision of fre-
quencies is detected as a result of possible aliasing,
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the implementation resolves it by using other subsam-
plings at coprime sampling rates. In [19] several DFT
are computed again with an offset of a single sample
respecting the Shannon-Nyquist bound. A parametric
method is involved to output the final spectral analy-
sis.

What underlies all of the above is that either cor-
pime sampling rates are used or a second set of time
shifted samples is collected where the time shift is
small enough. We generalize this approach in the sense
that we use only one sub-Nyquist sampling rate and
allow for a large time shift [20, 21] that need only be
coprime with the decimation factor used in the sub-
sampling. This larger offset evidently imposes less re-
strictions on the data acquisition process. If not ad-
dressed properly however, this extension introduces
additional aliasing in the time shifted spectral anal-
ysis. We combine the undersampled DFT result with
a Prony-related method because the latter arises nat-
urally when analyzing the time shifted signals. The
Prony systems are small in size and allow to resolve the
aliasing and identify the non-aliased frequencies. Also,
the method offers an easy way to deal with collisions.
This has mostly remained an open problem in other
approaches: here both the number of collisions and the
individual components can be unravelled. Also note
that the use of multiple decimation factors, as some-
times proposed in other sub-Nyquist methods, implies
that different collisions arise in the different decimated
sample sets, a problem that we can avoid with the cur-
rent technique.

The paper is organized as follows. The required no-
tation for subsampled and time shifted data is intro-
duced in Section 2 and their effect is discussed. In Sec-
tion 3 the core of our new technique is presented, while
we address the issue of frequency collision in Section
4. In Section 5 we explain the effect of noise on the
data and discuss the computational complexity of the
new method. Everything is illustrated on numerical
examples in Section 6, where we deal with synthetic
and noisy signals suffering from several collisions due
to the subsampling strategy.

2 Undersampling and time shifts

Let us consider a finite vector of samples x =
(x0, . . . , xN−1) of a complex-valued function X , col-
lected on a uniform time grid. The Discrete Fourier
Transform (DFT) coefficients X = (X0, . . . , XN−1)
are given by

Xj :=

N−1∑
l=0

xl exp(−2πilj/N),

j = 0, . . . , N − 1, i2 = −1.

The Fourier coefficient Xj represents the amount of
the specific complex exponential exp(−2πij/N) that
is present in the discrete signal x. We say that Xj

is associated to the frequency j, meaning to the as-
sociated complex exponential. The samples x can be
reobtained from the Fourier coefficients X using the
Inverse Discrete Fourier Transform (IDFT), as

xl :=
1

N

N−1∑
j=0

Xj exp(2πilj/N),

l = 0, . . . , N − 1. (1)

The Shannon-Nyquist theorem [5, 6] states that one
can exactly reconstruct bandlimited signals that have
the same bandwidth as the sampling rate. If the ana-
lyzed signal contains higher frequencies, then aliasing
is encountered. In Section 3 we explain how to tackle
this problem. If not stated otherwise, we assume that
the signal x satisfies the Shannon-Nyquist theorem.

We also assume that the signal x has a sparse rep-
resentation in the frequency domain, meaning that it
has only K � N non-vanishing Fourier coefficients
Xj1 , . . . , XjK , 1 ≤ k ≤ K. In case the signal is per-
turbed by noise, we set a threshold T ∈ R and we
assume that only K Fourier coefficients have an am-
plitude larger than T ,

|Xjk | ≥ T, k = 1, . . . ,K. (2)

We now consider the following (possibly sub-Nyquist)
undersampled version of the signal x consisting only
of samples xlu,

ux := (x0, 0, . . . , 0, xu, . . . , xN−u, 0, . . . , 0)

= (ux0, ux1, . . . , uxN−1) , N/u ∈ N

and denote the DFT of ux by uX. A larger distance be-
tween the samples implies that the highest retrievable
frequency is now smaller. Some coefficients

uXj =

N/u−1∑
l=0

xul exp(−2πiluj/N),

j = 0, . . . , N/u − 1

may have been associated with smaller frequencies.
Given a specific Fourier coefficient, there is no way
to know if it has been affected by aliasing or not: the
Fourier coefficient Xjk may now appear at a different
index j̃k. In particular

Xjk = uXj̃k
, jk = uj̃k mod N. (3)
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Moreover, it can happen that a non-vanishing Fourier
coefficient is mapped down to an exponential already
associated with another non-vanishing coefficient. In
that case the coefficient uXj̃k

is the sum of two or more
coefficients of the full-length DFT. We refer to this
phenomenon as frequency collision. In order to leave
the notation light, from here on we do not explicitly
put a tilde over the aliased indices. More on frequency
collision and the role of the Fourier leakage effect in
this respect is found in Section 4.

We denote a shifted version of the signal x by

sx :=
(
xs, x1+s, . . . , x(N−1)+s

)
= (sx0,

sx1, . . . ,
sxN−1) , s ∈ Z

where we take xl+λN = xl, λ ∈ N. With X and sX
respectively denoting the noise-free Fourier coefficients
computed from x and sx, we have

sXj =

N−1∑
l=0

sxl exp(−2πilj/N)

=

N−1−s∑
l=−s

sxl exp(−2πilj/N)

= exp(2πisj/N)×
N−1−s∑
l=−s

sxl exp(−2πilj/N) exp(−2πisj/N)

= exp(2πisj/N)×
N−1∑
l+s=0

xl+s exp(−2πi(l + s)j/N)

= exp(2πisj/N)Xj , j = 0, . . . , N − 1.
(4)

In other words, the shifted vector has the same Fourier
coefficients Xj multiplied by the complex exponential
exp(2πisj/N). In the time domain this corresponds to
a phase change of the signal. Analogously, in a collision
free context,

s
uXj = exp(2πisj/N) uXj , j = 0, . . . , N/u−1, (5)

meaning that each decimated shifted DFT equals uX
times a phase component. Moreover, (5) indicates that
in case of a frequency collision, the collision index re-
mains the same after the shift. Of course, if noise is
added to the Fourier coefficients, the relation between
sXj and Xj is not exact anymore due to the non-
periodicity of the noise. In Section 3 we use (5) to
resolve the aliasing issue.

Let us take a look at the particular samples x and
1x and compute their respective non-vanishing Fourier

coefficients Xjk and 1Xjk for k = 1, . . . ,K. When the
sampling was performed at Nyquist rate, then the di-
vision 1Xjk/Xjk delivers the associated exponential
exp(2πijk/N), as in [14] and [19]. More generally, for
s > 1 the division sXjk/Xjk delivers exp(2πisjk/N),
from which only a set of plausible solutions for the
associated exponential can be obtained, namely

Sjk := {Sjk,l, l = 0, . . . , s− 1} ,
Sjk,l := exp (2πisjk/N + 2πil/s) . (6)

It is not possible to know which of the exponentials in
Sjk is the correct one. However, the use of particular
values of u and s allows to answer this question.

3 Fixing aliasing

Each Fourier coefficient of an undersampled vector ux
may be affected by aliasing. A smart way of using the
parameters u and s can fix the aliasing. The key point
is to choose u and s to be coprime (for more general
choices we refer to [22]). The procedure goes as follows.

Calculate the DFT of ux and compute for each non-
vanishing Fourier coefficient uXjk the set

Ujk := {Ujk,l, l = 0, . . . , u− 1} ,
Ujk,l := exp (2πiujk/N + 2πil/u) .

Then consider the time-shifted vector of samples s
ux

and compute the Fourier coefficients s
uXjk . For each

non-vanishing jk the division s
uXjk/uXjk returns the

exponential exp(2πisjk/N) from which the set (6) fol-
lows. Now both Ujk and Sjk contain the non-aliased
exponential associated to the Fourier coefficient. Since
u and s are coprime, these two sets share one and
only one element which is the correct non-aliased ex-
ponential (see also [20, 21, 23] where the time shift
has appropriately been termed an identification shift).
Figure 1 summarizes the procedure.

Note that the set Sjk can also be obtained without
computing the DFT coefficients suX. From (1) the vec-
tor of s

uXjk/N, k = 1, . . . ,K can be obtained as the
solution of a Vandermonde structured linear system of
equations with coefficient matrix

V =



1 · · · 1

exp(2πiuj1/N) · · · exp(2πiujK/N)

exp(2πi2uj1/N) · · · exp(2πi2ujK/N)

...
...

exp(2πi(K − 1)uj1/N) · · · exp(2πi(K − 1)ujK/N)



and right hand side (xs, xu+s, . . . , x(K−1)u+s).
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To compute the intersection of the sets Ujk and Sjk ,
several ways can be used: either the distance between
the elements in the set, or the Euclidean algorithm, or
our robust matching technique. In the first approach
a distance matrix is built, containing all distances be-
tween elements of Ujk and elements in Sjk . The pair
for which the distance is minimal is then selected to
represent the true non-aliased exponential. Of course,
one can replace the distance ||Ujk,l − Sjk,m|| by the
inner product < Ujk,l, Sjk,m >, l = 0, . . . , u − 1,m =
0, . . . , s−1 and look for the maximum value, which is 1
in the ideal case. But when u and s increase, the com-
putational cost increases. In that case the Euclidean
algorithm offers an alternative. It states that for inte-
ger coprime u and s there exist (non-unique) integers
v and t such that uv + st = 1. Then

exp(2πiuvjk/N) exp(2πistjk/N)

= exp (2πi(uv + st)jk/N) = exp(2πijk/N)

returns the exponential we are looking for. The down-
side of this approach is the sensitivity to noise. In fact,
when computing exp(2πi(uv + st)jk/N) we are pow-
ering exp(2πiujk/N) and exp(2πisjk/N). Since both
these exponentials are corrupted by the noise present
in the Fourier coefficients, the noise is also powered, ex-
cept when the integers v and t have sufficiently small
absolute values.

To counter the latter, a third approach can be used.
Let uXjk denote a peak in the aliased DFT. Assume
that we in addition have several time shifted DFT
sh
u X,h = 1, . . . S at our disposal (usually S ≥ 3). In
Section 4 a similar need and use will arise. Also assume
that all sh are coprime with u. In order to identify the
correct exponential Ujk,l in the set Ujk we construct
for l = 0, . . . , u− 1 the products

uXjk (Ujk,l)
sh , h = 0, 1, . . . , S, s0 = 0

and compare these with the available sh
u Xjk , h =

0, . . . , S. For the comparison the inner product

〈shu Xjk , uXjk (Ujk,l)
sh〉

can be used. The correct Ujk,l is the one that returns
the largest inner product modulus.

4 Frequency collision

When no frequency collision occurs, the proposed
method guarantees the correct retrieval of the Fourier
coefficients affected by aliasing. However, this ideal sit-
uation rarely happens due to the Fourier leakage ef-
fect. Leakage appears when a component in the signal

x cannot exactly be represented by a single complex
exponential of the form exp(2πij/N), j ∈ N. In this
case, the specific frequency leaks to neighbouring fre-
quencies and it affects all Fourier coefficients [24]. The
effect is more evident in the Fourier coefficients near
the location of the exact frequency.

The situation becomes problematic in the undersam-
pled signal ux. Because of aliasing the Fourier coeffi-
cients are mapped to different complex exponentials.
Moreover, if we have leakage, frequency collisions may
occur because a component may have leaked over all
Fourier coefficients. This is limiting the applicability of
the proposed method because the division s

uXj/uXj

does not yield one exponential. The same limitation
exists in [14] and it is precisely our objective to show
how to deal with frequency collisions.

Let Xj1 and Xj2 be two non-vanishing Fourier coef-
ficients of the data vector x. We consider uX and we
assume that the two coefficients are colliding at the
index ĵ in uXĵ . We also compute s

uXĵ and recall from
(5) that the shift factor s does not influence the index
at which the frequencies are colliding. It only affects
the phase of the Fourier coefficient. When dividing, we
obtain

s
uXĵ

uXĵ

=
sXj1 + sXj2

Xj1 +Xj2

=
exp(2πisj1/N)Xj1 + exp(2πisj2/N)Xj2

Xj1 +Xj2

and we are unable to extract the complex exponen-
tials exp(2πisj1/N) and exp(2πisj2/N). We are thus
not able to fix the aliasing yet. But by combining with
an exponential analysis method based on Prony’s al-
gorithm, we can continue.

Let us consider the discrete signals ux,
s
ux, . . . ,

(M−1)s
u x

and their respective DFTs uX,
s
uX, . . . ,

(M−1)s
u X. The

frequencies j1 and j2 are still colliding at the index
ĵ of msu X and this for all m. Each Fourier coefficient
ms
u Xĵ equals

uXĵ = Xj1 +Xj2 ,

s
uXĵ = exp(2πisj1/N)Xj1

+ exp(2πisj2/N)Xj2 ,

...
ms
u Xĵ = exp(2πimsj1/N)Xj1

+ exp(2πimsj2/N)Xj2 ,

...

(M−1)s
u Xĵ = exp(2πi(M − 1)sj1/N)Xj1

+ exp(2πi(M − 1)sj2/N)Xj2 . (7)
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From (7) we can extract the exponentials exp(2πisj1/N)
and exp(2πisj2/N) using a Prony-like parametric
method such as [7, 8, 9]. More precisely, given the se-
quence msu Xĵ ,m = 0, . . . ,M−1, such a method returns
the coefficients Xj1 , Xj2 and their associated exponen-
tials exp(2πisj1/N), exp(2πisj1/N). Also note that the
frequency resolution of Prony-like methods is not re-
stricted to a pre-assigned grid. On the other hand, a
drawback of these methods is their susceptibility to
noise. In Section 5 we explain how to deal with noise.

Besides being able to separate colliding terms and
aliased frequencies, it is also important to have a test
for collision. In [14] the authors do not make use of
repeated shifts and cannot deal with collisions. They
check the necessary condition for a coefficient uXj to
be collision free, namely∣∣∣∣ suXj

uXj

∣∣∣∣ = |exp(2πisj/N)| = 1. (8)

It is however more reliable to analyze (7). Using the
ms
u Xĵ ,m = 0, . . . , (M − 1)s, the number of meaningful
components in uXĵ can be extracted from the singular
value decomposition (SVD) of a Hankel matrix built
with the ms

u Xĵ [25], thus detecting a collision. This is
illustrated in Section 6.

5 Handling noise

Let us summarize the algorithm. Given a signal x, we
fix an undersampling factor u, a shift s coprime with
u and a total number M of shift repetitions. Then we
compute the DFT vectors

uX,
s
uX, . . . ,

(M−1)s
u X.

The peaks of uX correspond to a sum of one or more
frequencies that may have collided because of possi-
ble aliasing. Each peak uXĵ generates a set Uĵ . For

a fixed peak index ĵ we inspect the coefficients in (7)
and extract the components

exp(2πisj1/N), exp(2πisj2/N), . . .

using a Prony-like method. The number of components
ν in the sum is also revealed by Prony’s method, as in-
dicated above, and the Fourier coefficients Xj1 , Xj2 , . . .
are obtained from the Vandermonde structured linear
system (7). Each of these components then brings forth
a set Sj1 , Sj2 , . . . which needs to be intersected with the
set of exponentials Uĵ to find the true location of the
non-aliased frequencies.

Now let the signal x be corrupted by complex white
Gaussian noise n = (n0, . . . , nN−1). We recall that the

signal is still considered K-sparse if the threshold T
introduced in Section 2 is such that (2) holds. Because
of the noise, the DFT are all corrupted and then so
are the peaks in (7). However, a connection between
Prony’s method and Padé approximation theory offers
a way to separate the noise from the true values msu Xĵ .
In fact, through the Z-transform the frequencies in the
exponential terms of (7) correspond to the poles in the
Padé approximant [ν − 1/ν](z) of degree ν − 1 in the
numerator and ν in the denominator for the partial
sum

M−1∑
m=0

ms
u Xĵz

−m, M ≥ 2ν.

From [26, 27, 28] we see that modelling (7) using more
than ν poles hugely improves the result. The extra
poles allow to model the noise and in doing so push the
poles corresponding to the actual frequencies closer to
their true locations. We thus approximate the ms

u Xĵ
with more exponential terms than needed, but the ad-
ditional terms serve to model the noise n. Of course,
this requires the collection of additional samples in (7),
in other words, the need of a larger M when replac-
ing ν by a larger value. The total number of required
shifted DFT vectors msu X depends on the SNR and the
number of components ν colliding in uXĵ . An example
illustrating the procedure is presented below.

Let us analyze the computational complexity of
the new strategy. The signal length is N and the
number of meaningful Fourier coefficients is K ≤
N . The undersampling rate u, the time shift s and
the number of shift repetitions M − 1 are provided
by the user. First the decimated DFTs ms

u X,m =
0, . . . ,M − 1 are computed with a computational cost
of O(MN/u log(N/u)). These DFTs contain at most
K meaningful Fourier coefficients, possibly less when
collisions occur (we neglect the fact that meaningless
coefficients may have collided and exceeded the thresh-
old T given in (2)). For each decimated Fourier coef-
ficient uXjk , k = 1, . . . ,K a Prony system of M equa-
tions (7) is solved for the (still aliased) composing fre-
quencies, using for instance the ESPRIT implementa-
tion of which the cost is dominated by the complexity
O(M3) of the singular value decomposition. Addition-
ally a Vandermonde linear system is solved in O(M2)
operations when exploiting the structure of the linear
system. The final identification of the intersection of
the sets Ujk and Sjk costs O(Kus) operations, leading
us to a grand total of

O(KM3 +MN/u log(N/u) +Kus).

We remark that larger values of the decimation fac-
tor u allow for the computation of smaller N/u sized
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DFTs, but at the cost of a possibly higher number of
collisions, which necessitates the choice of larger values
for M . On the other hand, smaller decimation factors u
leed to larger sized DFTs with less chance for collision
and hence no need for large M values.

Before proceeding with the numerical illustration we
point out some interesting computational aspects. The
method, as described above:
• immediately allows for M to be updated itera-

tively, and
• the Prony step in the procedure can easily be par-

allellized.
The former because increasing M merely implies that
more shifted ms

u X need to be collected and the Prony
step needs to be repeated. The latter because all the
peaks uXj for distinct j can be disentangled entirely
by independent Prony steps.

6 Numerical illustration

We generate a few synthetic signals following the
model

xl =

L∑
i=1

αi exp(2πiµil/N), l = 0, . . . , N−1. (9)

In the first example, containing three test signals, we
focus on the disentanglement of colliding frequencies.
The model parameters are as in Table 1. In the second
example we investigate the effect of a decreasing SNR,
in other words an increasing noise level, in addition to
disentangling a number of collisions. We have L = 8
with the phases and amplitudes randomly generated in
the interval [1, 3] and the other parameters as in Table
2.

For the three signals in Table 1, we set N = 1000
and the circular white Gaussian noise level to 30 dB.
If we choose u = 100, the actual sampling rate be-
comes 1000/100 = 10 which makes all frequencies col-
lide in the same Fourier bin at 5 Hz. But these col-
lisions can be resolved. We take s = 3 and M = 12.
With N = 1000 each DFT ms

u X,m = 0, . . . ,M − 1
is computed up to a length of N/u = 10 samples. In
Figure 2 at the left, one finds all 12 DFTs ms

u X for
each of the three signals. At the right the results using
on the one hand the standard DFT computed from
N = 1000 samples and on the other hand the output
of the proposed method are found. Figure 3 depicts
for each of the three signals the computed amplitudes
and the number of collided frequencies as indicated by
a singular value decomposition of the (M/2)× (M/2)
matrices involved in the Prony method [28].

In the second example N = 20000, u = 400 and the
level of the white Gaussian noise ranges up to −10

dB. We investigate the use of increasing M values,
namely M = 16, 24, 32. The L = 8 frequencies are
chosen so that they collide in 4 Fourier bins. For the
time offset we take s = 7. The results of the experiment
are reported in Figure 4. All the exponential terms are
retrieved correctly up to an SNR of 10 dB. Note that
the method becomes less prone to noise as the value
for M increases.

7 Conclusion

The newly proposed method belongs to the family of
sparse Fourier techniques, which are especially useful
when dealing with a sparse signal spectrum. Input are
several uniform u-fold downsampled data sets, which
are shifted with respect to each other by the same time
shift s. Here the time shift need not be bounded by the
Shannon-Nyquist interval, which poses less restrictions
on the data acquisition process. Also, all the downsam-
plings are done at the same possibly sub-Nyquist rate,
which implies that across the downsampled spectra the
same aliasing effects arise.

First, the aliased DFTs are computed from the
shifted downsampled data. Then, these DFT coeffi-
cients are reinterpreted in (7) as samples of a Prony
system. The aliasing is fixed and possible frequency
collisions are resolved by intersecting the frequency
output associated to the aliased DFT coefficient with
that associated to the aliased Prony system. To this
end u and s need to be chosen coprime. The size of
the Prony system, in other words the number of shift
repetitions, can be tuned to the noise level in the data.

Since the Prony systems are used to disentangle col-
lisions in a particular Fourier coefficient, the Prony
step in the procedure can easily be parallellized. In
the near future we plan to generalize the technique for
the computation of a multidimensional sparse Fourier
transform [29, 20, 21].
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dilatabilité des fluides élastiques et sur celles de la force expansive de

la vapeur de l’eau et de la vapeur de l’alkool, à différentes
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Figures

Figure 1 Schematic diagram of how to fix possible aliasing in
a DFT computed from sub-Nyquist sampling, where both
u > 1 and s > 1.

Figure 2 For the signals in Table 1: msu X,m = 0, . . . , 11 (left)
and output of the proposed hybrid method and the standard
DFT (right).

Figure 3 For the signals in Table 1: amplitudes retrieved by
the hrybrid method (top) and number of colliding components
indicated by the SVD (bottom).
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Figure 4 For the signal in Table 2: output of the hybrid
scheme for increasing noise levels (right to left) and growing
M values (top to bottom) compared to a noiseless DFT (far
left).

Table 1

Signal 1

µi αi

125 1

Signal 2

µi αi

125 165 1 eiπ/3

Signal 3

µi αi

125 165 245 1 eiπ/3 eiπ/4

Table 2

µi -6155.93 -4055.92 -2005.99 -47.97

242.01 642.05 7310.07 8110.05

αi random in [1, 3] + i[1, 3]


