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I ntroduction

Special functions are pervasive in all fields of science
and industry. The most well-known application areas
are in physics, engineering, chemistry, computer sci-
ence and statistics. Because of their importance, sev-
eral books and a large collection of papers have been
devoted to algorithms for the numerical computation of
these functions.

Virtually all present-day computer systems, from per-
sonal computers to the largest supercomputers, imple-
ment the IEEE 64-bit floating-point arithmetic standard,
which provides 53 binary or approximately 16 deci-
mal digits accuracy. For most scientific applications,
this is more than sufficient. However, for a rapidly ex-
panding body of applications, 64-bit IEEE arithmetic
is no longer sufficient. These range from some inter-
esting new mathematical investigations to large-scale
physical simulations performed on highly parallel su-
percomputers. Moreover in these applications, portions
of the code typically involve numerically sensitive cal-
culations, which produce results of questionable accu-
racy using conventional arithmetic. These inaccurate
results may in turn induce other errors, such as taking
the wrong path in a conditional branch. Such blocks of
code benefit enormously from a combination of reliable
numeric techniques and the use of high-precision arith-
metic. Indeed, the aim of reliable numeric techniques is
to deliver, together with the computed result, a guaran-
teed upper bound on the total error or, equivalently, to
compute an enclosure for the exact result.

Instead of high accuracy, some applications only re-
quire a very modest but guaranteed number of signifi-
cant digits. These applications can profit from a reliable
implementation with scalable precision. For instance,
in electromagnetic simulation models the required ac-
curacy is usually in the order of only 2 to 3 significant
digits.

Up to this date, even environments such as Maple,
Mathematica, MATLAB and libraries such as IMSL,
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CERN and NAG offer no routines for the reliable eval-
uation of special functions. The following quotes con-
cisely express the need for new developments in the
evaluation of special functions:

e “Algorithms with strict bounds on truncation and
rounding errors are not generally available for
special functions. These obstacles provide an op-
portunity for creative mathematicians and com-
puter scientists.” Dan Lozier, general director of
the DLMF project, and Frank Olver [2].

e “The decisions that go into these algorithm de-
signs — the choice of reduction formulae and in-
terval, the nature and derivation of the approxima-
tions — involve skills that few have mastered. The
algorithms that MATLAB uses for gamma func-
tions, Bessel functions, error functions, Airy func-
tions, and the like are based on Fortran codes writ-
ten 20 or 30 years ago.Cleve Moler, founder of
MATLAB [5].

Implementing a Function Library

The realization of a machine implementation of a func-
tion f(x) is a three-step process.

1. For a given argument, the evaluationf (z) is often
reduced to the evaluation ¢f for another argument
lying within specified bounds and for which there ex-
ists an easy relationship betwegfx) and f(z). For
instance, for the exponential function in a basén-
plementation,

Although the given argument is known exactly, be-
cause it is a given floating-point number, usually the
reduced argumernt cannot be computed exactly, but is
subject to a rounding error. The issue of argument re-
duction is a topic in its own right and mostly applies to
only the simplest transcendental functions such as the
elementary functions.

2. After the reduced argument is determined, the math-
ematical modeF’ for f is constructed and a truncation

error
f(z) — F()|
|f(2)]
comes into play, which needs to be bounded.
3. When implemented, in other words evaluated as
F(z), this mathematical model is also subject to a
rounding error
|F(z) —F(2)|
f@

which needs to be controlled.



Finally the effect of switching from the argumentto
the reduced argumeri must be taken into account.
This introduces a final additional error.

Toolkit for a Reliable Library

The technique to provide a floating-point mode{z)

of a function f(z) differs substantially when going
from a fixed finite precision context to a finite multi-
precision context. In the former, the aim is to provide
an optimal mathematical model, valid on a reduced ar-
gument range and requiring as few operations as possi-
ble. Here optimal means that, in relation to the model’s
complexity, the truncation error is as small as it can get.
The total relative error should not exceed a prescribed
threshold, round-off error and possible argument reduc-
tion effect included. In the latter, the goal is to provide
a more generic technique, from which an approximant
yielding the user-defined accuracy, can be dedwted
runtime Hence best approximants are not an option
since these models have to be recomputed every time
the precision is altered and a function evaluation is re-
guested. At the same time the generic technique should
generate an approximant of as low complexity as possi-
ble.

We aim, on the one hand, at a generic technique suitable
for use in a multiprecision context, which on the other
hand, is efficient enough to compete with the traditional
hardware algorithms. We also want our implementation
to be reliable, in the sense that a sharp interval enclosure
for the requested function evaluation is returned without
any additional cost.

Besides series representations, continued fraction-repre
sentations of functions can be very helpful in the mul-
tiprecision context. A lot of well-known constants in
mathematics, physics and engineering, as well as el-
ementary and special functions enjoy very nice and
rapidly converging continued fraction representations.
In addition, many of these fractions are limit-periodic,
meaning that the partial numerators and denominators
converge.

It is well-known that the tail or rest term of a conver-
gent Taylor series expansion converges to zero. It is
less well-known that the tail of a convergent contin-
ued fraction representation does not need to converge
to zero; it does not even need to converge at all. In or-
der to develop a useful continued fraction technique, we
first need to obtain sharp a priori truncation error esti-
mates for a general class of continued fractions, taking
into account that a suitable approximation of the disre-
garded continued fraction tail may speed up the conver-
gence of the continued fraction approximants. Hence
the truncation error estimate needs to be valid for use
with nonzero continued fraction tail estimates. Such es-
timates are developed in the framework of this project
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[3]. The rounding error involved can subsequently be
bounded by a classical result obtained in [4].

Special Function Coverage

The implementation will be made available in two
forms: as a C/€ library and as a Maple library. Both
will make use of the fully IEEE 754-854 compliant mul-
tiprecision librarypl eee, in which the user can select
the base3, precisiont and exponent randé., U] of the
computations. We aim, for the evaluation of all func-
tions, at a relative erroif (x) — F(x)|/|f(x)| bounded
above by 1 ULP (Unit-in-the-Last-Place) gr(¢—1).

Which special functions will be supported? Among the
special functions that enjoy rapidly converging limit-
periodic continued fraction representations are the ones
listed in the table below. In the column markég, we
indicate whether the standard work [1] contains at least
one continued fraction representation for the function
in question. The second column, markeeHB, tells us
whether our new handbook [3] contains a useful contin-
ued fraction representation for the purpose. In the third
column we have added for which special functions an
implementation isy) or will be (v"*) available soon.

As| CFHB | ®
elementary functions v’ v v
Y1(2), ¥a(2) v v
v(a, z) v v
I'(a,2) v v v
erf(z) v v v
erfc(z) v v
C(z), S(z) (Fresnel) v
En(2) S| ov | v
oF1(a,b;c; 2) v v
1F1 (a; b; Z) v v
J,(z) (Bessel) | v oV
I,(z) (Bessel) v |
I(a,b) (beta) Sl ov |
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