
Reliable Multiprecision Evaluation of
Special Functions

Stefan Becuwe1, Annie Cuyt
Departement Wiskunde en Informatica,

Universiteit Antwerpen,
Middelheimlaan 1, B-2020 Antwerpen, Belgium;

{stefan.becuwe, annie.cuyt}@ua.ac.be

Introduction

Special functions are pervasive in all fields of science
and industry. The most well-known application areas
are in physics, engineering, chemistry, computer sci-
ence and statistics. Because of their importance, sev-
eral books and a large collection of papers have been
devoted to algorithms for the numerical computation of
these functions.
Virtually all present-day computer systems, from per-
sonal computers to the largest supercomputers, imple-
ment the IEEE 64-bit floating-point arithmetic standard,
which provides 53 binary or approximately 16 deci-
mal digits accuracy. For most scientific applications,
this is more than sufficient. However, for a rapidly ex-
panding body of applications, 64-bit IEEE arithmetic
is no longer sufficient. These range from some inter-
esting new mathematical investigations to large-scale
physical simulations performed on highly parallel su-
percomputers. Moreover in these applications, portions
of the code typically involve numerically sensitive cal-
culations, which produce results of questionable accu-
racy using conventional arithmetic. These inaccurate
results may in turn induce other errors, such as taking
the wrong path in a conditional branch. Such blocks of
code benefit enormously from a combination of reliable
numeric techniques and the use of high-precision arith-
metic. Indeed, the aim of reliable numeric techniques is
to deliver, together with the computed result, a guaran-
teed upper bound on the total error or, equivalently, to
compute an enclosure for the exact result.
Instead of high accuracy, some applications only re-
quire a very modest but guaranteed number of signifi-
cant digits. These applications can profit from a reliable
implementation with scalable precision. For instance,
in electromagnetic simulation models the required ac-
curacy is usually in the order of only 2 to 3 significant
digits.
Up to this date, even environments such as Maple,
Mathematica, MATLAB and libraries such as IMSL,

1The author is supported by the Institute for the Promotion of
Innovation through Science and Technology in Flanders.

CERN and NAG offer no routines for the reliable eval-
uation of special functions. The following quotes con-
cisely express the need for new developments in the
evaluation of special functions:

• “Algorithms with strict bounds on truncation and
rounding errors are not generally available for
special functions. These obstacles provide an op-
portunity for creative mathematicians and com-
puter scientists.” Dan Lozier, general director of
the DLMF project, and Frank Olver [2].

• “The decisions that go into these algorithm de-
signs — the choice of reduction formulae and in-
terval, the nature and derivation of the approxima-
tions — involve skills that few have mastered. The
algorithms that MATLAB uses for gamma func-
tions, Bessel functions, error functions, Airy func-
tions, and the like are based on Fortran codes writ-
ten 20 or 30 years ago.”Cleve Moler, founder of
MATLAB [5].

Implementing a Function Library

The realization of a machine implementation of a func-
tion f(x) is a three-step process.
1. For a given argumentx, the evaluationf(x) is often
reduced to the evaluation off for another argument̃x
lying within specified bounds and for which there ex-
ists an easy relationship betweenf(x) andf(x̃). For
instance, for the exponential function in a baseβ im-
plementation,

exp(x) = βk exp(x̃),

x̃ = mod(x, lnβ), |x̃| ≤ ln
β

2
.

Although the given argumentx is known exactly, be-
cause it is a given floating-point number, usually the
reduced argument̃x cannot be computed exactly, but is
subject to a rounding error. The issue of argument re-
duction is a topic in its own right and mostly applies to
only the simplest transcendental functions such as the
elementary functions.
2. After the reduced argument is determined, the math-
ematical modelF for f is constructed and a truncation
error

|f(x̃) − F (x̃)|

|f(x̃)|

comes into play, which needs to be bounded.
3. When implemented, in other words evaluated as
F(x̃), this mathematical model is also subject to a
rounding error

|F (x̃) − F(x̃)|

|f(x̃)|
,

which needs to be controlled.

14

Finally the effect of switching from the argumentx to
the reduced argument̃x must be taken into account.
This introduces a final additional error.

Toolkit for a Reliable Library

The technique to provide a floating-point modelF (x)
of a function f(x) differs substantially when going
from a fixed finite precision context to a finite multi-
precision context. In the former, the aim is to provide
an optimal mathematical model, valid on a reduced ar-
gument range and requiring as few operations as possi-
ble. Here optimal means that, in relation to the model’s
complexity, the truncation error is as small as it can get.
The total relative error should not exceed a prescribed
threshold, round-off error and possible argument reduc-
tion effect included. In the latter, the goal is to provide
a more generic technique, from which an approximant
yielding the user-defined accuracy, can be deducedat
runtime. Hence best approximants are not an option
since these models have to be recomputed every time
the precision is altered and a function evaluation is re-
quested. At the same time the generic technique should
generate an approximant of as low complexity as possi-
ble.
We aim, on the one hand, at a generic technique suitable
for use in a multiprecision context, which on the other
hand, is efficient enough to compete with the traditional
hardware algorithms. We also want our implementation
to be reliable, in the sense that a sharp interval enclosure
for the requested function evaluation is returned without
any additional cost.
Besides series representations, continued fraction repre-
sentations of functions can be very helpful in the mul-
tiprecision context. A lot of well-known constants in
mathematics, physics and engineering, as well as el-
ementary and special functions enjoy very nice and
rapidly converging continued fraction representations.
In addition, many of these fractions are limit-periodic,
meaning that the partial numerators and denominators
converge.
It is well-known that the tail or rest term of a conver-
gent Taylor series expansion converges to zero. It is
less well-known that the tail of a convergent contin-
ued fraction representation does not need to converge
to zero; it does not even need to converge at all. In or-
der to develop a useful continued fraction technique, we
first need to obtain sharp a priori truncation error esti-
mates for a general class of continued fractions, taking
into account that a suitable approximation of the disre-
garded continued fraction tail may speed up the conver-
gence of the continued fraction approximants. Hence
the truncation error estimate needs to be valid for use
with nonzero continued fraction tail estimates. Such es-
timates are developed in the framework of this project

[3]. The rounding error involved can subsequently be
bounded by a classical result obtained in [4].

Special Function Coverage

The implementation will be made available in two
forms: as a C/C++ library and as a Maple library. Both
will make use of the fully IEEE 754-854 compliant mul-
tiprecision libraryMpIeee, in which the user can select
the baseβ, precisiont and exponent range[L,U] of the
computations. We aim, for the evaluation of all func-
tions, at a relative error|f(x) − F(x)|/|f(x)| bounded
above by 1 ULP (Unit-in-the-Last-Place) orβ−(t−1).
Which special functions will be supported? Among the
special functions that enjoy rapidly converging limit-
periodic continued fraction representations are the ones
listed in the table below. In the column markedAS, we
indicate whether the standard work [1] contains at least
one continued fraction representation for the function
in question. The second column, markedCFHB, tells us
whether our new handbook [3] contains a useful contin-
ued fraction representation for the purpose. In the third
column we have added for which special functions an
implementation is (X) or will be (X*) available soon.

AS CFHB
elementary functions X X X

ψ1(z), ψ2(z) X X
*

γ(a, z) X X

Γ(a, z) X X X

erf(z) X X X

erfc(z) X X

C(z), S(z) (Fresnel) X

En(z) X X X

2F1(a, b; c; z) X X

1F1(a; b; z) X X

Jν(z) (Bessel) X X X
*

Iν(z) (Bessel) X X
*

Ix(a, b) (beta) X X X*

References

[1] M. Abramowitz and I. A. Stegun, editors.Handbook
of mathematical functions with formulas, graphs, and
mathematical tables, volume 55 ofNIST. 1964.

[2] B. A. Cipra. A new testament for special functions?
SIAM News, 31(2), 1998.

[3] A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. B.
Jones, and C. Bonan-Hamada.Handbook of continued
fractions for special functions. Kluwer Academic Pub-
lishers, 2006.

[4] W. B. Jones and W. J. Thron. Numerical stability in eval-
uating continued fractions.Math. Comp., 28:795–810,
1974.

[5] C. Moler. The tetragamma function and numerical craft-
manship.MATLAB News & Notes, 2002.

15

