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It is well-known that the denominators of Pade� approximants can be considered
as orthogonal polynomials with respect to a linear functional. This is usually shown
by defining Pade� -type approximants from so-called generating polynomials and
then improving the order of approximation by imposing orthogonality conditions
on the generating polynomials.

In the multivariate case, a similar construction is possible when dealing with the
multivariate homogeneous Pade� approximants introduced by the second author.
Moreover it is shown here, that several well-known properties of the zeroes of
classical univariate orthogonal polynomials, in the case of a definite linear func-
tional, generalize to the multivariate homogeneous case. For the multivariate
homogeneous orthogonal polynomials, the absence of common zeroes is translated
to the absence of common factors. � 2001 Academic Press

Key Words: orthogonal polynomials; multivariate; zero properties; Pade� -type
approximants.

1. THE UNIVARIATE SITUATION

It has been well-known for a long time that denominators of Pade�
approximants can be considered as orthogonal polynomials with respect
to a linear functional. This is usually shown by defining Pade� -type
approximants from so-called generating polynomials and then improving
the order of approximation by imposing orthogonality conditions on the
generating polynomials.

Assume you are given a series development

f (t)= :
�

i=0

ci ti.
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By defining the linear functional c acting on the space of univariate polyno-
mials as

c(xi)=ci

f (t) can formally be rewritten as

f (t)=c \ 1
1&xt+ .

Now take any polynomial Vm (t) of degree m and define its associated
polynomial

Wm (t)=c \Vm (x)&Vm (t)
x&t +

which is then a polynomial of degree m&1. Then for

V� m(t)=tmVm (t&1)

W� m(t)=tm&1Wm (t&1)

the Pade� -type approximation conditions

( fV� m&W� m)(t)= :
�

i=m

di t i

hold. If we do not choose Vm randomly, but impose the conditions

c(xiVm (x))=0 i=0, ..., m&1 (1)

then Vm (t) is called the orthogonal polynomial of degree m with respect
to the functional c (the conditions under which Vm can be computed from
(1) are well-known [3]). For Vm (t) satisfying (1) the Pade� approximation
conditions

( fV� m&W� m)(t)= :
�

i=2m

d i t i

hold (here Vm (t) is normalized such that it is monic). The Pade� -type and
Pade� approximants for f of degree m&1 in the numerator and m in the
denominator are usually denoted by (m&1�m) f and [m&1�m] f respec-
tively.
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The construction of the Pade� -type and Pade� approximants (m+k�m) f

and [m+k�m] f with k�&1 explained next, follows the same lines. The
series for f (t) can be written as

f (t)= :
k

i=0

ci ti+tk+1fk (t)

with

fk (t)= :
k

i=0

ck+1+i ti.

If we define the functional c(k+1) by

c(k+1) (xi)=ck+1+i

and the polynomials

W (k+1)
m (t)=c(k+1) \Vm (x)&Vm (t)

x&t +
W� (k+1)

m (t)=V� m (t) :
k

i=0

ci ti+tk+1tm&1W (k+1)
m (t&1)

then

( fV� m&W� (k+1)
m )(t)= :

�

i=m+k+1

di ti

and so everything remains valid with the functional c replaced by c(k+1).
Note that

(m+k�m) f (t)=
W� (k+1)

m

V� m

(t)= :
k

i=0

ci ti+tk+1 (m&1�m) fk (t).

The additional conditions on Vm necessary for the construction of the Pade�
approximant [m+k�m] f are

c(k+1) (xiVm (x))=0 i=0, ..., m&1 (2)

and we shall denote polynomials Vm satisfying (2) by V (k+1)
m so that

[m+k�m] f=W� (k+1)
m �V� (k+1)

m . The ratio W� m �V� m which was introduced for
the special case k=&1, will usually be denoted by W� (0)

m �V� (0)
m . The same

holds for the functional c that can be denoted by c(0).
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2. THE MULTIVARIATE HOMOGENEOUS SITUATION

In the multivariate case, a similar construction is possible to obtain the
multivariate homogeneous Pade� approximants [m+k�m] f

H introduced by
Cuyt in [5]. We give a different and slightly more elegant presentation
than the one in [1, 2, 8]. We restrict our description to the bivariate case
only for the reason of notational simplicity.

Assume you are given a bivariate series development

f (t, s)= :
�

i, j=0

cij tis j.

For completeness we repeat that the multivariate homogeneous Pade�
approximant [m&1�m] f

H is defined as the irreducible form of Pm&1, m �
Qm&1, m with

Pm&1, m (t, s)= :
(m&1) m+m&1

i+ j=(m&1) m

aij t is j

Qm&1, m (t, s)= :
(m&1) m+m

i+ j=(m&1) m

bij t is j (3)

( fQm&1, m&Pm&1, m)(t, s)= :
�

i+ j=(m&1) m+2m

dij t is j.

One of the great advantages of this homogeneous definition is that it
results in a unique irreducible form, whatever solution of (3) is considered.
Note that the numerator and denominator polynomials Pm&1, m (t, s) and
Qm&1, m (t, s) start with terms of degree (m&1) m instead of with a con-
stant term. When computing [m&1�m] f

H , in other words taking the
irreducible form of Pm&1, m �Qm&1, m , the numerator and denominator poly-
nomials of [m&1�m] f

H may start with a constant term but this is not
guaranteed. If we denote the order of the denominator polynomial of
[m&1�m] f

H (lowest homogeneous degree of its terms) by 2m then

0�2m�(m&1) m

and we can show that the order of the numerator polynomial of
[m&1�m] f

H is at least 2m . In the rest of the text 2m=(m&1) m is used.
By defining the linear functional C acting on the space of bivariate

polynomials, as

\i+ j
j + C(xiy j)=cij
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the bivariate series can formally be rewritten as

f (t, s)=C \ 1
1&xt& ys+ .

By introducing the notations

(t, s)=(*1u, *2u) t, s, u # C *=(*1 , *2) # C2 &*&p=1

Ci (t, s)= :
i

j=0

ci& j, j t i& js j

ci (*)= :
i

j=0

ci& j, j* i& j
1 * j

2

ai (*)= :
i

j=0

a i& j, j* i& j
1 * j

2

bi (*)= :
i

j=0

b i& j, j* i& j
1 * j

2

di (*)= :
i

j=0

d i& j, j* i& j
1 * j

2 ,

where & }&p is one of the Minkowski-norms on C2, we can rewrite the series
development as

f (t, s)= :
�

i=0

Ci (t, s)

= :
�

i=0

ci (*) ui

and (3) as

Pm&1, m (*1u, *2 u)= :
(m&1) m+m&1

i=(m&1) m

ai (*) ui

Qm&1, m (*1u, *2 u)= :
(m&1) m+m

i=(m&1) m

bi (*) ui (4)

( fQm&1, m&Pm&1, m)(*1u, *2 u)= :
�

i=(m&1) m+2m

di (*) ui.
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With the introduction of the functional 1 acting on the variable z, as

1(zi)=ci (*)

the series can now formally also be viewed as

f (t, s)= f (*1 u, *2 u)=1 \ 1
1&zu+ . (5)

This new view on the multivariate problem in which the cartesian coor-
dinates (t, s) are replaced by the coordinates *=(*1 , *2) and u, with
&*&p=1 will turn out to be a powerful tool in the sequel of the text. It is
strongly linked to the following two features of homogeneous multivariate
Pade� approximants:

v the most striking element in the definition (4) of the homogeneous
multivariate Pade� approximant [m+k�m] f

H is that this definition coincides
with that of the univariate Pade� approximant if you discard the shift in the
numerator and denominator degrees and replace the homogeneous expres-
sions by monomials [4, 6];

v the homogeneous Pade� approximants apparently satisfy a very
strong projection property that we want to exploit here, reducing to
univariate Pade� approximants on every straight line through the origin
[6], namely

[m+k�m] f
H (*1 t, *2 t)=[m+k�m] f*1

, *2 (t)

with

f*1 , *2
(t)= f (*1t, *2 t).

In order to clarify the presentation and underline the similarity with the
univariate case we again start with the construction of the homogeneous
Pade� -type approximants (m&1�m) f

H and shall only afterwards deal with
the more general (m+k�m) f

H .
Let us first introduce some notations. We denote by C[u] the linear

space of polynomials in the variable u with complex coefficients, by
C[*1 , *2] the linear space of bivariate polynomials in *1 and *2 with com-
plex coefficients, by C(*1 , *2) the commutative field of rational functions in
*1 and *2 with complex coefficients, by C(*1 , *2)[u] the linear space of
polynomials in the variable u with coefficients from C(*1 , *2) and by
C[*1 , *2][u] the linear space of polynomials in the variable u with coef-
ficients from C[*1 , *2].
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For chosen m and 2m defined above, we take any function Vm (t, s) of
the form

Vm (t, s)=Vm (u)= :
m

i=0

B2m+m&i (*) ui

(6a)

B2m+m&i (*)= :
2m+m&i

j=0

b2m+m&i& j, j*2m+m&i& j
1 * j

2

defined parametrically in terms of the coefficients blj with l+ j ranging
from 2m to 2m+m. The function Vm (t, s) is a polynomial of degree m in
u with homogeneous polynomial coefficients from C[*1 , *2]. We define

Wm (t, s)=Wm (u)=1 \Vm (z)&Vm (u)
z&u +

which is then of the form

Wm (t, s)=Wm (u)= :
m&1

i=0

A2m+m&1&i (*) u i

(6b)

A2m+m&1&i (*)= :
m&1&i

j=0

B2m+m&1&i& j (*) cj (*).

Note that Vm (t, s) and Wm (t, s) do not necessarily belong to C[t, s]
anymore because the homogeneous degree in *1 and *2 doesn't equal the
degree in u. Instead they belong to C[*1 , *2][u]. In the remainder of the
text we will use both the notations Vm (t, s) and Vm (u) interchangeably to
refer to (6a) and analogously for (6b). For

V� m (t, s)=V� m (u)

=u2m+mVm (u&1)

= :
m

i=0

B2m+i (*) u2m+i

= :
m

i=0

:
2m+i

j=0

b2m+i& j, jt2m+i& js j

W� m (t, s)=W� m (u)

=u2m+m&1Wm (u&1)

= :
m&1

i=0

A2m+i (*) u2m+i

= :
m&1

i=0

:
2m+i

j=0

a2m+i& j, j t2m+i& js j

7MULTIVARIATE HOMOGENEOUS ORTHOGONAL POLYNOMIALS



the Pade� -type approximation conditions

( fV� m&W� m)(t, s)=( fV� m&W� m)(u)

= :
�

i=2m+m

di (*) ui

= :
�

i=2m+m \ :
i

j=0

d i& j, j ti& js j+
hold, where as in (6) the subscripted function di (*) is a homogeneous func-
tion of degree i in *1 and *2 . We remark here that V� m (t, s) and W� m (t, s)
again belong to C[t, s] contrary to Vm (t, s) and Wm (t, s). As in (1), if the
function Vm (t, s), say the polynomial Vm (u), is not chosen randomly, but
if it satisfies the additional orthogonality conditions

1(ziVm (z))=0 i=0, ..., m&1 (7)

then the Pade� approximation conditions

( fV� m (t, s)&W� m (t, s))=( fV� m&W� m)(u)

= :
�

i=2m+2m

di (*) u i

= :
�

i=2m+2m \ :
i

j=0

di& j, j t i& js j+
are satisfied and W� m (u)�V� m (u) equals the homogeneous Pade� approximant
[m&1�m] f

H [2]. As in the univariate case the orthogonality conditions
(10) only determine Vm (u) up to a kind of normalization: m+1 polyno-
mial coefficients B2m+m&i (*) must be determined from m conditions. How
this is solved, is explained below.

With the ci (*) we now define the polynomial Hankel determinants

H (0)
m (*)= }

c0 (*)
b

cm&1 (*)

} } }
. . .

} } }

cm&1 (*)
cm (*)

b

c2m&2 (*)
} H (0)

0 (*)=1

generalizing the classical Hankel determinants as defined in [7]. We also
call the functional 1 definite if

H (0)
m (*)�0 m�0.
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In the remainder of the text we shall assume that Vm (u) satisfies (10) and
that 1 is a definite functional. Also we shall assume that Vm (u) as given by
(6a) is primitive, meaning that its polynomial coefficients B2m+m&i (*) are
relatively prime. This last condition can always be satisfied, because for a
definite functional 1 solution of (10) is given by [2]

Vm (u)=
1

p (0)
m (*) }

c0 (*)
b

cm&1 (*)
1

} } }
. . .

u

cm&1 (*)

} } }
} } }

cm (*)
b

c2m&1 (*)
um } V0 (u)=1, (8)

where the polynomial p (0)
m (*) is a polynomial greatest common divisor of

the polynomial coefficients of the powers of u. Clearly (8) completely deter-
mines Vm (u) and consequently Vm (t, s).

As in the univariate situation the functional 1 (k+1) can be defined by

1 (k+1) (zi)=ck+1+i (*)

and 1 can be replaced by 1 (k+1) for the construction of homogeneous
Pade� approximants [m+k�m] f

H with k�&1. The shift in the numerator
and denominator degrees of [m+k�m] f

H then satisfies

0�2 (k+1)
m �(m+k) m

and the numerator and denominator of [m+k�m] f
H are respectively

denoted by W� (k+1)
m (t, s) = W� (k+1)

m (u) and V� (k+1)
m (t, s) = V� (k+1)

m (u). We
denote by p (k+1)

m (*) a polynomial greatest common divisor of the polyno-
mial coefficients of ui, i=0, ..., m in the determinant

}
ck+1 (*)

b

ck+m (*)
1

} } }
. . .

u

ck+m (*)

} } }
} } }

ck+m+1 (*)
b

ck+2m (*)
um }

and identify Wm�Vm and 1 respectively with W (0)
m �V (0)

m and 1 (0). It is then
easy to check that V (k+1)

m given by

V (k+1)
m (u)=

1
p (k+1)

m (*) }
ck+1 (*)

b

ck+m (*)
1

} } }
. . .

u

ck+m (*)

} } }
} } }

ck+m+1 (*)
b

ck+2m(*)
um }

V (k+1)
0 (u)=1 (9)
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one has

1 (k+1) (uiV (k+1)
m (u))=0 i=0, ..., m&1 (10)

1 (k+1) (umV (k+1)
m (u))

=1 (k+1) \ 1
p (k+1)

m (*) }
ck+1 (*)

b

ck+m (*)
um

} } }
. . .

um+1

ck+m (*)

} } }
} } }

ck+m+1 (*)
b

ck+2m (*)
u2m }+

=
1

p (k+1)
m (*) }

ck+1 (*)
b

ck+m (*)
ck+m+1 (*)

} } }
. . .

ck+m+2 (*)

ck+m (*)

} } }
} } }

ck+m+1 (*)
b

ck+2m (*)
ck+2m+1 (*)

}
=

H (k+1)
m+1 (*)

p (k+1)
m (*)

. (11)

To conclude this section we summarize the most important results.

Summary
(a) For the bivariate series f (t, s) and for k�&1 holds

[m+k�m] f
H (t, s)=

W� (k+1)
m (t, s)

V� (k+1)
m (t, s)

.

(b) For the monic univariate polynomial Vm (u) satisfying (1) and
for the bivariate polynomial Vm (t, s)=Vm (u) given by (8) with (t, s)=
(*1u, *2 u) holds

H (0)
m (*1 , *2) Vm (u)= p (0)

m (*1 , *2) Vm (*1u, *2 u)= p (0)
m (*1 , *2) Vm (u).

This last property can be seen as a projection property.

3. PROPERTIES OF THE HOMOGENEOUS
ORTHOGONAL POLYNOMIALS

Let us now generalize the well-known univariate property [3, p. 57] that
for a definite functional c(k+1) as in (2) the polynomials V (k+1)

m (t) and V (k+1)
m+1 (t)

have no common zeroes. The same is true in the univariate case for the
polynomials W (k+1)

m (t) and W (k+1)
m+1 (t), and the polynomials V (k+1)

m (t) and
W (k+1)

m (t). Before we can formulate the multivariate generalization, we first
need a number of lemmas and theorems.
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In the multivariate discussion we shall often switch between the coor-
dinates (t, s) and the coordinate u in the one-dimensional subspaces
spanned by the vectors *. Remember that Vm (t, s)=Vm (u) and Wm (t, s)=
Wm (u) do not belong to C[t, s] but to C[*1 , *2][u].

Lemma 1. Let the functional 1 (k+1) which is defined for k� &1 be
definite and let the polynomials [V (k+1)

m (u)]m satisfy (10). Then the
[V (k+1)

m (u)]m are linearly independent in C(*1 , *2)[u].

Proof. Suppose we have coefficients '0 (*), '1 (*), ... # C(*1 , *2) such
that formally

\u # C : :
�

i=0

'i (*) V (k+1)
i (u)#0.

Then we also have for j�0 that

:
�

i=0

'i (*) 1 (k+1) (u jV (k+1)
i (u))#0.

Taking (10) into account, we obtain for j�0

:
j

i=0

'i (*) 1 (k+1) (u jV (k+1)
i (u))#0.

For j=0 this reduces to

'0 (*) 1 (k+1) (V (k+1)
0 (u))#0

which results in '0 (*)=0 because 1 (k+1) (V (k+1)
0 (u))=ck+1 (*)=H (k+1)

1 (*)
�0. For j>1 the proof that 'j (*)=0 is by induction. K

Theorem 1. Let the functional 1 (k+1) which is defined for k�&1 be
definite and let the polynomials V (k+1)

m (u) and p (k+1)
m (*) be defined as in

(9). Then the polynomials [V (k+1)
m (u)]m and [W (k+1)

m (u)]m satisfy the
recurrence relations

V (k+1)
m+1 (t, s)=: (k+1)

m+1 (*)[(u&; (k+1)
m+1 (*)) V (k+1)

m (t, s)

&# (k+1)
m+1 (*) V (k+1)

m&1 (t, s)]

V (k+1)
&1 (t, s)=0 V (k+1)

0 (t, s)=1

W (k+1)
m+1 (t, s)=: (k+1)

m+1 (*)[(u&; (k+1)
m+1 (*)) W (k+1)

m (t, s)

&# (k+1)
m+1 (*) W (k+1)

m&1 (t, s)]

W (k+1)
&1 (t, s)=&1 W (k+1)

0 (t, s)=0
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with

: (k+1)
m+1 (*)=

p (k+1)
m (*)

p (k+1)
m+1 (*)

H (k+1)
m+1 (*)

H (k+1)
m (*)

; (k+1)
m+1 (*)=

1 (k+1) (u(V (k+1)
m (t, s))2)

1 (k+1) ((V (k+1)
m (t, s))2)

# (k+1)
m+1 (*)=

p (k+1)
m&1 (*)

p (k+1)
m (*)

H (k+1)
m+1 (*)

H (k+1)
m (*)

# (k+1)
1 (*)=ck+1 (*).

Proof. The polynomial uV (k+1)
m (u)=uV (k+1)

m (t, s) as defined in (6a)
can be written as a linear combination

uV (k+1)
m (t, s)= :

m+1

i=0

' (k+1)
i (*) V (k+1)

i (t, s),

where the ' (k+1)
i (*) are rational functions of the variable *. We multiply

left and right hand side with V (k+1)
j (t, s) and apply the linear functional

1 (k+1) to obtain

' (k+1)
i (*)=0 i=0, ..., m&2

' (k+1)
m&1 (*)=

1 (k+1) (uV (k+1)
m&1 (t, s) V (k+1)

m (t, s))
1 (k+1) ((V (k+1)

m&1 (t, s))2)
=# (k+1)

m+1 (*)

' (k+1)
m (*)=

1 (k+1) (u(V (k+1)
m (t, s))2)

1 (k+1) ((V (k+1)
m (t, s))2)

' (k+1)
m+1 (*)=

1 (k+1) (uV (k+1)
m (t, s) V (k+1)

m+1 (t, s))
1 (k+1) ((V (k+1)

m+1 (t, s))2)
=1�: (k+1)

m+1 (*).

On the other hand we have

V (k+1)
m (u)=V (k+1)

m (t, s)=
H (k+1)

m (*)
p (k+1)

m (*)
um+ } } }

so that consequently

H (k+1)
m (*)

p (k+1)
m (*)

=
1

: (k+1)
m+1 (*)

H (k+1)
m+1 (*)

p (k+1)
m+1 (*)

.

Using (11) and the fact that

1 (k+1) ((V (k+1)
m (u))2)=

H (k+1)
m (*)

p (k+1)
m (*)

1 (k+1) (umV (k+1)
m (u))
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the expression for # (k+1)
m+1 (*) is obtained. For the associated polynomials

W (k+1)
m (u) we have, because 1 (k+1) (V (k+1)

m (z))=0,

W (k+1)
m+1 (u)=: (k+1)

m+1 (*) 1 (k+1) \(u&; (k+1)
m+1 (*))

V (k+1)
m (u)&V (k+1)

m (z)
u&z

&# (k+1)
m+1 (*)

V (k+1)
m&1 (u)&V (k+1)

m&1 (z)
u&z +

which gives the desired result. The starting value for # (k+1)
1 (*) is easy to

verify. K

Theorem 2. Let the functional 1 (k+1) which is defined for k�&1 be
definite and let the polynomials V (k+1)

m (u) and p (k+1)
m (*) be defined as in (9).

Then the polynomials [V(k+1)
m (u)]m and [W (k+1)

m (u)]m satisfy the identity

V (k+1)
m (u) W (k+1)

m+1 (u)&W (k+1)
m (u) V (k+1)

m+1 (u)

=V (k+1)
m (t, s) W (k+1)

m+1 (t, s)&W (k+1)
m (t, s) V (k+1)

m+1 (t, s)

=
[H (k+1)

m+1 (*)]2

p (k+1)
m (*) p (k+1)

m+1 (*)
.

Proof. For simplicity we omit writing the arguments (t, s) in V (k+1)
m

and W (k+1)
m and (*) in : (k+1)

m , ; (k+1)
m and # (k+1)

m . The proof makes use of
the previous recurrence relations:

W (k+1)
m V (k+1)

m+1 =: (k+1)
m+1 [(u&; (k+1)

m+1 V) V (k+1)
m W (k+1)

m

&# (k+1)
m+1 V (k+1)

m&1 W (k+1)
m ]

V (k+1)
m W (k+1)

m+1 =: (k+1)
m+1 [(u&; (k+1)

m+1 ) W (k+1)
m V (k+1)

m

&# (k+1)
m+1 W (k+1)

m&1 V (k+1)
m ].

By subtracting these expressions one obtains

V (k+1)
m W (k+1)

m+1 &W (k+1)
m V (k+1)

m+1

=: (k+1)
m+1 # (k+1)

m+1 } } } : (k+1)
2 # (k+1)

2 (V (k+1)
0 W (k+1)

1 &W (k+1)
0 V (k+1)

1 )

=
[H (k+1)

m+1 ]2

p (k+1)
m p (k+1)

m+1

. K

The preceding theorem shows that the expression

V (k+1)
m (u) W (k+1)

m+1 (u)&W (k+1)
m (u) V (k+1)

m+1 (u)
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is homogeneous and that if p (k+1)
m (*) and p (k+1)

m+1 (*) are constants, this
homogeneous expression is of degree (k+m+1)(m+1).

Let us now take a closer look at the factorisation of the orthogonal poly-
nomials V (k+1)

m (u) and their associated polynomials W (k+1)
m (u) in

irreducible factors. This factorisation is unique in C[*1 , *2][u] except for
multiplicative constants from C which are the unit multiples in C[*1 , *2]
and except for the order of the factors. This is because C[*1 , *2][u] is a
unique factorization domain.

Theorem 3. Let the functional 1 (k+1) which is defined for k�&1 be
definite and let the polynomials V (k+1)

m (u) and p (k+1)
m (*) be defined as in (9).

Let W (k+1)
m (u) be given by (6b). Then

(a) V(k+1)
m (u) and V (k+1)

m+1 (u) have no common factor

(b) W (k+1)
m (u) and W (k+1)

m+1 (u) have no common factor

(c) V (k+1)
m (u) and W (k+1)

m (u) have no common factor.

Proof. We only give the proof for (a) since the proof for (b) and (c) is
completely similar. The proof is by contradiction. Assume that V (k+1)

m (u)
and V (k+1)

m+1 (u) have a common factor. Then, because of theorem 2, it is
necessarily a polynomial in *, different from a complex constant if it is a
true common factor. Hence the polynomials V (k+1)

m (u) and V (k+1)
m+1 (u) are

not primitive, which is a contradiction. K

Let us now restrict ourselves to all variables and coefficients being real
and turn to some results for positive definite functionals. The functional
1 (k+1) is called positive definite if

\* # R2"[0]: H (k+1)
m (*)>0 m�0.

Lemma 2. For a positive definite functional 1 (k+1) and for any polyno-
mial P(u) # R[*1 , *2][u] holds

1 (k+1) (P2 (u))>0,

where the functional 1 (k+1) acts on the variable u as defined above.

Proof. Every polynomial P(u) of degree m in R[*1 , *2][u] can be
written in the form

P(u)= :
m

i=0

'i (*) V (k+1)
i (u),

14 BENOUAHMANE AND CUYT



where the 'i (*) # R(*1 , *2) are rational functions of the variable * with real
coefficients. From the orthogonality conditions satisfied by V (k+1)

m (u) we
obtain

1 (k+1) (P2 (u))= :
m

i=0

'2
i (*) 1 (k+1) ((V (k+1)

i (u))2)

= :
m

i=0

'2
i (*)

H (k+1)
j (*) H (k+1)

j+1 (*)

( p (k+1)
j (*))2

>0. K

Theorem 4. For a positive definite functional 1 (k+1), the polynomials
V(k+1)

m (u) satisfying (10) have no irreducible factors in R[*1 , *2][u] of
multiplicity larger than 1.

Proof. Assume V (k+1)
m (u) has an irreducible factor F(u) of multiplicity

l>1. Then we can write

V (k+1)
m (u)=Fl (u) Z(u),

where Z(u) is a polynomial in u of degree m&l �u F<m where �uF is
the degree of F(u) as a polynomial in u. If l>1 is even then because of
Lemma 2

1 (k+1) (Z(u) V (k+1)
m (u))=1 (k+1) (Z2 (u) Fl (u))

>0

which is impossible because of the orthogonality conditions satisfied by
V(k+1)

m . If l>1 is odd then

1 (k+1) (F(u) Z(u) V (k+1)
m (u))=1 (k+1) (Z2 (u) Fl+1 (u))

>0

which is also a contradiction. K

Let us illustrate this by considering the following positive definite
functional

1(zi)=ci (*)= :
i

j=0

ci& j, j* i& j
1 * j

2

ci& j, j=\i
j+ ||

&(x, y)&2�1
xi& jy j dx dy.
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The first few orthogonal polynomials satisfying (7) and having only simple
irreducible factors are given by

V (0)
0 (u)=1

V (0)
1 (u)=u

V (0)
2 (u)=\u&

1
2

- *2
1+*2

2 +\u+
1
2

- *2
1+*2

2 +
V (0)

3 (u)=2u \u&
1

- 2
- *2

1+*2
2+\u+

1

- 2
- *2

1+*2
2 +

V (0)
4 (u)=16 \u&

- 3&- 5

2 - 2
- *2

1+*2
2+\u+

- 3&- 5

2 - 2
- *2

1+*2
2+

_\u&
- 3+- 5

2 - 2
- *2

1+*2
2+\u+

- 3+- 5

2 - 2
- *2

1+*2
1 +

V (0)
5 (u)=16u \u&

1
2

- *2
1+*2

2+\u+
1
2

- *2
1+*2

2 +
_\u&

- 3
2

- *2
1+*2

1+\u+
- 3

2
- *2

1+*2
2+ . (12)

4. COMMON ZEROES INSTEAD OF COMMON FACTORS

From the previous section it is clear that our orthogonal polynomials
[V (k+1)

m (u)]m # N do hot have any irreducible factors in common in
C[*1 , *2][u]. Since each of these irreducible factors would determine a
zero curve, it is also clear that the [V (k+1)

m (t, s)]m # N do not have any zero
curves in common. But since their coefficients belong to the unique fac-
torization domain C[*1 , *2], we can use a well-known theorem to detect
isolated zeroes for which for instance V (k+1)

m (u)=V (k+1)
m (t, s) and

V(k+1)
n (u)=V (k+1)

n (t, s) vanish simultaneously.

Lemma 3. Let the functional 1 (k+1) which is defined for k� &1 be
definite. Let the polynomials

V (k+1)
m (u)= :

m

i=0

v (k+1)
mi (*) u i
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satisfy (10). Then V (k+1)
m (u) and V (k+1)

n (u) have a common zero for *=
(*1 , *2) satisfying

v (k+1)
m0 (*) } } } v (k+1)

mm (*)

0
. . .

. . . = n times

0 0 v (k+1)
m0 (*) } } } v (k+1)

mm (*)
R(*)= } }=0

v (k+1)
n0 (*) } } } v (k+1)

nn (*)

0
. . .

. . . = m times

0 0 v (k+1)
n0 (*) } } } v (k+1)

nn (*)

Proof. The (n+m)_(n+m) determinant R(*) is the resultant of the
polynomials V (k+1)

m (u) and V (k+1)
n (u) and this proves the lemma [9,

pp. 23�30]. K

Taking the positive definite functional from the previous section again,
we see that the resultant of the orthogonal polynomials V (0)

2 (u) and
V(0)

5 (u) given in (12) is identically zero, meaning that common zeroes can
be found for any value of *1 and *2 . Indeed, these polynomials have two
common factors (note that Theorem 3 only applies to polynomials of
which the degree differs at most 1). We can further illustrate this
occurrence of common zeroes with an example involving a nontrivial resul-
tant. Consider the functional

1 (0) (zi)=ci (*)=
1
i !

(* i
1+* i&1

1 *2+ } } } +* i
2).

The orthogonal polynomials V (0)
1 (u) and V (0)

2 (u) satisfying (7) are then
given by

V (0)
1 (u)= &(*1+*2)+u

V (0)
2 (u)= & 1

12 (*4
1+2*3

1*2+5*2
1*2

2+2*1 *3
2+*4

2)

+ 1
6 (2*3

1+5*2
1*2+5*1*2

2+2*3
2) u& 1

2 (*2
1+3*1*2+*2

2) u2.

The resultant of V (0)
1 (u) and V (0)

2 (u) equals (we present the resultant in
factored form because we need this form afterwards)

R(*)=& 1
64 ((3+- 5) *1+2*2)2 ((3&- 5) *1+2*2)2.

Consequently V (0)
1 (t, s)=V (0)

1 (u) and V (0)
2 (t, s)=V (0)

2 (u) have a common
zero for * satisfying

{R(*)=0
&*&2=1.
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This is for

*=*(1)=\&1
3 � 6

3+- 5
, �3+- 5

6 +
and

*=*(2)=\&1
3 � 6

3&- 5
, �3&- 5

6 +
or in terms of t and s, for

(t, s)=(t(1), s(1))=\&
1+- 5

9+3 - 5
,

1+- 5
6 +

and

(t, s)=(t(2), s(2))=\&
1&- 5

9&3 - 5
,

1&- 5
6 + .

To further illustrate the above, we have plotted the zeroes of V (0)
1 (t, s) and

V (0)
2 (t, s) in Fig. 1. For V (0)

1 (t, s) for instance, these are given by the ellipse
in Fig. 1:

V (0)
1 (t, s)=0 � {t=*1u=*1 (*1+*2)

s=*2 u=*2 (*1+*2)
&*&2=1.

For V (0)
2 (t, s) they are given by the hyperbola. The vectors (*1 , *2) for

which the ellipse and the hyperbola are tangent, were computed from
equating the resultant to zero. The tangent points seen in the figure, are the
vectors (t, s) computed above.

Let us at the same time illustrate that W� (0)
2 (u)�V� (0)

2 (u)=W� (0)
2 (t, s)�

V� (0)
2 (t, s) equals the homogeneous Pade� approximant [1�2] f

H for the series

f (t, s)= :
�

i=0

ci (*) ui

=
t exp(t)&s exp(s)

t&s
= :

�

i, j=0

1
(i+ j)!

t is j.
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FIGURE 1

From V (0)
2 (u)=V (0)

2 (t, s) we compute

V� (0)
2 (t, s)=u4V� (0)

2 (u&1)

= & 1
12 (t4+2t3s+5t2s2+2ts3+s4)

+ 1
6 (2t3+5t2s+5ts2+2s3)& 1

2 (t2+3ts+s2)

and

W (0)
2 (t, s)=1 \V (0)

2 (z)&V (0)
2 (u)

z&u +
W� (0)

2 (t, s)=u3W (0)
2 (u&1)

=&
1
2

(t2+3ts+s2)&
1
6

(t3+7t2s+7ts2+s3)

to obtain [1�2] f
H .
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